龔振平,杜婷婷,閆 超,馬春梅,董守坤,孫洪超,李海瑞
玉米秸稈還田及施磷量對黑土磷吸附與解吸特性的影響
龔振平1,杜婷婷1,閆 超1,馬春梅1,董守坤1,孫洪超1,李海瑞2
(1. 東北農業大學農學院,哈爾濱 150030;2. 黑龍江八一農墾大學農學院,大慶 163000)
以探究松嫩平原玉米連作條件下,秸稈還田與施磷量互作對黑土磷吸附與解吸特性的影響為目的。該試驗采取二因素裂區試驗設計,主因素為玉米秸稈還田方式,分別為秸稈不還田(S0)、秸稈翻埋還田(S1)和秸稈焚燒還田(S2);副因素為施磷水平,分別為0(P0)、34.50(P1)、69(P2)、103.50(P3)kg/hm2(P2O5)。結果表明:1)Langmuir等溫吸附方程最適合擬合黑土對磷的吸附特征。2)秸稈還田與施磷量均顯著影響黑土對磷的吸附與解吸特性,且兩者互作效應顯著。在相同秸稈還田方式下,隨著施磷量的增加,土壤對磷的吸附能力均逐漸降低,而土壤中磷的解吸量和解吸率均逐漸增加,其中以S0條件下差異最大,S2條件下次之,S1條件下差異最小。在相同施磷水平下,與S0處理相比,S1和S2均能降低土壤對磷的吸附能力,增加土壤中磷的解吸量和解吸率,其中以不施磷肥(P0)處理下差異最大,而在施高磷(P3)處理下差異不顯著,此外,S1與S2在各施磷水平下差異均不顯著。3)不同施磷處理下的標準需磷量(standard P requirement,SPR)為71.02~91.67 kg/hm2,其中以S1P2處理的SPR(73.58 kg/hm2)與P2施磷水平(69 kg/hm2)最相近,是松嫩平原黑土區較為適宜的施磷方式。
土壤;磷;吸附;解吸;玉米連作;秸稈還田
土壤對磷素的吸附與解吸過程控制著土壤溶液中磷的濃度,從而影響土壤磷的有效性和對植物的供磷能力[1]。如何降低土壤對磷素的吸附固定,提高磷素的有效性,一直是土壤磷素研究的熱點[2-3]。諸多研究表明,秸稈還田對土壤磷的吸附與解吸特性有明顯影響。Gupta等[4]在印度北部稻麥輪作區的試驗表明,與秸稈移除和秸稈焚燒還田相比,連續4 a水稻和小麥秸稈翻埋還田降低了土壤對磷的吸附,促進了土壤中磷的釋放,連續秸稈還田能夠代替13 kg/(hm2?a)的無機磷肥。曾希柏等[5]研究表明,長期小麥、大豆、花生等秸稈翻埋還田配施化肥能有效降低旱地紅壤對H2PO4-的吸附量。林誠等[6]在南方黃泥田26 a的長期定位試驗表明,與單施化肥相比,稻草翻埋還田配施化肥能有效降低土壤磷吸附親合力常數()、吸附緩沖容量(maximum buffer capacity,MBC),并提高土壤磷吸附飽和度(degree of phosphorus saturation,DPS)。王新民等[7]在石灰性土壤中的試驗表明,在等磷條件下,無論是夏玉米秸稈單施,還是秸稈與化肥混施,均明顯提高了耕層土壤磷的解吸量和解吸率。Fink等[8]在巴西的研究也表明,秸稈覆蓋還田減少了土壤對磷的吸附,增加了土壤有效磷含量。但也有研究得出相反結論。洪欠欠等[9]在江西雙季稻區的長期定位試驗表明,秸稈翻埋與磷肥配施會增加土壤磷的吸附特性,提高土壤儲磷能力。Yan等[10]在東北稻作區的研究也表明,隨著水稻秸稈還田量的增加土壤的磷吸附能力逐漸增強,導致土壤溶液中有效磷含量顯著降低。
松嫩平原黑土區是中國玉米的重要產區,連作玉米面積較大,秸稈大量剩余,導致露天焚燒污染環境,秸稈還田是農業可持續發展的重要途徑之一。另外,土壤中磷素的豐缺及供給狀況直接影響著作物的生產水平[11],為提高玉米產量,生產中大量施用磷肥[12]。而關于土壤磷吸附與解吸特性的研究大多集中在南方酸性土壤上,而對于松嫩平原黑土的研究主要集中在不同施肥方式上,對于不同秸稈還田方式與施磷量相結合對土壤磷吸附與解吸特性的研究甚少。因此,本文針對松嫩平原黑土玉米連作條件,研究不同秸稈還田方式(移除、還田和焚燒)配合施磷水平對土壤磷吸附與解吸特性的影響,為黑土區秸稈還田和磷肥的合理施用提供一定的理論依據及參考。
