999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

玉米糧堆霉變發熱過程中的溫濕度場變化規律研究

2019-02-23 03:53:52王小萌吳文福張忠杰吳子丹
農業工程學報 2019年3期

王小萌,吳文福,尹 君,張忠杰,吳子丹※,姚 渠

?

玉米糧堆霉變發熱過程中的溫濕度場變化規律研究

王小萌1,2,吳文福1,尹 君2,張忠杰2,吳子丹1※,姚 渠2

(1. 吉林大學生物與農業工程學院,長春 130022;2. 國家糧食和物資儲備局科學研究院,北京 100037)

為模擬儲糧糧堆局部含水率偏高引起的霉變發熱現象,進而研究此現象中溫、濕度場的變化規律,該文在試驗倉內濕基含水率14.0%的玉米糧堆中心加入濕基含水率18.2%的玉米,在30 ℃室內儲藏40 d。試驗糧堆由于霉變引起自發熱。試驗過程中,通過計算玉米糧堆中垂面內高溫區和高濕區的面積變化,從而揭示玉米糧堆霉變發熱過程中溫、濕度場的變化規律。試驗結果表明,糧堆中垂面高濕區面積緩慢擴大,高溫區面積開始擴大緩慢,但在與周圍糧溫最高溫差升至3.7 ℃后,面積擴大速率加快,且高溫區與高濕區面積的當量半徑與溫度差D成正比,此正比關系經過了糧庫淺圓倉的驗證。這為進一步定量分析糧食倉儲過程中的高溫區和高濕區擴散提供了依據。

作物;溫度;濕度傳感器;玉米;溫度場;相對濕度場;霉變發熱

0 引 言

中國玉米種植范圍廣,產量高,是重要的糧食及經濟作物之一。在儲藏過程中玉米糧堆霉變發熱一直是比較普遍的問題。

對于儲糧糧堆發熱的起因,國內外已經做了大量的研究。微生物作用,害蟲大量滋生,糧食呼吸作用,雜質聚集等均可以引發糧堆發熱[1]。其中,蟲[2]、霉[3]是引起糧堆發熱的重要因素[4],但是如果昆蟲密度不高,僅依靠昆蟲自身呼吸作用引發糧堆發熱的幾率比高水分糧食霉變引發糧堆發熱的幾率低[5-6]。儲糧真菌呼吸作用是糧堆發熱的主要熱源,且蟲害一般會發生在霉變發熱之后[7]。

糧食儲藏過程中影響儲糧的主要霉菌是曲霉和青霉[8],而影響霉菌生長的重要因素是溫度和水分[9],因此,儲糧霉變發熱過程中,溫度、水分與霉變的關系是需要密切關注的問題。針對這個問題,國內外學者做了大量的研究。Koehler[10]研究了含水率對玉米霉變的影響。Jian等[11]研究了不同溫度和含水率下蟲害和微生物的演替規律。Huang等[12]研究了不同溫度和含水率的玉米糧堆CO2產生速率。張航等[13-16]分別研究了中國小麥、玉米、水稻和大豆霉變與溫度和水分的關系。

在儲糧霉變發熱過程中,王小萌等[17]對霉變分布與糧堆溫度場和濕度場之間的關系進行了分析。Wallace等[18]研究了發熱糧堆的水分遷移,并發現糧堆發熱會引起發熱點上層糧堆含水率增加,下層含水率降低[19]。張中濤[20]利用有限元法研究了小麥呼吸作用對糧堆溫度場、水分場的影響。除此之外,國內外學者也對儲糧發熱點的溫度變化進行了研究。Zhang等[21]研究了2種高水分小麥的發熱過程,并建立了發熱量與時間的指數模型。Wilson[22]建立了糧堆霉變發熱過程中熱產生速率和CO2產生速率的方程,但是方程不適用于低水分糧食。Jia等[23-24]分別利用有限元和離散元建立了糧堆內存在發熱點時的溫度分布模型。但是,目前對糧堆霉變發熱過程中,溫、濕度場在空間上的變化規律研究甚少。

本文利用儲糧霉變自發熱引發糧堆內溫度傳遞和水分遷移。通過計算玉米糧堆內高溫區和高濕區的面積,研究糧堆霉變發熱過程中溫、濕度場在空間上的變化規律,以期對糧食倉儲過程中的糧情調控做出指導。

