999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

非編碼RNA與急性腎損傷相關性的研究進展

2019-06-20 10:22:28王立濤連興基譚寧
中國醫藥導報 2019年13期
關鍵詞:生物標志物研究進展

王立濤 連興基 譚寧

[摘要] 急性腎損傷(AKI)是一種以腎功能迅速下降、高死亡率為特征的常見嚴重疾病。然而,AKI的分子機制尚未明確,且缺乏有效的治療方法。非編碼RNA(ncRNAs)通過調控炎性反應、細胞程序性死亡、修復階段的細胞周期等機制參與AKI發生的病理生理過程。因此,多種ncRNAs不僅被視為AKI的新型生物標志物,而且有望成為潛在的治療靶點。本文綜述了ncRNAs在AKI中的變化、功能及潛在治療作用。

[關鍵詞] 非編碼RNA;急性腎損傷;生物標志物;研究進展

[中圖分類號] R692 [文獻標識碼] A [文章編號] 1673-7210(2019)05(a)-0038-04

Research progress on the relationship between non-coding RNA and acute kidney injury

WANG Litao1,2 LIAN Xingji3 TAN Ning2 LIU Yuanhui2

1.School of Medicine, South China University of Technology, Guangdong Province, Guangzhou 510006, China; 2.Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou 510100, China; 3.Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou 510100, China

[Abstract] Acute kidney injury (AKI) is a common serious disease characterized by rapid decline in renal function and high mortality. However, the molecular mechanism of AKI is still unclear and there is no effective treatment. Non-coding RNA (ncRNAs) participate in the pathophysiological process of AKI by regulating inflammatory response, programmed cell death and cell cycle in repair phase. Therefore, a variety of ncRNAs are not only considered as new biomarkers of AKI, but also potential therapeutic targets. This article reviews the changes, functions and potential therapeutic effects of ncRNAs in AKI.

[Key words] Non-coding RNA; Acute kidney injury; Biomarker; Research progress

急性腎損傷(AKI)是以腎小球濾過率急劇減退為特征的臨床綜合征,可顯著增加患者住院天數、醫療費用及死亡率等不良結局[1]。AKI的主要病理特征包括炎癥細胞浸潤、炎性細胞因子產生、凋亡和壞死等[2]。盡管相關研究已取得極大進展,但AKI的病理生理機制仍未明確。近來,越來越多的研究[3]表明非編碼RNA(ncRNAs),尤其是微小RNA(miRNAs),與AKI相關。同時,其有可能成為AKI的診斷標志物或治療靶點[4]。本文綜述了miRNAs、長鏈非編碼RNA(lncRNAs)、環形RNA分子(circRNAs)在AKI中的研究進展。

1 ncRNAs及其分類

ncRNAs是指一類在生物體中廣泛表達而無蛋白編碼功能的RNA。ncRNAs可被分為兩組,即管家ncRNA和調控ncRNA。根據ncRNAs的片段大小,后者又可被分為三種類型,即miRNAs、lncRNAs和circRNAs[5]。

miRNAs是一種具有多種生物學功能的內源性ncRNAs,其在糖尿病腎病、IgA腎病、AKI等腎臟疾病中具有關鍵作用[6]。盡管miRNAs不編碼蛋白質,但其能夠通過與目標mRNA的3′非轉錄區(3′-UTR)互補結合,抑制蛋白質的翻譯并負反饋調節靶基因的表達[7]。

lncRNAs長度超過200 nt,并具有復雜多樣的作用機制,包括基因印記、剪切調控、染色質重塑、細胞周期調控,并參與信使RNA降解和翻譯調控等[8-9]。lncRNAs在增殖和分化等多種生物學過程中具有重要作用,提示lncRNAs可能在AKI中起到一定作用[10]。

circRNAs是一類通過可變剪接形成的內源性ncRNAs,其在哺乳動物中發揮基因調控作用。circRNAs最初被認為是一種剪接錯誤,且豐度較低,但目前其在基因調控中的作用越來越受到重視[11]。盡管circRNAs在腎臟疾病中的作用尚未明確,但circRNAs在腎臟內高表達,同時考慮到其在調節細胞周期及細胞程序性死亡方面的作用,circRNAs可能參與AKI的調控[12]。

