汪金花,郭云飛,郭立穩,張 博,吳 兵
(華北理工大學 礦業工程學院,河北 唐山 063210)
井下高精度自主定位是井下物聯網智能化生產管理、災后避險以及定點搜救的關鍵技術。目前井下有RFID,Zigbee,TOA,UWB等多種定位技術和相關產品。其中RFID技術已應用于礦山井下安全管理,有KJ728型、KJ536型、KJ133型等井下定位系統。這類定位系統可以實時查詢井下人員的分布地點,運動軌跡等信息,但是實際應用時存在定位盲區,定位精度取決于讀卡器硬件分布的密度,精度較低約10 m。現有的礦井Zigbee,TOA,UWB技術在一定程度上彌補了RFID高精度定位的空白,能達到米級或亞米級,但是與井下物聯網應用、智能機器人定位要求的厘米級精度還有較大的差距,而且其定位過程主要依賴井下通訊系統、網絡和供電,如果井下出現供電中止或信號中斷情況,定位系統則不能正常工作[1-5]。GRPM[6](Geomagnetic and RFID Combined Positioning Method),是地磁匹配與標簽識別技術組合的一種定位方法,主要針對現有井下定位方法的局限性,從井下物聯網的高精度定位和自主導航的需要出發探索的一種新型井下定位方法。這種定位方法是以地磁匹配作為基礎理論,在現有井下定位方法基礎上,只需要在移動設備或井下人員身上增加一個裝置,就能實現精度較高的自主定位。并且在井下供電中止或信號中斷情況,仍然能夠實現人員自主定位。GRPM定位技術的研究內容涉及井下地磁分布特征、射頻識別、地磁探測、地磁相關匹配、組合導航和搜索策略等多個技術問題,其中井下地磁匹配算法研究是井下GRPM定位的關鍵核心技術之一。
國內外關于地磁匹配算法研究已經取得了一些成果,大部分是關于艦艇導航、無人機定位、衛星定軌的相關研究。如武漢大學測繪學院趙建虎等針對慣導定位INS積累誤差及TERCOM匹配算法的機理缺陷,運用Hausdorff距離算法改進了匹配準則,提高了水下地磁匹配導航精度[7]。國防科學技術大學呂云霄等研究了FFT頻域相關地磁匹配算法,減少了地磁信號測量誤差對地磁匹配定位精度的影響[8]。第二炮兵工程大學賈磊等在MAD算法基礎上引入RANSAC魯棒算法與粗精匹配結合的分層搜索策略,提高了水下地磁導航的單一特征量地磁匹配的定位精度[9]。國防科技大學劉穎等提出了一種改進的基于等值線約束的相關匹配算法,能夠有效消除無人機導航系統的初始位置誤差并能限制匹配過程中慣性導航系統的積累誤差[10]。石志勇等提出了地磁信息熵和地磁差異熵綜合的匹配算法,提高了MAD算法抗測量誤差干擾的能力[11]。郭慶等提出了地磁匹配雙等值線算法,增加了地磁場數據在緩變區域匹配精度[12]。朱占龍針對慣性、地磁匹配組合導航模型,提出了適用于地磁匹配的人工魚群搜索尋優算法[13]。關于地磁定位技術的民用還處于起步階段,相關匹配算法理論研究較少。西安電子科技大學薛程[14]運用了粒子濾波算法、東華理工大學鄭夢含[15]利用自適應粒子濾波算法開展了室內地磁定位搜索策略的實驗研究。筆者運用MAD,Hausdorff算法開展了井下地磁定位的基礎試驗,分析了這類算法匹配結果的精度[16]。這些研究主要是MSD,MAD,Hausdorff等一維批處理相關算法的應用或改進,沒有本質的突破性研究,難以滿足GRPM定位技術要求[17-18]。