1 材料與方法

1.1 試驗樣品

本試驗采用的“先玉”玉米樣品初始平均濕基含水率為23%(下文提及的含水率均為濕基含水率),質量密度為698 g/L,雜質質量分數為1.0%,樣品初始真菌孢子數<104個/g,無儲藏真菌。

1.2 試劑及儀器

多參數糧情檢測系統[17]:中國深圳市東大恒豐科技有限公司;DHG—9140型電熱恒溫鼓風干燥箱:上海精宏實驗設備有限公司;NIKON E100顯微鏡:日本尼康公司。去離子水作為試驗用水。

1.3 試驗方法

1.3.1 試驗倉裝置

為模擬淺圓倉中糧堆局部含水率偏高引起的局部霉變發熱現象,依據相似性設計原理和淺圓倉倉型,選用圓形的試驗倉[17](圖1),并進行改進,去除倉底的保溫隔熱材料,將倉底中心位置開1個內直徑為0.08 m的通氣孔,目的是有利于試驗倉內外氣體進行交換,確保試驗倉內氧氣供應充足。

1.3.2 樣品處理

將平均含水率為23%的玉米進行除雜、清理,玉米樣品鋪成厚度為0.02 m的薄層,在室外通風環境下,將含水率降低。玉米入倉儲藏安全水分為14%左右[25]。儲糧實踐發現由于儲糧水分分布不均、雜質聚集、水分遷移等因素的影響,玉米糧堆局部含水率可增至16~18%。糧堆內的熱傳遞和水分遷移會受到糧堆高度和跨度等的影響[26],鑒于試驗倉底面直徑和高度較小,為便于觀察糧堆霉變發熱后的溫濕度遷移現象,因此試驗用糧的高、低含水率可分別設為18%左右和14%左右。

1.3.3 儲藏模擬設置

試驗倉內玉米糧堆總高度為0.60 m,高水分玉米(18.2%)和低水分玉米(14.0%)的分布如圖1a所示,2種含水率的糧堆體積比為1∶4,將試驗倉儲藏在溫度為30 ℃的室內,以期模擬儲糧過程中由于糧堆局部含水率偏高引起的糧堆霉變發熱現象。2種含水率的玉米的初始糧溫為22 ℃,初始平均相對濕度分別為67%和90%。

1.4 測量指標及方法

1.4.1 危害真菌孢子

參考儲糧真菌檢測標準[27],檢測樣品的真菌孢子數。

1.4.2 溫濕度

利用溫濕度傳感器實時監測玉米糧堆內溫濕度變化。為了充分重現溫濕度場在2種含水率玉米中的分布,在借鑒文獻[17]溫濕度傳感器布置的基礎上,增加含水率14.0%玉米中的傳感器個數。糧堆內溫濕度傳感器布置如圖1。

1.4.3 含水率

參考ASAE標準[28],稱取15.0 g玉米籽粒樣品,放在干燥鋁盒內,在103 ℃烘箱內干燥72 h,檢測樣品的含水率。

1.5 數據處理

1.5.1 溫濕度場的建立

選取糧堆中垂面溫濕度傳感器檢測到的溫度和相對濕度數據,再運用溫濕度擬合算法得到糧堆內各點的溫度和相對濕度,通過Matlab 模擬軟件重現糧堆的溫度場和濕度場,溫濕度場擬合算法如式(1)~(2)[29]。

由數值計算方法可知,已知個離散數據(x,(x))=1,2,3,…,在[,]上滿足x?[,],且(x)=(x),則

注:“●”表示糧堆溫度和相對濕度的監測位置,O點為含水率18.2%的玉米糧堆中心。

1.5.2 當量半徑的計算

利用Matlab軟件對糧堆中垂面的溫、濕度場云圖進行高溫區和高濕區面積求解,主要步驟是:導入云圖圖片,灰度處理,二值化處理,計算高溫區和高濕區面積。本文中,將高溫區和高濕區的面積按照圓形處理,計算出圓的半徑,作為高溫區和高濕區的當量半徑。