2 miRNAs在AKI中的作用

AKI病因多樣、機制復雜、預后不確定,miRNAs譜可為其發病機制研究提供有價值的解讀。Wei等[13]首次報道miRNAs在缺血性AKI中的重要性,該研究通過構建腎近曲小管Dicer(一種合成miRNAs所必需的酶)特異性、基因組敲除的轉基因小鼠模型,發現其腎皮質miRNAs表達下調,且敲除型小鼠對AKI的抵抗力比野生型小鼠更強,主要表現為腎功能明顯改善,組織損傷和腎小管凋亡減少以及存活率更高。同時,miRNAs在血漿及尿液中的高度特異性及敏感性,使miRNAs有望成為監測AKI疾病進程的重要生物標志物[14]。

多種miRNAs參與調控AKI的細胞程序性死亡。Jia等[15]發現,在敗血癥AKI中,沉默miRNA-21可促進細胞死亡,而過表達miRNA-21可通過抑制PDCD4而抑制細胞死亡。前期研究[16]也發現miRNA-21可通過上述機制保護腎臟細胞抵抗造影劑所致的腎損傷(CI-AKI)。Sun等[4]發現,在CI-AKI大鼠模型及患者血漿中,miRNA-188、miRNA-30a和miRNA-30e水平顯著提高,并能用于區分CI-AKI和無CI-AKI患者,提示miRNAs可能是早期檢測CI-AKI的潛在生物標志物。而Xu等[17-18]發現,miRNA-21在腎缺血再灌注損傷(IRI)中的作用是雙向的,缺血預適應引起的miRNA-21表達上調,通過作用于PDCD4對保護腎功能,單獨沉默miRNA-21并不能減輕腎損傷。上述研究提示miRNA-21在AKI中扮演不同的角色。

炎性反應也參與了AKI的病理過程。Amrouche等[19]發現,在人尿液、器官移植接受者以及單側IRI小鼠模型中,miRNA-146a水平顯著升高。miR-146a通過抑制IL-1受體相關性激酶1及CXCL8/CXCL1表達而保護腎功能。在單側IRI小鼠模型中,敲除miRNA-146a后,腎小管損傷、炎癥性浸潤和纖維化加重。Ranganathan等[20]發現敲除miRNA-150后可通過抑制炎性反應及細胞凋亡減輕AKI。

除以上調控機制外,Alnasser等[21]發現,在胰島素抵抗(IR)AKI中,自噬能夠保護腎小管上皮細胞,其中miRNAs通過靶向作用于自噬相關基因調控細胞生存。Wang等[22]發現在IRI腎臟和低氧腎小管上皮細胞中,LC3和ATG16L1(自噬相關蛋白)表達上升,而miRNA-20a-5p表達下調。同時發現過表達的miRNA-20a-5p通過結合ATG16L1的3′-UTR抑制其轉錄。此外,肝細胞生長因子(HGF)具有組織修復作用,并且受內源性miRNA-26a的調控。Gattai等[23]在甘油介導的大鼠AKI模型中發現,miRNA-26a可通過調控HGF而促進腎臟修復。

3 lncRNAs在AKI中的作用

lncRNAs是新發現的在不同組織器官中調節生物活性的胞內ncRNAs。lncRNAs是包括AKI在內的多種疾病的重要調控因子。近年來,研究者通過RNA測序技術和基因芯片分析等方法評價I/R動物損傷模型或AKI患者中lncRNAs的表達[24]。Chun等[25]通過基因芯片分析檢測敗血癥AKI患者與對照組血清標本中lncRNAs的表達,發現在AKI組中有5361種lncRNAs表達上調,并有5928種lncRNAs表達下調,是對照組表達量的2倍以上。同時,某些lncRNAs通過靶向調控關鍵的細胞周期調控因子來調節細胞凋亡及增殖,如細胞周蛋白,周期蛋白依賴性激酶(CDK)和p53[26]。Geng等[27]在I/R腎損傷中發現,lncRNA GAS5過量表達可上調p53的表達水平,并促進腎小管上皮細胞凋亡。lncRNA Gadd7可通過參與CDK6轉錄后水平調控,在G1期抑制細胞周期[28]。

此外,Lorenzen等[24]在AKI危重患者的血液中檢測到lncRNAs,并命名為TrAnscript Predicting Survival in AKI(TapSAKI)。TapSAKI存在于腎臟組織中,且在AKI患者血漿中表達上調。TapSAKI的濃度與疾病嚴重程度相關,且其在缺氧管狀上皮細胞中富集。提示TapSAKI或許能作為一種特異性的AKI預后生物標志物。Chen等[29]在AKI患者的血液中檢測到lncRNA NEAT1,發現上調NEAT1的表達可通過負調節miRNA-204和激活NF-κB通路加重脂多糖(LPS)誘導的腎損傷。因此,NEAT1可能可作為AKI的診斷標志物和治療靶點。此外,Malat1通過調控miRNA-146a/NF-κB信號通路調節LPS誘導的AKI[30]。但Malte等[31]卻發現單側I/R腎損傷的Malat1敲除小鼠與野生型小鼠比較,其表現出同等程度的外髓損傷、毛細血管稀薄化、纖維化、炎癥細胞浸潤、炎癥基因表達。提示lncRNA-Malat1對腎IRI是非必需的。