井下實際地磁的測量結果是井下空間點位的地磁異常場和周邊環境磁場的疊加效應。不僅空間分布有一定獨特性,而且空間統計特征明顯,能夠滿足地磁定位的需要,但是地磁測量時噪聲干擾較大,常規MSD,MAD,Hausdorf算法的匹配概率較低,需要一種適合井下地磁空域特點的地磁匹配算法來解決GRPM技術中地磁精確定位的難題。本文在GRPM定位技術架構的基礎上,提出了一種二維磁特征參量聯合距離的相關度匹配模型MPMD[19](Multi-Parameter Matching Model of Least Magnetic Distance),是一種匹配精度高且抗噪性能好的算法。文中通過井下不同區域、高噪聲情況下不同算法地磁匹配的定位試驗和精度對比,測試了MPMD算法的適應性和魯棒性。
地磁場是地球固有的矢量場之一,由主地磁場、磁化地殼巖石產生磁場和干擾磁場3部分組成,其地磁強度會隨空間和時間變化而變化。根據現代地磁理論,局部地區地磁定位主要依據地磁異常場。異常是相對而言的,對于大尺度地殼異常場,是把地核主磁場作為正常場;對于小區域異常場,一般是將地核主磁場加上大尺度異常場作為背景穩定場。井下空間范圍屬于小區域,因此其地磁定位主要依靠是地磁異常場的變化情況。
井下巷道內實際測量地磁數據是地磁異常場、周圍環境各類磁場源的疊加。由于井下巷道內區域內會有鋼筋支護、通風設備等,它們產生的磁場會疊加在巷道原有的基礎地磁場上,這也大大增加了井下地磁空間分布的獨特性。通常情況下,井下實測地磁數據主要包含了地磁異常場、地磁測量誤差、載體干擾場等,即
Bi=g(xi,yi,t)+ei+mi
(1)
其中,Bi為磁力儀測得磁場強度;g(xi,yi,t)為空間點(xi,yi)處t時刻的異常磁場,雖然其數值會有“月變”、“日變”的周期波動,但是仍然是一個相對固定的基數;ei為隨機常值和一個高斯白噪聲組合誤差,包含地磁模型誤差、日變誤差,大小從50~500 nT變化很大,是影響地磁匹配算法匹配精度的主要原因;mi為磁力儀載體的干擾場,井下人員在巷道內行走速度較慢,平均在5 m/s以下,對地磁測量影響很小,通常在匹配中可以忽略不計。
井下工程范圍一般不超幾十平方公里,區域變化尺度較小。并且井下巷道是線狀結構,每種巷道因功能不同,其支護措施、布設裝置都會不同。這些諸多變化的因素形成井下巷道地磁空間分布獨特的特點。
(1)井下地磁異常場空間分布復雜。有些巷道地磁特征明顯豐富,地磁數值統計結果的標準場、粗糙度、信息熵數值大,空間地磁分布的獨特性明顯,適配性很強。而有些巷道幾十米長度內的磁異常只圍繞著幾百至幾千納特變動,地磁數值隨著空間變化的波動較小,地磁匹配定位的適配性弱。圖1為長約160 m某巷道的磁總場空間三維分布圖,其空間磁總場變化的最大差值為2 000 nT,空間分布變化較小。另外在一些特殊的巷道,受到周圍環境或設備的磁場影響較大,可能兩個空間點相距僅僅幾米,實際測量地磁值會陡增到上萬納特。