2 結果與分析

2.1 溫度和相對濕度變化

圖2和圖3分別是玉米糧堆儲藏0、20和40 d時糧堆中垂面的溫度場和相對濕度場云圖。由圖2可知,儲藏溫度為30 ℃,平均含水率為18.2%的玉米糧堆中由于微生物作用逐漸出現了發熱點。微生物迅速生長,發熱點面積不斷擴大,發熱點最高溫度和周圍糧堆溫度的溫差不斷升高,最大溫差達到8 ℃。研究表明,糧堆內的微氣流運動是引起糧堆內溫度傳遞和水分遷移的主要因素[30]。從圖3可以看出,糧堆內微氣流運動引起糧堆內水分向糧堆上層遷移。試驗結束后,取樣檢測真菌孢子數,點、點、點、點、點的真菌孢子數分別為6.3′106,6.9′106,2.1′106,5.4′106,5.7′106個/g,優勢真菌為亮白曲霉和黃曲霉。

注:O、A、B,、C、D在溫度場云圖中是共用的,下同。

圖3 玉米糧堆儲藏0、20和40 d時中垂面相對濕度場云圖

2.2 高溫區與高濕區面積變化

糧堆內發熱點周圍平均糧溫為30 ℃,因此本文中的高溫區選取玉米糧堆中垂面溫度高于30 ℃的區域。亮白曲霉和黃曲霉是引起本文糧堆發熱的主要霉菌,而相對濕度高于75%時易于亮白曲霉和黃曲霉生長,因此,本文中的高濕區選取玉米糧堆中垂面相對濕度高于75%的區域。圖4是試驗過程中,玉米糧堆中垂面、、、、5點的溫度變化圖。圖5是玉米糧堆中垂面的高溫區和高濕區面積隨時間的變化圖。由圖5可知,在試驗的40 d內,高濕區面積增加緩慢;高溫區面積在試驗第25 d后迅速增加,結合圖4分析,可發現試驗第25 d后糧溫升高加快,導致高溫區面積迅速擴大,這主要是因為黃曲霉和亮白曲霉大面積生長,產生大量的熱。

圖4 玉米糧堆中垂面不同點溫度變化

參考當量直徑的定義,本文中將高溫區和高濕區的面積按照圓形處理,計算出圓的半徑,作為高溫區和高濕區的當量半徑。溫度差是糧堆內濕熱轉移的動力源[31-32]。因此,建立玉米糧堆高溫區和高濕區當量半徑與溫度差D的關系(圖6)。由圖6可知,高濕區面積的當量半徑與溫度差成正比;當溫度差高于3.7 ℃即高溫區最高溫度高于33.7 ℃后,發熱區開始快速向周圍擴散,這與糧堆的導熱系數小有很大關系,糧堆導熱系數小,導致糧堆霉變產生的熱量難以快速傳遞出糧堆,很容易聚集在糧堆內;高溫區面積的當量半徑與溫度差成線性正相關,且D/D=0.058 (2=0.99)。儲糧霉變發熱過程中,發熱區域的擴散速率會受到熱傳導和熱對流的共同作用,由于試驗倉體積小,高度低,熱對流現象微弱,因此糧堆內的熱量傳遞和水分遷移主要受到熱傳導的影響。下面用實倉對高溫區當量半徑與溫度差的關系進行驗證。

圖5 高溫區和高濕區面積隨儲藏時間的變化

圖6 高溫區和高濕區面積的當量半徑與溫度差的關系

2.3 實倉驗證

以中國某糧庫的淺圓倉糧溫數據驗證上述正比關系。此淺圓倉為鋼屋蓋,倉內直徑為25.0 m,裝糧高度為15.6 m,雜質質量分數為1.5%,糧堆質量密度為698 g/L,儲量為5 756.9 t。所儲玉米的平均含水率為13.8%,糧堆局部偏高水分區域的平均含水量為14.8%。糧堆內局部含水率偏高,導致出現發熱點。通過計算糧堆中垂面高溫區的面積變化,得到高溫區當量半徑與溫度差的關系,如圖7。