試驗于2016—2018年在東北農業大學校內試驗田進行。試驗地位于松嫩平原中部(45°75'N,126°36'E),隸屬于哈爾濱市香坊區,年均溫度3.5 ℃,年降雨量500~550 mm,無霜期140 d左右,≥10 ℃積溫2 700 ℃左右,一年一熟。
試驗采用框栽連續定位方法。玉米采用連作方式,2016、2017、2018相同方法連續進行3 a,于2018年秋季玉米收獲后取樣,測定土壤磷吸附-解吸性能及土壤速效磷含量。框栽材料為硬化塑料制成的無底圓框,直徑0.30 m,深度0.33 m,裝土量為26 kg,埋土深度0.30 m,露出地表0.03 m。供試土壤為黑土,取自2015年的玉米田,基礎肥力為:有機質37.12 g/kg,全氮1.45 g/kg,全磷0.80 g/kg,全鉀21.25 g/kg,硝態氮48.21 mg/kg,銨態氮16.80 mg/kg,速效磷30.46 mg/kg,速效鉀313.50 mg/kg。
試驗采取二因素裂區設計,主因素為秸稈還田方式,分別為秸稈不還田(S0)、秸稈翻埋還田(S1)和秸稈焚燒還田(S2);副因素為施磷水平,分別為不施磷肥(P0)、低量施磷肥(P1)、中量施磷肥(P2)和高量施磷肥(P3),共12個處理,重復5次。秸稈還田量是根據近幾年哈爾濱市玉米平均產量為10 t/hm2,按照谷草比1:1.2計算,秸稈還田量為12 t/hm2,折算后每框為84 g玉米秸稈。其中,S1:每框還田84 g秸稈,還田方法是于播種前將上一季的玉米秸稈粉碎后與0~20 cm土層混合均勻;S2:每框還田84 g秸稈,還田方法是于播種前將玉米秸稈截成5 cm左右的小段,在土層表面焚燒后與0~20 cm土層混合均勻。供試秸稈的平均養分質量分數為有機碳44.84%,全氮1.22%,全磷0.13%,全鉀1.74%,其灰分的平均養分質量分數為有機碳22.70%,全氮0.72%,全磷0.84%,全鉀11.02%。磷肥為重過磷酸鈣(總P2O5質量分數44%),各處理施重過磷酸鈣量為0(P0)、0.55(P1)、1.10(P2)、1.65(P3)g/框,折算每公頃P2O5施用量為0(P0)、34.50(P1)、69(P2)、103.50(P3)kg/hm2。同時每框施入尿素2.40 g(N:46%,340 kg/hm2)和硫酸鉀1.10 g(K2O:50%,150 kg/hm2),其中一半的尿素和全部的磷、鉀肥作為基肥施入,另一半的尿素作追肥在拔節期施入。每年5月1日播種,每框4粒種子,播種深度3~4 cm,齊苗后每框保苗1株。
于2018年10月玉米收獲后采集0~20 cm土層土樣,每個處理5次重復,挑出秸稈、石塊等雜物后裝于透明塑料袋中帶回實驗室,風干磨細后過1 mm篩備用。
土壤磷的等溫吸附[13]:稱取風干土樣1.00 g,每個土樣稱7份,分別置于50mL聚乙烯塑料離心管中,并相應加入含磷質量濃度為0、5、10、15、20、30、50 mg/L的0.01 mol/LCaCl2溶液25 mL(KH2PO4配制),同時加入2滴甲苯以抑制微生物活性,加塞后置于25 ℃恒溫震蕩培養箱中連續震蕩24 h(180 r/min),4 000 r/min離心10 min后用鉬銻抗比色法測定上清液磷濃度,差減法計算土壤吸磷量,并用Langmuir、Freundlich和Temkin 3種等溫吸附方程擬合吸附過程。
土壤磷的等溫解吸[14]:吸附試驗完成后,將殘留的上清液去掉,用25 mL的飽和NaCl溶液洗去管中游離的KH2PO4(4 000 r/min離心8 min),此過程重復1次,之后向每管中加入0.01 mol/L CaCl2溶液25 mL,并加入2滴甲苯以抑制微生物活性,加塞后置于25 ℃恒溫震蕩培養箱中連續震蕩24 h(180 r/min),4 000 r/min離心10 min后用鉬銻抗比色法測定上清液中的磷含量,計算土壤解吸磷量。
土壤速效磷[15]:采用碳酸氫鈉浸提-鉬銻抗比色法測定。
1.4.1 Langmuir等溫吸附方程
/=/Q+1/(1Q)(1)