綜上所述,lncRNAs在多個環節調控特異性基因的表達,預示了lncRNAs在AKI發生及進展中的重要作用。

4 circRNAs在AKI中的作用

circRNAs在疾病中的作用已受到越來越多的關注。盡管circRNAs在某些腎臟疾病中的作用已有報道,如狼瘡性腎炎和高血壓性腎病,但其在AKI中的功能卻知之甚少[12,32]。Dang等[33]通過基因芯片分析發現,在缺氧的人臍靜脈內皮細胞(HUVECs)中,有14種circRNAs表達上調,22種circRNAs表達下調。其中,hsa_circ_0010729上調最為明顯,并能夠通過miRNA-186/HIF-1α通路促進血管內皮細胞增殖、遷移,抑制細胞凋亡,此結果對AKI的恢復或有重要意義。Lin等[34]研究發現,在經氧糖剝奪/復糖復氧處理的HT22細胞中mmu-circRNA-015947表達顯著上調;生物信息學分析顯示,其能與多種miRNAs相互作用,從而提高靶基因的表達;KEGG通路分析提示,mmu-circRNA-015947或許在與細胞凋亡、代謝及免疫相關的信號通路中發揮作用,進而參與IRI的調控。以上發現提示circRNAs在促進細胞增殖和調控I/R損傷中具有重要作用,也提示circRNAs具有修復AKI的潛在可能。

circRNAs的典型特征即“頭尾”連接,并具有結合并隔離miRNAs的細胞功能,但這種相互作用僅見于有大量結合位點的特定miRNAs中[35]。K?觟lling等[36]通過檢測需行腎替代治療的AKI患者與對照組患者的circRNAs水平發現,circRNAs-126能通過吸附miRNA-126-5p,導致AKI患者及缺氧內皮細胞中的miRNA-126-5p表達下降。此外,circRNAs-126可作為AKI Ⅲ期患者死亡的獨立預后因素,因此circRNAs-126或許可作為無創性反應miRNAs調節異常的RNA水平生物標志物。

5 討論與展望

近幾年,ncRNAs在AKI中的研究取得較大的進展。ncRNAs通過靶向調控腎臟疾病發生進展中關鍵基因的表達以及調控參與細胞凋亡和炎癥的信號通路,從而調節AKI進程。因此,在體靶向抑制或上調ncRNAs的表達可能成為未來AKI治療策略的新方向。越來越多的證據表明多種miRNAs在AKI中具有重要功能和治療潛力,這為AKI的分子機制研究和臨床治療提供了新思路。同時,針對包括AKI在內的多種疾病,越來越多的研究集中探討在組織中高表達及疾病特異性的lncRNAs和circRNAs的治療潛能以及其作為AKI診斷預后生物標志物的潛能。然而,由于ncRNAs豐度較低,導致某些重要ncRNAs在實驗研究中易被忽略;臨床上難以獲得不同時期AKI患者的充足樣本,這限制了ncRNAs在AKI不同階段中功能的研究。雖然面臨這些挑戰,但對AKI中ncRNAs分子機制了解的深入將對AKI的早期發現與后續治療產生顯著益處。

[參考文獻]

[1] Hoste EAJ,Kellum JA,Selby NM,et al. Global epidemiology and outcomes of acute kidney injury [J]. Nat Rev Nephrol,2018,14(10):607-625.

[2] Allison SJ. Acute kidney injury:AIMing to enhance debris clearance and improveoutcomes in AKI [J]. Nat Rev Nephrol, 2016,12(3):123.

[3] Fan PC,Chen CC,Chen YC,et al. MicroRNAs in acute kidney injury [J]. Hum Genomics,2016,10(1):29.

[4] Sun SQ,Zhang T,Ding D,et al. Circulating MicroRNA-188,-30a,and -30e as Early Biomarkers for Contrast-Induced Acute Kidney Injury [J]. J Am Heart Assoc,2016,5(8):e004138.