圖7 淺圓倉中垂面高溫區的當量半徑與溫度差的關系

在之前研究[17]中,利用外加熱源引起小麥糧堆內的溫濕度遷移,試驗過程中沒有出現由于糧堆霉變引發的發熱點,以此作者研究了儲糧真菌分布和溫濕度的關系。此文中,利用高水分玉米自身霉變出現發熱點,模擬儲糧糧堆局部含水率偏高引起的糧堆霉變發熱,發現糧堆高溫區當量半徑與溫度差的正比例關系,鑒于此文中沒有找到高溫區當量半徑與溫度差的具體定量關系,還需進行更深入的研究。

3 結 論

模擬試驗倉中,由18.2%和14.0% 2種含水率的玉米組成的糧堆在30 ℃恒溫室內儲藏,4 d后,亮白曲霉和黃曲霉大量生長引發糧堆出現明顯發熱點。

玉米糧堆霉變發熱過程中,主要受熱傳導影響,高溫區與高濕區面積不斷擴大。在高溫區與周圍糧溫最大溫差從3.7升高至8 ℃的過程中,高溫區和高濕區面積的當量半徑與溫度差呈正相關。該相關性也經實倉數據得到了驗證。

試驗倉和淺圓倉高溫區與周圍糧溫的溫度差均升高3.7 ℃后,高溫區面積才開始迅速擴大,但是淺圓倉熱對流強烈,導致淺圓倉高溫區擴散速率遠大于試驗倉中高溫區擴散速率。

[1] 房強. 新糧入倉后發熱的預防和處理措施探討[J]. 糧食儲藏,2016,45(3):53-56. Fang Qiang. Discussion on prevention and treatment measures of new grain storage heating[J]. Grain Storage, 2016, 45(3): 53-56. (in Chinese with English abstract)

[2] Sinha R N. Insects and mites associated with hot spots in farm stored grain[J]. Canadian Entomologist, 1961, 93 (8): 609-621.

[3] Wallace H A H, Sinha R N. Fungi associated with hot spots in farm stored grain[J]. Canadian Journal of Plant Science, 1962, 42(1): 130-141.

[4] Sinha R A, Wallace H A H. Ecology of a fungus-induced hotspot in stored grain[J]. Canadian Journal of Plant Science, 1965, 45(45): 48-59.

[5] Cofie-Agblor R, Muir W E, Sinha R N. Comparative heat of respiration of five grain beetles in stored wheat[J]. Postharvest Biology and Technology, 1995, 5 (1/2): 167-175.

[6] Mani S. Computer modelling of insect-induced hot spots in stored wheat[D]. Manitoba: University of Manitoba, 2001.

[7] Francis F L. Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins: An update[J]. Journal of Stored Products Research, 2017, 71: 22-40.

[8] Pronyk C, Muir W E, Ndg W,et al. Carbon dioxide production and deterioration of stored canola[J]. Canadian Biosystems Engineering, 2004, 46(3): 25-33.

[9] Mohapatra D, Kumar S, Kotwaliwale N, et al. Critical factors responsible for fungi growth in stored food grains and non-chemical approaches for their control[J]. Industrial Crops and Products, 2017, 108 : 162-182.

[10] Koehler B. Fungus growth in shelled corn as affected by moisture[J]. Journal of Agricultural Research, 1938, 56(4): 291-307.

[11] Jian F, Jayas D S. The ecosystem approach to grain storage[J]. Agricultural Research, 2012, 1 (2): 148-156.

[12] Huang H, Danao M G C, Rausch K D, et al. Diffusion and production of carbon dioxide in bulk corn at various temperatures and moisture contents[J]. Journal of Stored Products Research, 2013, 55 (4) : 21-26.

[13] 張航,黃淑霞,蔡靜平,等. 小麥臨界水分附近微生物活動的特點[J]. 河南工業大學學報(自然科學版),2010,31(5):30-33. Zhang Hang, Huang Shuxia, Cai Jingping, et al. Characteristics of microbial activitity near critical moisture content of wheat[J]. Journal of Henan University of Technology(Natural Science Edition), 2010, 31(5): 30-33. (in Chinese with English abstract)

[14] 唐芳,程樹峰,張海洋,等. 稻谷儲藏真菌危害早期預測的研究[J]. 糧食儲藏,2015,44(1):24-27. Tang Fang, Cheng Shufeng, Zhang Haiyang, et al. Study on the forecasting fungal growth in stored paddy[J]. Grain Storage, 2015, 44 (1): 24-27. (in Chinese with English abstract)