圖1 井下地磁總場三維分布Fig.1 Underground geomagnetic field 3D map
(2)部分巷道區域磁剖面存在較多特征相似區。如圖2所示的巷道中線的磁剖面,存在多處相似剖面段,其中,m1,m2,m3為3段地磁序列。當匹配步長取3時,m1,m2,m3地磁序列相似;當匹配步長取4時,m1和m3地磁序列相似。這類巷道地磁定位時易發生模糊匹配,虛定位的概率大,屬于地磁匹配弱適配區。

圖2 井下巷道地磁總場剖面Fig.2 Underground tunnel geomagnetic field profile
(3)井下實際測量地磁噪聲總體數值較大,高達幾百納特。由于井下地磁測量會受到日變、作業面采掘、機電設施工作狀態等因素影響,地磁匹配過程中測量的地磁數值與基準數據相比具有一定的差值。小的數值波動會有幾十納特,大的噪聲甚至達到幾百納特,這些擾動會直接影響地磁匹配的精確度。特別是在地磁特征緩變區內,較大的噪聲干擾有可能會淹沒巷道實際地磁微小的變化,直接導致虛定位。這種地磁強噪聲需要借助一種抗干擾的地磁匹配數學模型來減弱其對匹配結果影響。
根據井下地磁異常場空間變化復雜和擾動噪聲大的特點,架構了一種標簽識別技術與地磁匹配技術組合定位的GRPM方法。GRPM方法是從井下物聯網技術的智能化角度,設計一種高精度、自主、新型的井下定位方法,該定位方法過程包含電子標簽識別的粗略定位和地磁匹配的精確定位2個步驟。其定位原理是:① 井下人員隨身攜帶GRPM定位裝置,定位裝置的輻射場激活所在巷道的電子標簽,獲取所在巷道位置信息,完成粗略定位。粗略定位后可以將井下人員的位置圈定在一個或兩個巷道范圍以內,粗定位的精度主要與電子標簽分布密度、有效識別距離有關。② 井下人員在巷道內行走時,GRPM定位裝置可以實時測量人員通行路徑的地磁值,構成行走路徑的地磁序列,通過路徑地磁序列和基準圖的匹配計算,可以求解出人員所在的精確位置。
如圖3所示,井下人員隨身攜帶GRPM定位裝置,定位裝置內裝有讀卡器、地磁傳感器等;井下巷道端口或連接處裝有電子標簽。當井下人員行走在巷道中,定位裝置輻射場可激活周邊的電子標簽,通過主動射頻識別技術獲取標簽內的電子信息,作為地磁匹配的初始位置;同時地磁傳感器連續接收所經過路徑地磁數據,形成匹配地磁數據。通過與基準數據庫進行相關匹配計算后,可以解算出井下人員精確位置。

圖3 井下GRPM定位機理示意Fig.3 GRPM Underground positioning mechanism diagram
GRPM方法是一種兼容型的定位算法,既可以與現有井下定位系統并行使用,也可以單獨發揮定位導航作用。井下人員運用GRPM技術定位后,實時記錄并存貯行走的精確路徑信息。當井下通信網絡正常時,信息可以通過井下通訊系統發送到系統監控中心,經過數據格式轉換后,與其他類型的井下定位系統的定位數據進行互補,實現信息共享。當井下通訊網絡供電中止、信號中斷或不穩定時,井下人員通過GRPM技術可以單獨、自主定位,并結合裝置的可視化界面,查詢自己當前的位置信息、周邊的避險設施信息及最優路徑。
GRPM實際定位精度會受到多種因素的綜合影響,如井下巷道地磁空間分布適配性、裝置內部的地磁傳感器靈敏程度、實際測量地磁噪聲大小、匹配算法的適應性等。文中僅從井下地磁特征匹配算法模型角度來闡述GRPM定位的關鍵技術。
地磁匹配本質上是一個數據關聯問題。其關聯算法是實測地磁軌跡與地磁基準圖中匹配關聯計算。目前大部分地磁定位的匹配算法采用的是TERCOM相關算法,該算法是指數據積累一段時間后,用測量地磁序列與基準圖的相關計算實現定位的方法。TERCOM匹配一般是以磁總場作為參數進行計算,屬于一維相關匹配。MPMD匹配算法是在TERCOM相關算法基礎上進行了改進,從原來一維相關匹配拓展為二維相關性匹配。
由于地球空間任一點都對應相應的磁總場,X,Y,Z三軸磁分量等特征量。同一點的特征量與地理位置的相關程度不相同,每個特征量在一定空間范圍內的變化幅度也不相同。MPMD算法依據同一點的多維地磁向量之間變化的差異性,建立了一種空間向量積的最優估計的匹配模型,也稱為磁特征參量聯合距離匹配算法。其數學描述為
(2)

