999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

延遲Gompertz模型的數(shù)值分支和混合控制

2019-06-11 08:27:47宋繼志王媛媛
河北科技大學學報 2019年2期

宋繼志 王媛媛

摘要:為了研究物種的穩(wěn)定性問題,要求縮小或者擴大生物系統(tǒng)的穩(wěn)定區(qū)域,通過混合控制歐拉法研究了一個時滯Gompertz模型,運用狀態(tài)反饋和參數(shù)擾動控制得到了Neimark-Sacker分支的理想結(jié)果。根據(jù)Hopf分支理論得到了連續(xù)系統(tǒng)平衡點的穩(wěn)定性,通過混合控制歐拉算法得到了離散系統(tǒng)在要求的分支點所產(chǎn)生的Neimark-Sacker分支,利用中心流形定理和正規(guī)形方法,給出了確定分支周期解的分支方向與穩(wěn)定性的計算公式。采用數(shù)值模擬驗證了所得結(jié)果的正確性。研究結(jié)果表明,對于延遲Gompertz模型系統(tǒng),如果選擇合適的控制參數(shù),就能夠使分支點提前或者延遲。研究方法在理論和數(shù)值模擬方面都得到了良好的預期結(jié)果,為解決相關(guān)的控制問題提供了新的方法,對其他領(lǐng)域的控制問題研究具有一定的借鑒意義。

關(guān)鍵詞:常微分方程數(shù)值解; Gompertz模型; 混合控制; 歐拉法; 延遲; Neimark-Sacker分支

中圖分類號:O1891文獻標志碼:A

Abstract: In order to study the stability of species, the biological systems are required to reduce or expand the stable region. For a Gompertz model with time delay, a hybrid control Euler method is proposed in which state feedback and parameter perturbation are used to control the Neimark-Sacker bifurcation. The local stability of the equilibria is discussed according to Hopf bifurcation theory. For controlling Neimark-Sacker bifurcation, the hybrid control numerical algorithm is introduced to generate the Neimark-Sacker bifurcation at a desired bifurcation point. The explicit algorithms for determining the direction of the bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form method and center manifold theorem. Numerical examples are provided to illustrate the theoretical results. The research results show that the branch point can be in advance or delay for the delay Gompertz model system through choosing appropriate control parameters. The algorithm has obtained good results both in theory and numerical performance, which provides a new method and has certain theoretical significance for its application in many control problems.

Keywords:numerical solution of ordinary differential equation; Gompertz model; hybrid control; Euler method; delay; Neimark-Sacker bifurcation

5結(jié)論

為了擴大或者縮小控制區(qū)域,給出了應用狀態(tài)反饋和參數(shù)擾動的混合控制數(shù)值歐拉法得到了Neimark-Sacker分支。對Gompertz連續(xù)系統(tǒng)實施混合控制得到了Hopf分支;通過選擇合適的控制參數(shù),實施混合控制數(shù)值算法延遲了原來分支點的出現(xiàn),應用混合控制歐拉法,對充分小的步長給出了保持分支的結(jié)果。通過理論和數(shù)值模擬驗證了所得結(jié)果,得到了延遲Gompertz模型系統(tǒng)通過選擇合適的控制參數(shù),分支點可能提前或者延遲。在將來的研究計劃中,筆者將設(shè)計更好的數(shù)值控制方法,達到更好的控制效果。

參考文獻/References:

[1]LOPEZ-GOMEZ J, ORTEGA R, TINEO A. The periodic predator-prey Lotka-Volterra model[J]. Advances in Differential Equations, 1996,1(3): 403-423.

[2]PIOTROWSKA M J, FORYS U. Analysis of the Hopf bifurcation for the family of angiogenesis models[J].Journal of Mathematical Analysis Applications,2011,382(1):180-203.

[3]JIA Jianwen, LI Chunhua. A Predator-Prey Gompertz model with time delay and impulsive perturbations on the prey[J]. Discrete Dynamics in Nature Society, 2009(1026):332-337.

[4]DONG Lingzhen, CHEN Lansun, SUN Lihua. Optimal harvesting policies for periodic Gompertz systems[J]. Nonlinear Analysis Real World Applications,2007,8(2):572-578.

[5]沈啟宏,魏俊杰. 具時滯的人類呼吸系統(tǒng)模型的穩(wěn)定性與分支[J].應用數(shù)學和力學, 2004,25(11):1169-1181.

SHENG Qihong, WEI Junjie. Stability and bifurcation of a human respiratory system model with time delay[J]. Applied Mathematics and Mechanics, 2004,25(11):1169-1181.

[6]魏俊杰,張春蕊,李秀玲.具時滯的二維神經(jīng)網(wǎng)絡(luò)模型的分支[J].應用數(shù)學和力學,2005,26(2):193-200.

WEI Junjie, ZHENG Chunrui, LI Xiuling. Bifurcation in a two-dimensional neural network model with delay[J]. Applied Mathematics and Mechanics, 2005,26(2):193-200.

[7]YU Pei, CHEN Guanrong. Hopf bifurcation control using nonlinear feedback with polynomial functions[J]. International Journal of Bifurcation Chaos, 2004,14(5): 1683-1704.

[8]YU Pei. Bifurcation control for a class of Lorenze-like systems[J].International Journal of Bifurcation Chaos,2011,21(9): 2647-2664.

[9]CHEN G, MOIOLA J L, WANG H O. Bifurcation control: theories, methods, and applications[J]. International Journal of Bifurcation Chaos,2000,10(3): 511-548.

[10]HILL D J, HISKENS I A, WANG Y. Robust, adaptive or nonlinear control for modern power systems[C]// Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio:IEEE Xplore,1993:2335-2340.