[15] 程樹峰,唐芳,歐陽毅,等. 大豆儲藏真菌危害早期預測的研究[J]. 中國糧油學報,2015,30(7):77-80. Cheng Shufeng, Tang Fang, Ouyang Yi, et al. The early prediction of damage of fungus during soybean storage[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(7): 77-80. (in Chinese with English abstract)

[16] 歐陽毅,祁智慧,李春元,等. 玉米儲藏真菌早期預測的研究[J]. 糧油食品科技,2017,25(5):52-55. Ouyang Yi, Qi Zhihui, Li Yuanchun, et al. Early prediction of fungus hazard during corn storage [J]. Science and Technology of Cereals, Oils and Foods, 2017, 25(5): 52-55. (in Chinese with English abstract)

[17] 王小萌,吳文福,尹君,等. 基于溫濕度場云圖的小麥糧堆霉變與溫濕度耦合分析[J]. 農業工程學報,2018,34(10):260-266. Wang Xiaomeng, Wu Wenfu, Yin Jun, et al. Analysis of wheat bulk mould and temperature-humidity coupling based on temperature and humidity field cloud map[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 260-266. (in Chinese with English abstract)

[18] Wallace H A H, Sinha R N, Mills T. Fungi associated with small wheat bulks during prolonged storage in Manitoba[J]. Canadian Journal of Botany, 1976, 54(12): 1332-1343.

[19] Sinha R N,Wallace H A H. Ecology of insect-induced hot spots in stored grain in western canada[J]. Researches on Population Ecology, 1966, 8(2): 107-132.

[20] 張中濤. 具有吸濕和呼吸特性的倉儲糧堆內熱濕耦合傳遞規律的研究[D]. 濟南:山東建筑大學,2015. Zhang Zhongtao. Research of Coupled Heat and Moisture Transfer in Hygroscopic and Respiration Bulk During the Warehouse Storage[D]. Jinan: Shandong Jianzhu University, 2015. (in Chinese with English abstract)

[21] Zhang Q, Muir W E, Sinha R N, et al. Heat production in wet wheat under adiabatic conditions[J]. Canadian Agricultural Engineering, 1992, 34(3): 233-238.

[22] Wilson M T. A model for predicting mould growth and subsequent heat generation in bulk stored grain[J]. Journal of Stored Products Research, 1999, 35(1): 1-13.

[23] Jia Canchun, Sun Dawen, Cao Chongwen. Mathematical simulation of temperature fields in a stored grain bin due to internal heat generation[J]. Journal of Stored Products Research,2000, 43: 227-233.

[24] Rusinek R, Kobylka R. Experimental study and discrete element method modeling of temperature distributions in rapeseed stored in a model bin[J]. Journal of Stored Products Research, 2014, 59: 254-259.

[25] 李興軍,王雙林,付鵬程. 采用水分解吸等溫線分析糧食安全水分的研究[J]. 糧食加工,2017,42(5):30-36. Li Xingjun, Wang Shuanglin, Fu Pengcheng. A study on the safe storage moisture of cereals and oils with moisture desorption isotherms[J]. Grain Processing, 2017,42(5): 30-36. (in Chinese with English abstract)

[26] 王遠成,潘鈺,尉堯方,等. 倉儲糧堆內部自然對流和熱濕傳遞的數學分析及驗證[J]. 中國糧油學報,2017,32(9):120-125. Wang Yuancheng, Pan Yu, Yu Yaofang, et al. Mathematical analysis and validation for natural convective heat and moisture transfer in grain bulk during sealed storage[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(9): 120-125. (in Chinese with English abstract)

[27] 國家糧食局. 糧油檢驗-儲糧真菌檢測-孢子計數法:LS/T 6132-2018 [S]. 北京:中國標準出版社,2018:03.

[28] ASAE. Moisture measurement-unground grain and seeds: S352. 2 -2012 [S]. Michigan: ASABE, 2012:11.