[5] Gomes AQ,Nolasco S,Soares H. Non-coding RNAs:multi-tasking molecules in the cell [J]. Int J Mol Sci,2013,14(8):16 010-16 039.

[6] Bhatt K,Kato M,Natarajan R. Mini-review:emerging roles of microRNAs in the pathophysiology of renal diseases [J]. Am J Physiol Renal Physiol,2016,310(2):F109-F118.

[7] Kim I,Kwak H,Lee HK,et al. β-Catenin recognizes a specific RNA motif in the cyclooxygenase-2 mRNA 3′-UTR and interacts with HuR in colon cancer cells [J]. Nucleic Acids Res,2012,40(14):6863-6872.

[8] Hu S,Wang X,Shan G. Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing [J]. Nat Struct Mol Biol,2016,23(11):1011-1019.

[9] Villegas VE,Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs [J]. Int J Mol Sci,2015,16(2):3251-3266.

[10] Moran VA,Perera RJ,Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs [J]. Nucleic Acids Res,2012,40(14):6391-6400.

[11] Liu L,Wang J,Khanabdali R,et al. Circular RNAs:Isolation,characterization and their potential role in diseases [J]. RNA Biol,2017,14(12):1715-1721.

[12] Cheng X,Joe B. Circular RNAs in rat models of cardiovascular and renal diseases [J]. Physiol Genomics,2017, 49(9):484-490.

[13] Wei Q,Bhatt K,He HZ,et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol,2010,21(5):756-761.

[14] Lee SH,Ju HM,Choi JS,et al. Circulating Serum miRNA-205 as a Diagnostic Biomarker for Ototoxicity in Mice Treated with Aminoglycoside Antibiotics [J]. Int J Mol Sci,2018,19(9):2836.

[15] Jia P,Teng J,Zou J,et al. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway [J]. Crit Care Med,2015,43(7):e250-e259.

[16] Wang K,Bei WJ,Liu YH,et al. miR-21 attenuates contrast-induced renal cell apoptosis by targeting PDCD4 [J]. Mol Med Rep,2017,16(5):6757-6763.

[17] Xu X,Kriegel AJ,Jiao X,et al. miR-21 in ischemia/reperfusion injury:a double-edged sword [J] Physiol Genomics,2014,46(21):789-797.

[18] Xu X,Kriegel AJ,Liu Y,et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21 [J]. Kidney Int,2012,82(11):1167-1175.

[19] Amrouche L,Desbuissons G,Rabant M,et al. MicroRNA-146a in Human and Experimental Ischemic AKI:CXCL8-Dependent Mechanism of Action [J]. J Am Soc Nephrol,2017,28(2):479-493.

[20] Ranganathan P,Jayakumar C,Tang Y,et al. MicroRNA-150 deletion in mice protects kidney from myocardial infarction-induced acute kidney injury [J]. Am J Physiol Renal Physiol,2015,309(6):F551- F558.

[21] Alnasser HA,Guan Q,Zhang F,et al. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells [J]. Am J Physiol Renal Physiol,2016,310(2):F160- F173.

[22] Wang IK,Sun KT,Tsai TH,et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury [J]. Life Sci,2015,136:133-141.

[23] Gattai PP,Maquigussa E,da Silva Novaes A,et al. miR-26a modulates HGF and STAT3 effects on the kidney repair process in a glycerol-induced AKI model in rats [J]. J Cell Biochem,2018,119(9):7757-7766.

[24] Lorenzen JM,Schauerte C,Kielstein JT,et al. Circulating long noncoding RNA TapSaki is a predictor of mortality in critically ill patients with acute kidney injury [J]. Clin Chem,2015,61:191-201.

[25] Chun-Mei H,Qin-Min G,Shu-Ming P,et al. Expression profiling and ontology analysis of circulating long non-coding RNAs in septic acute kidney injury patients [J]. Clin Chem Lab Med,2016,54(12):e395-e399.

[26] Kitagawa M,Kitagawa K,Kotake Y,et al. Cell cycle regulation by long non-coding RNAs [J]. Cell Mol Life Sci,2013,70(24):4785-4794.

[27] Geng X,Xu X,Fang Y,et al. The effect of long noncoding RNA GAS5 on apoptosis in renal ischemia/reperfusion injury [J]. Nephrology(Carlton),2018.

[28] Liu X,Li D,Zhang W,et al. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay [J]. EMBO J,2012,31(23):4415-4427.

[29] Chen Y,Qiu J,Chen B,et al. Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-κB pathway [J]. Int Immunopharmacol,2018,59:252-260.