前期地磁試驗表明:磁總場特征明顯,是MPMD地磁匹配主要參量。由于水平磁分量易受磁暴影響,角度類磁特征量在小區域內變化較小,一般不考慮。因此MPMD公式的M分量是從X,Y,Z三軸磁分量中優選出來的。具體過程是根據巷道地X,Y,Z三軸磁分量的標準差、信息熵、粗糙度等指標大小,選取其中空間分布獨特性強、適配性最好的分量作為式(2)中的M分量參與匹配計算。
井下環境復雜,匹配算法結果受到影響因素也較多。為了測試匹配算法精確度和抗噪性能,文中僅考慮在相同環境下,對不同匹配算法地磁匹配的定位精度、抗噪性能進行對比分析。試驗選取了試驗模擬礦井的2個走向分布不同的H-11和H-21水平巷道作為試驗區域,長約150 m,寬約4 m。井下地磁測量采用便攜式FVM-400磁通門磁力儀,其量程達到100 000 nT,分辨率達到了1 nT。測量噪聲方差50 nT2,測量隨機常值誤差為10~30 nT。按照0.5 m間隔采集了點位的磁總場和三軸分量的地磁數據,經過粗差剔除、去噪后,建立了巷道多維向量的地磁基準數據。對地磁數據磁總場MR和三軸磁分量MX,MY,MZ進行適配性評價,計算H-11與H-21巷道4個特征量的特征指標,見表1。

表1 H-11與H-21巷道磁向量分布特征指標Table 1 Magnetic vector distribution characteristics about H-11 and H-21 tunnel
從表1特征指標結果看出,H-11巷道磁向量特征指標數值比較接近,空間分布特征不明顯,對比后選取MR和MZ為MPMD匹配向量。H-21巷道地磁標準差較大達到20以上,粗糙度接近30,空間分布特征明顯,選取MR和MX作為MPMD匹配向量。

圖4 H-11巷道中軸線磁數據MR,MZ等值線Fig.4 H-11 tunnel magnetic contour about MR,MZ
圖4,5是優選后的磁特征向量的等值線圖,可以看出H-11磁數據MR,MZ地磁特征變化不明顯,地磁變化緩慢,存在較大面積特征相似區,適配性較差,是模糊匹配多發區;H-21磁數據MR,MX等值線圖對應空間差異明顯,具有一定獨特性,適配性較好。

圖5 H-21巷道中軸線磁數據MR,MX等值線Fig.5 H-21 tunnel magnetic contour about MR,MX
(1)試驗方案。在井下H-11巷道、H-21巷道內分別采用MSD,MAD,MPMD算法進行了地磁定位試驗,驗證相同條件下3種算法的匹配精度。在H-21巷道內,分別在200,400,600 nT 噪聲下測試MPMD算法地磁定位的精度和魯棒性,開展MPMD算法適應性測試和抗噪聲性能測試。
(2)試驗參數。匹配結果會受到采樣頻率、匹配步長、地磁測量噪聲等因素的綜合影響,需要設定試驗參數。由于井下人員在不同情況下的平均行進速度是不一樣的[20],但是最大行進速度不會超過3 m/s見表2,設定試驗地磁采樣周期為0.5 s,匹配步長為3個采樣點,長度約1.5 m,虛定位閾值為5 m,選取匹配概率、匹配誤差、匹配時間作為精度評定的指標。地磁圖邊緣不足一個匹配長度部分自動忽略。

表2 同等路徑下井下人員的行進速度Table 2 Travel speed of underground personnel under the same pathm/s
MSD,MAD,MPMD匹配算法在H-11,H-21匹配誤差數據,見表3。在H-11地磁特征貧乏的弱適配區,3種算法匹配誤差都較大,總體上MPMD算法相比MSD,MAD算法,匹配精度和匹配概率都有所提高。在地磁特征豐富的H-21適配區,3種算法的匹配概率達到了95%以上,但MPMD定位精度較高,基本上保持在一個網格間格以內。2個區域內MPMD匹配計算量較大,計算耗時增加了近2倍。

表3 不同算法匹配定位的誤差數據Table 3 Matching error data the for different algorithms

圖6 巷道 H-11和H-21真實軌跡與估計軌跡對比Fig.6 Comparison between the true trace and the estimated trace about H-11 tunnel and H-21 tunnel
圖6是井下水平巷道H-11和H-21的 MSD,MAD,MPMD匹配定位軌跡對比圖。由圖6可知,在地磁特征貧乏的H-11區域,MPMD估計 軌跡與真實軌跡穩合度最高,虛定位次數少,較好處理了模糊匹配多值問題。在地磁特征豐富的H-21區域,3種算法的匹配軌跡穩合度都較好。
圖7~9是H-21巷道在不同噪聲下3種方法的匹配結果誤差曲線,橫坐標“匹配次數”是指匹配當前點在匹配序列中的排序。