[11]CHEN Z, YU P. Hopf bifurcation control for an internet congestion model[J]. International Journal of Bifurcation Chaos, 2005,15(8):2643-2651.

[12]LIU Zengrong, CHUNG K W. Hybrid control of bifurcation in continuous nonlinear dynamical systems[J]. International Journal of Bifurcation Chaos, 2005,15(12): 3895-3903.

[13]CHENG Zunshui, CAO Jinde. Hybrid control of Hopf bifurcation in complex networks with delays[J]. Neuro Computing,2014,131:164-170.

[14]SU Huan, DING Xiaohua. Dynamics of a nonstandard finite-difference scheme for Mackey-Glass system[J]. Journal of Mathematical Analysis and Applications, 2008,344(2): 932-941.

[15]DING Xiaohua, FAN Dejun, LIU Mingzhu. Stability and bifurcation of a numerical discretization Mackey-Glass system[J]. Chaos, Solitons, Fractals, 2007,34(2): 383-393.

[16]張春蕊,劉明珠.雙時滯神經(jīng)網(wǎng)絡(luò)模型分支性的數(shù)值逼近[J]. 系統(tǒng)仿真學報,2004,16,(4):797-799.

ZHANG Chunrui, LIU Mingzhu. Hopf bifurcations in numerical approximation for neural network model with two delays[J]. Journal of System Simulation, 2004,16(4):797-799.

[17]WANG Yuanyuan. Dynamics of a nonstandard finite-difference scheme for delay differential equations with unimodal feedback[J]. Communications in Nonlinear Science Numerical Simulation, 2012,17(10): 3967-3978.

[18]SU Huan, MAO Xuerong, LI Wenxue. Hopf bifurcation control for a class of delay differential systems with discrete-time delayed feedback controller[J]. Chaos, 2016, 26(11): 113120.

[19]WULF V, FORD N. J. Numerical Hopf bifurcation for a class of delay differential equation[J]. Journal of Computational and Applied Mathematics. 2000,115(1): 601-616.

[20]RUAN Shigui, WEI Junjie. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J]. Dynamics of Continuous Discrete Impulsive Systems, 2003,10(6): 863-874.

[21]YURI A K. Elements of Applied Bifurcation Theory[M]. New York:Springer-Verlag, 1995.

[22]KUZNETSOV Y. Elements of Applied Bifurcation Theory[M]. New York:Springer-Verlag, 1995.

[23]HALE J. Theory of Functional Differential Equations[M]. New York:Springer-Verlag, 1977.

[24]WULF V. Numerical Analysis of Delay Differential Equations Undergoing a Hopf Bifurcation[D].Liverpool: University of Liverpool, 1999.

[25]WIGGINS S. Introduction to Applied Nonlinear Dynamical System and Chaos[M]. New York:Springer-Verlag, 1990.第40卷第2期河北科技大學學報Vol.40,No.2

2019年4月Journal of Hebei University of Science and TechnologyApr. ?2019

主站蜘蛛池模板: 亚洲精品综合一二三区在线| 精品国产欧美精品v| 亚洲日韩在线满18点击进入| 亚洲国产综合自在线另类| 玖玖精品在线| 国产精品女在线观看| 欧美97欧美综合色伦图| 狼友视频一区二区三区| 色悠久久综合| 亚洲IV视频免费在线光看| 综合五月天网| 婷婷色一二三区波多野衣| 亚洲无码不卡网| 高潮毛片免费观看| 亚洲欧美在线综合图区| 国产91小视频| 日本欧美午夜| 亚洲区第一页| 久久久国产精品无码专区| 波多野结衣亚洲一区| 欧美色丁香| 国产女人在线视频| 久久国产成人精品国产成人亚洲| 日本在线免费网站| AV无码国产在线看岛国岛| 日韩国产精品无码一区二区三区 | 久久毛片基地| 欧美精品二区| 国产噜噜噜视频在线观看| 久久综合AV免费观看| 亚洲人成人无码www| 美女被操91视频| 国产午夜一级淫片| 国产成人综合日韩精品无码首页| 免费人欧美成又黄又爽的视频| 精品国产91爱| 色婷婷天天综合在线| 在线观看91香蕉国产免费| 亚洲国产亚洲综合在线尤物| 日韩高清一区 | h网址在线观看| 97成人在线视频| 成年免费在线观看| 欧美精品亚洲精品日韩专区va| 日韩精品亚洲精品第一页| 鲁鲁鲁爽爽爽在线视频观看| 无码福利日韩神码福利片| 野花国产精品入口| 欧美另类一区| 免费啪啪网址| 97国产在线播放| 奇米影视狠狠精品7777| 一区二区日韩国产精久久| 青青青视频免费一区二区| 五月天丁香婷婷综合久久| 一级成人a毛片免费播放| 最新国产你懂的在线网址| 亚洲中文无码av永久伊人| 国产成人久久综合777777麻豆| 高清不卡毛片| 国内精品九九久久久精品| 麻豆国产精品一二三在线观看| 久久精品免费看一| 国产成年女人特黄特色毛片免| 精品久久久久久中文字幕女| 在线观看亚洲成人| 天天摸天天操免费播放小视频| a天堂视频| 久久中文字幕2021精品| 欧美www在线观看| 免费一级成人毛片| 亚洲三级电影在线播放| 亚洲综合久久成人AV| 国产在线视频欧美亚综合| 又黄又爽视频好爽视频| 男女男精品视频| 欧类av怡春院| 青草视频在线观看国产| 日韩少妇激情一区二区| 亚洲精品福利网站| 国产欧美日本在线观看| 老司机aⅴ在线精品导航|