[29] 尹君,吳子丹,張忠杰,等. 不同倉型的糧堆溫度場重現及對比分析[J]. 農業工程學報, 2015, 31(1): 281-287. Yin Jun, Wu Zidan, Zhang Zhongjie, et al. Comparison and analysis of temperature field reappearance in stored grain of different warehouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 281-287. (in Chinese with English abstract)

[30] 尹君,吳子丹,張忠杰,等. 基于多場耦合理論淺析 淺圓倉局部結露機理[J]. 中國糧油學報,2015,30(5):90-95.

Yin Jun, Wu Zidan, Zhang Zhongjie, et al. Analysis of the formation mechanism of partial condensation for the stored grain in steel squat silo based on multi-fields coupling theory[J].Journal of the Chinese Cereals and Oils Association, 2015,30(5):90-95. (in Chinese with English abstract)

[31] 闞正武. 溫度梯度作用下室內天然氣泄漏擴散濃度場研究[D]. 重慶:重慶交通大學,2013. Kan Zhengwu. Indoor Diffusion of Natural Gas Concentration Field Under Temperature Gradient[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese with English abstract)

[32] 白忠權. 吸濕性倉儲糧堆內熱濕耦合傳遞規律的研究[D]. 濟南:山東建筑大學,2013. Bai Zhongquan. Research on Coupled Heat and Moisture Transfer in Hygroscopic Grain Bulk During the Warehouse Storage[D]. Jinan: Shandong Jianzhu University, 2013. (in Chinese with English abstract)

Research on temperature and humidity field change during corn bulk microbiological heating

Wang Xiaomeng1,2, Wu Wenfu1, Yin Jun2, Zhang Zhongjie2, Wu Zidan1※, Yao Qu2

(1.130022,; 2.100037,)

Corn is widely planted in China with high yield. It is a major source of foods and materials for industrial processing.Microbiological heating occurs easily during corn bulk storage, which seriously affects grain safety. The problem has also attracted much attention. Stored grain is mostly infected byand. Fungal growth in maize is facilitated by hot and humid conditions. Warm pockets initiated by microorganisms are mainly induced by pockets of wet grain because microorganisms need larger than 0.65 water activity to multiply and develop. It has been reported by many researchers that the relationship between temperature, moisture and fungi growth. Moisture diffusion and migration from a hotspot to its surrounding was recorded by some researchers. They also found that as a hotspot develops, the grain moisture at the top of the hotspot increases while the grain moisture below decreases. Since it is difficult to estimate the production rate of heat without using mathematical models, there are a few models developed to understand the development of hotspot. These models was used to calculate the heat production rate of stored grain. However, there is little research on the quantitative change of temperature and humidity field in space. The objective of this study was to develop a method to measure changes of high temperature and high humidity zones in space during grain microbiological heating. To explore quantitative variation of temperature and relative humidity fields in space in corn heating, different moisture corn (14.0% and 18.2%, w.b.) was stored in a simulated silo in 40 d at 30 ℃ non-airtight. The simulated silo was a cylindrical iron silo with 0.54 m in internal diameter, 0.70 m in height and 0.01 m in thickness, respectively. And its inner wall was provided with insulation layer (0.02 m thickness). Two air pipes (0.08 m internal diameter) on the top and bottom of the silo were applied to exchange the gas inside and outside the silo and ensure adequate oxygen supply. In the experiment, the high moisture corn (cylinder, diameter, 0.30 m; height, 0.30 m; 18.2%, w.b.) in the silo was surrounded by low moisture corn (14.0%, w.b.). After 4 days storage, the growth ofandcaused a hot spot appears in corn bulk. In the paper, high temperature areas were temperature higher than 30 ℃, and high humidity areas were relative humidity higher than 75% due toandincreasing greatly. During the storage, temperature and relative humidity cloud maps of the min-vertical plane were drawn. These cloud maps indicate that areas of high temperature and high humidity expanded under heat conduction. Areas of high temperature zone and high humidity zone were calculated. Then, treated these areas as circles and calculated equivalent radii () of high temperature zone and high humidity zone. Besides temperature difference (D) were equal to the highest temperature in high temperature zone minus 30 ℃. DuringDincreasing from 3.7 to 8 ℃, equivalent radii () had a significant linear correlation with temperature difference (D). However, no noticeable change was observed whenDranged from 0 to 3.7 ℃. The corn temperature data of a squat silo during microbiological heating proved the linear relationship between the equivalent radius of high temperature area and temperature difference. But the diffusion rate of heating area in squat silo was higher than the simulated silo due to height and span of grain bulk. Height and span of grain bulk in squat siloincreased heat convection which was weak in simulated silo. This study lays a foundation for the further quantitative research on the prediction of microbiological heating in grain storage.