圖7 測量噪聲200 nT時匹配誤差曲線Fig.7 Matching error curve in the 200 nT measurement noise

圖8 測量噪聲400 nT時匹配誤差曲線Fig.8 Matching error curve in the 400 nT measurement noise

圖9 測量噪聲600 nT時匹配誤差曲線Fig.9 Matching error curve in the 600 nT measurement noise
通常情況下,磁力儀測量白噪聲大約在50 nT,由于周圍環境測量噪聲約100 nT內波動。圖7加入噪聲幅值為200 nT時的3種算法匹配誤差曲線。可以看出當噪聲為200 nT時,MSD和MAD匹配有少量虛定位,MPMD算法匹配結果基本無誤差,效果很好;當測量噪聲達到400 nT和600 nT時(圖8,9),MSD和MAD匹配出現大量虛定位,模糊匹配概率大大增加,定位精度較低。MPMD算法只有少量虛定位,總體匹配效果較好。
考慮到井下環境復雜,如果出現異常干擾情況下,MPMD抗噪性能是否會出現匹配不收斂情況?因此開展了600 nT高噪聲干擾測試。圖10是噪聲600 nT時,MSD,MAD,MPMD三種匹配定位軌跡對比,可以看出:MSD,MAD 匹配結果不收斂,出現大量虛定位。MPMD匹配并未出現明顯發散現象,虛定位次數較少,在大多數情況MPMD估計軌跡收斂于真實軌跡,穩合度最好。

圖10 噪聲600 nT真實軌跡與估計軌跡對比Fig.10 Comparison between true trace and estimated trace in the 600 nT measurement noise
當噪聲600 nT時,MSD,MAD,MPMD匹配結果的分析數據見表4,分別從匹配概率、匹配誤差和匹配時長對比分析了3種匹配算法的抗噪性能。

表4 測量噪聲600 nT時定位誤差數據Table 4 Positioning error data in the 600 nT measu-rement noise
從表4中可以得出:MSD,MAD 平均匹配誤差已經達到了幾十米,說明MSD,MAD 匹配在高噪聲干擾情況下,匹配結果不收斂。MPMD在高噪聲干擾情況下的平均匹配誤差控制在5 m以下,具有收斂性,總體概率達到了89%,抗噪性能較好。MPMD在匹配概率、匹配精度上明顯優于MSD和MAD匹配算法,但是匹配耗時較多,接近MSD,MAD匹配時長的2倍。綜合分析MSD,MAD屬于TERCOM匹配的一維相關匹配,約束條件也是單一約束條件的最優估計,當在強噪聲擾動條件下,約束作用不明顯,故出現匹配發散現象。MPMD匹配優化后二維相關性匹配,即同一個結果的估計同時存在2個約束條件進行數學解算,因此抗干擾性能強,匹配耗時較長。
(1)GRPM以地磁定位技術為基礎的、新型的井下定位方法,主要適用于井下災后無電、無網絡的自主定位。MPMD匹配模型是在GRPM實際應用基礎上,針對井下地磁空間分布特征不明顯、緩變或特征相似情況下一維匹配結果精度不高的問題,提出的一種二維相關匹配模型,是基于空間向量積的最優估計的匹配算法。
(2)在MSD,MAD和MPMD匹配定位對比試驗中,在地磁特征豐富適配區,3種算法的匹配精度都較高;在地磁特征貧乏的弱適配區,MPMD算法優于MSD,MAD算法,能夠較好處理模糊匹配多值問題,定位精度基本上保持在一個網格間格以內。在算法抗噪性能測試試驗中,當噪聲為200 nT時,MSD和MAD匹配有少量虛定位,MPMD算法匹配結果基本無誤差,效果很好;在400 nT和600 nT高噪聲時匹配試驗中,MSD和MAD匹配出現大量虛定位,MPMD算法有少量虛定位,匹配概率達到了89%,匹配誤差控制在5 m以下,未出現算法不收斂情況,總體匹配的魯棒性較強。
(3)試驗結果總體表明MPMD比MSD,MAD一維匹配算法在準確度、精度和魯棒性方面確實有明顯優勢,但匹配過程耗時較多,接近MSD,MAD匹配時長2倍,需要從匹配搜索策略等方面進一步優化,才能符合井下快速定位的要求。