[30] Ding Y,Guo F,Zhu T,et al. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway [J]. Int J Mol Med,2018,41(1):446-454.

[31] Malte K?觟lling,Celina Genschel,Tamas Kaucsar,et al. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury [J]. Sci Rep,2018,8(1):3438.

[32] Ouyang Q,Huang Q,Jiang Z,et al. Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis [J]. Mol Immunol,2018,101:531-538.

[33] Dang RY,Liu FL,Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis [J]. Biochem Biophys Res Commun,2017,490(2):104-110.

[34] Lin SP,Ye S,Long Y,et al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury [J]. Biochem Biophys Res Commun,2016,471(1):52-56.

[35] Memczak S,Jens M,Elefsinioti A,et al. Circular RNAs are a large class of animal RNAs with regulatory potency [J]. Nature,2013,495(7441):333-338.

[36] K?觟lling M,Seeger H,Haddad G,et al. The Circular RNA ciRs-126 Predicts Survival in Critically Ill Patients With Acute Kidney Injury [J]. Kidney Int Rep,2018,3(5):1144-1152.

(收稿日期:2018-10-19 本文編輯:王 蕾)

猜你喜歡
生物標志物研究進展
MiRNA-145在消化系統惡性腫瘤中的研究進展
離子束拋光研究進展
獨腳金的研究進展
中成藥(2017年9期)2017-12-19 13:34:44
膿毒癥急性腎損傷早期預警指標的研究進展
水環境中木質素光降解及其對有機物相關指示參數影響研究進展
基于UPLC—Q—TOF—MS技術的牛血清白蛋白誘導過敏反應的代謝組學研究
基于UPLC—Q—TOF—MS技術的牛血清白蛋白誘導過敏反應的代謝組學研究
EVA的阻燃研究進展
中國塑料(2016年4期)2016-06-27 06:33:22
海洋環境監測中生物標志物的研究進展
園林施工管理及其養護的探討
主站蜘蛛池模板: 亚洲无码精品在线播放| 欧美在线视频不卡| 亚洲性视频网站| a级毛片在线免费观看| 538精品在线观看| 五月婷婷丁香色| 国产va在线观看免费| 国产精品久久久久久久久久久久| 91精品综合| 99热免费在线| 国产99欧美精品久久精品久久| 人妻一区二区三区无码精品一区| 精品国产美女福到在线直播| 欧美国产综合色视频| 无码AV日韩一二三区| 亚洲欧美自拍一区| 国产91在线|中文| 国产精品第一区在线观看| 伊人精品成人久久综合| 九九免费观看全部免费视频| 欧美激情网址| 久久精品人人做人人综合试看| 99r在线精品视频在线播放| 四虎影院国产| 日韩东京热无码人妻| 精品国产香蕉在线播出| 国产成人精品综合| 中国精品自拍| 无码网站免费观看| 亚洲人成影视在线观看| 伊人成人在线视频| 狼友av永久网站免费观看| 国产av剧情无码精品色午夜| 毛片在线看网站| 国产v欧美v日韩v综合精品| 亚洲成人一区在线| 国产肉感大码AV无码| 国产AV无码专区亚洲A∨毛片| 精品国产一区二区三区在线观看 | 国产精品无码制服丝袜| 国模私拍一区二区| 一级毛片基地| 国产精品亚洲αv天堂无码| 亚洲乱强伦| 国产1区2区在线观看| 国产精品片在线观看手机版| 成人另类稀缺在线观看| 国产一在线观看| 日韩大片免费观看视频播放| 欧美一级99在线观看国产| 99国产精品国产高清一区二区| 一级毛片在线免费视频| 在线国产欧美| www欧美在线观看| 天堂在线www网亚洲| 黄色成年视频| 精品国产毛片| 成人免费黄色小视频| 国产在线一区二区视频| 毛片网站免费在线观看| 茄子视频毛片免费观看| 亚洲网综合| 国内精品自在欧美一区| 精品国产免费观看一区| 99热这里只有精品免费| 91在线高清视频| 少妇精品在线| 91 九色视频丝袜| 国产91丝袜在线播放动漫| 精品偷拍一区二区| 午夜福利亚洲精品| 成人在线综合| 福利视频久久| 中文无码精品A∨在线观看不卡| 四虎影视库国产精品一区| 国内丰满少妇猛烈精品播 | 国产精品午夜电影| 色综合中文综合网| 亚洲成a人片| 亚洲天堂2014| 99国产精品免费观看视频| 国产专区综合另类日韩一区|