式中為平衡溶液磷濃度,mg/L;為磷吸附量,mg/kg;Q為磷最大吸附量,mg/kg;1為與結合能有關的常數。
根據吸附試驗及Langmuir等溫吸附方程得出的其他參數:
土壤最大緩沖容量(maximum buffer capacity,MBC),其值為1與的乘積;
土壤標準吸磷量(standard phosphorus requirement,SPR),代表平衡溶液中的磷質量濃度為0.2 mg/L時的磷吸附量;
土壤易解吸磷(readily desorbable phosphorus,RDP),是在吸附試驗中加入的0.01 mol/L CaCl2溶液時,土壤磷素從固相向液相轉移的數量;
土壤磷吸附飽和度(degree of phosphorus saturation,DPS),代表土壤已吸附磷的數量,DPS=(Olsen- P/Q)×100%,其中Olsen-P為土壤速效磷含量。
1.4.2 Freundlich等溫吸附方程
=2?1/n(2)
式中2為容量參數,代表土壤對磷的吸附容量,mg/kg;1/為吸附強度系數,L/kg。
1.4.3 Temkin等溫吸附方程
=+3ln(3)
式中3為容量參數,代表土壤對磷的吸附容量,mg/kg;為吸附強度系數,L/kg。
1.4.4 土壤磷解吸滯后系數(HI)
HI=(Q-Q)/Q(4)
式中Q和Q分別為一定溫度和濃度下土壤對磷的吸附量和解吸量,mg/kg;HI是不可逆吸附程度的量化指標,HI越大代表吸附和解吸過程相差的規律性越大[16]。
采用Microsoft Excel 2007處理數據,SPSS 22.0進行統計分析,Origin 9.0繪圖。
圖1是土壤磷吸附量與平衡溶液磷濃度的關系。由圖1可知,各處理磷吸附曲線的變化規律一致,土壤吸磷量均隨平衡溶液磷濃度的增加而增加,且增幅逐漸變緩,趨于飽和狀態。無論秸稈還田與否,隨著施磷量的增加土壤磷吸附量均逐漸降低。在秸稈不還田(S0)處理下,高磷處理(S0P3)下的平均磷吸附量比不施磷處理(S0P0)下降了10.22%(<0.05)。而在秸稈焚燒還田(S2)和秸稈翻埋還田(S1)處理下,下降幅度明顯變小,其中S2P3處理下的平均磷吸附量比S2P0處理下降4.51%(<0.05),而S1P3處理下的平均磷吸附量與S1P0處理差異不顯著,這說明土壤對磷的吸附能力受到了秸稈還田的影響。在P0、P1和P2處理下,不同秸稈還田方式對磷的吸附量總體表現為S0>S1≈S2。施入玉米秸稈(S1、S2)可以明顯降低土壤對磷的吸附數量,而玉米秸稈翻埋還田(S1)與焚燒后灰分還田(S2)對土壤的磷吸附量差異不大。但在高磷(P3)處理下,3條等溫吸附曲線基本重合,沒有表現出明顯差異,說明秸稈還田對土壤磷吸附的影響受施磷水平影響,當施磷達到高磷水平(P3)時,無明顯作用。

注:P0為不施磷肥、P1為低量施磷肥(34.50 kg·hm-2)、P2為中量施磷肥(69.00 kg·hm-2)、P3為高量施磷肥(103.50 kg·hm-2);S0為秸稈不還田、S1為秸稈翻埋還田、S2為秸稈焚燒還田,下同。
采用Langmuir、Freundlich和Temkin 3種等溫吸附方程來描述土壤對磷的吸附過程(表1),2值均達到0.95以上,表明3種方程均可用以描述黑土對磷的吸附特征,Langmuir方程的2值最大,因而本試驗采用Langmuir方程的各個擬合參數來表征秸稈還田及不同施磷量下黑土對磷的吸附特性。

表1 土壤磷等溫吸附方程
注:為平衡溶液磷濃度;為磷吸附量;Q為磷最大吸附量;1為吸附親和力常數;2、3為吸附容量指標;1/、為吸附強度系數。
Note:is P content at equilibrium solution;is P adsorbed capacity;Qis P maximum adsorbed capacity;1is adsorption affinity constant;2,3are adsorption capacity indexes;1/,are adsorption strength coefficients.