crops; temperature; humidity sensors; corn; temperature field; relative humidity field; microbiological heating

王小萌,吳文福,尹 君,張忠杰,吳子丹,姚 渠.玉米糧堆霉變發熱過程中的溫濕度場變化規律研究[J]. 農業工程學報,2019,35(3):268-273. doi:10.11975/j.issn.1002-6819.2019.03.033 http://www.tcsae.org

Wang Xiaomeng, Wu Wenfu, Yin Jun, Zhang Zhongjie, Wu Zidan, Yao Qu.Research on temperature and humidity field change during corn bulk microbiological heating[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 268-273. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.033 http://www.tcsae.org

2018-12-29

2019-01-16

2015年糧食公益性行業科研專項項目(201513001)

王小萌,博士生,研究方向為糧食信息化與自動化。 Email:wxmhappy99@163.com。

吳子丹,教授,研究方向為糧食儲藏與運輸。Email:wuzidan@263.net。

10.11975/j.issn.1002-6819.2019.03.033

S379

A

1002-6819(2019)-03-0268-06

主站蜘蛛池模板: 97免费在线观看视频| 97国产精品视频人人做人人爱| 亚洲色图在线观看| 九九久久精品国产av片囯产区| 亚洲天堂自拍| 91av成人日本不卡三区| 手机在线国产精品| 日韩黄色大片免费看| 九九热精品在线视频| 亚洲日本在线免费观看| 国产99精品视频| 麻豆国产在线不卡一区二区| 亚洲色图欧美视频| 国产成人综合亚洲欧洲色就色| 毛片免费在线视频| 亚洲AⅤ波多系列中文字幕| 国产精品天干天干在线观看| yy6080理论大片一级久久| 日本黄色a视频| 国产理论一区| 免费又爽又刺激高潮网址 | 找国产毛片看| 国产女人综合久久精品视| 国产专区综合另类日韩一区| 午夜a级毛片| 国产资源站| 欧美第二区| 亚洲无码精品在线播放| 波多野结衣中文字幕久久| 手机永久AV在线播放| av尤物免费在线观看| 国产精品亚洲日韩AⅤ在线观看| 亚洲一区二区视频在线观看| 欧美成人国产| 国产一二三区视频| 首页亚洲国产丝袜长腿综合| 丰满少妇αⅴ无码区| 国产日韩精品欧美一区喷| 精品国产91爱| 欧洲精品视频在线观看| 成人欧美日韩| 青青极品在线| 国产精品无码一区二区桃花视频| 国产96在线 | 日韩欧美中文字幕在线韩免费| 国产视频a| 久久久久国产精品嫩草影院| 国产精品 欧美激情 在线播放 | 国外欧美一区另类中文字幕| 亚洲色图欧美视频| 91青青草视频| 欧美久久网| 999国内精品久久免费视频| 国产小视频a在线观看| 免费看美女毛片| 成人免费午间影院在线观看| 91久久大香线蕉| av在线无码浏览| 91久久偷偷做嫩草影院| 国产三级国产精品国产普男人| 国产综合在线观看视频| 人妻中文字幕无码久久一区| 91欧美在线| 国产亚洲欧美日韩在线观看一区二区| 欧美日韩国产高清一区二区三区| 精品无码一区二区在线观看| 日韩视频免费| 亚洲中文精品人人永久免费| 青青热久麻豆精品视频在线观看| 91外围女在线观看| 欧美亚洲一区二区三区导航| 五月婷婷丁香综合| 日韩高清成人| 久久性妇女精品免费| 五月婷婷丁香综合| 一本久道热中字伊人| 亚洲综合二区| 国产成人盗摄精品| 国产成人三级在线观看视频| 人妖无码第一页| 亚洲AV无码一二区三区在线播放| 午夜限制老子影院888|