表2為不同處理下土壤Olsen-P含量及由Langmuir方程計算得出的磷吸附參數。由表2可知,秸稈還田方式和施磷量對Olsen-P含量及各等溫吸附參數的作用效果均達到了極顯著水平,且秸稈還田與磷肥的交互作用對RDP、、MBC、SPR和DPS有顯著或極顯著影響。磷肥施用量的增加和秸稈還田均能提高Olsen-P、RDP和DPS。在相同施磷量下,S1和S2處理的Olsen-P含量均無顯著差異,而S2處理除P2水平以外均顯著高于S0處理,S1處理只有在不施磷(P0)下,顯著高于S0處理。RDP除在P1水平下,S1、S2處理的RDP值均顯著高于S0外,其他施磷水平下的變化趨勢與Olsen-P相同。在P0水平下,S0、S1、S2處理的DPS值差異顯著;在P1、P2水平下,S1、S2處理的DPS值均顯著高于S0處理;在P3水平下,S0與S1、S1與S2處理間差異不顯著,說明高量施磷時,秸稈翻埋還田對土壤磷吸附飽和度的影響減弱。磷肥施用量的增加和秸稈還田均能降低Q、、MBC和SPR。在P0水平下,S1、S2處理的Q值顯著低于S0;在P1、P2水平下,S1與S0差異不顯著,S2顯著低于S0;在P3水平下,S0、S1、S2差異均不顯著,且在相同施磷水平下,S1和S2處理的Q值均無顯著差異。、MBC和SPR三者的變化趨勢一致,在P0、P1、P2水平下均表現為S1、S2處理顯著低于S0,且P0水平下降幅度最大,隨著施磷量的增加下降幅度明顯變小,至P3水平時S0、S1、S2無顯著差異,進一步說明了秸稈還田對土壤磷吸附能力的影響明顯受施磷水平制約。
此外,與秸稈不還田(S0)條件下常規施磷相比,秸稈還田(S1、S2)條件下適當減少磷肥用量,土壤的供磷能力反而增強或無顯著差異。S1P0、S2P0處理下的、MBC、SPR值顯著低于S0P1處理;S1P1、S2P1處理下的、MBC和SPR值顯著低于S0P2處理;S1P2、S2P2處理下的、MBC和SPR值與S0P3處理差異不顯著。S1P0、S2P0處理下的RDP和DPS值顯著高于S0P1處理;S1P1、S2P1處理下的RDP和DPS值與S0P2處理差異不顯著;S1P2、S2P2處理下的RDP和DPS值與S0P3處理差異不顯著。

表2 土壤速效磷含量及等溫吸附參數
注:同列數值后不同字母表示處理間差異達5%顯著水平;*和**分別表示達5%和1%顯著水平,NS表示未達顯著水平。
Note: Data followed by different letters in the same column are significantly different among treatments at the 0.05 probability level; “*”, “**” denote significant difference at the 0.05 and 0.01 probability levels, respectively; “NS” denote not significant.
圖2是土壤磷的等溫解吸曲線。由圖2可知,土壤中吸附的磷均能被部分解吸下來,且隨著吸附量的增加,解吸量也逐漸增加。在施磷量為P0~P2時,S1處理的解吸曲線位置一直在最上方,S2處理曲線位置居中,而S0處理曲線位置最低,說明秸稈還田條件下土壤對磷的吸附作用較弱,新加入的磷更易被解吸,而秸稈不還田處理的土壤對磷的吸附作用較強,新加入的磷更難被解吸出來。在施磷量為P3時,S1處理的解吸曲線在土壤磷吸附量較高時有下降趨勢,說明在高量施磷時秸稈的加入能夠適當減少土壤中磷素的釋放,從而降低磷素流失的風險,有利于土壤磷素的保持。

圖2 土壤磷的等溫解吸曲線
圖3是土壤吸附磷的解吸率動態變化。表3為各處理吸附磷的平均解吸率。由圖3可知,各處理的解吸率均隨加入磷濃度的增加呈先下降后上升的趨勢。結合圖3和表3可知,在P0、P1施磷水平下,均表現為S1>S2>S0(<0.05);在P2施磷水平下,S1≈S2>S0;在P3施磷水平下,S0、S1、S2差異不明顯。在S0、S1、S2條件下,隨著施磷量的增加,磷解吸率均呈逐漸增加的趨勢(表 3),其中以S0條件下的增幅最大,其平均解吸率由20.38%增加至23.19%,且各施磷量下差異顯著;在S2條件下,其平均解吸率由21.55%增加至23.13%,施磷肥與不施磷肥間差異顯著;而在S1條件下,其平均解吸率僅上升了0.87%,僅P3與P0處理間差異顯著,說明秸稈還田條件下施磷量的增加對土壤磷的解吸率影響較小。

圖3 土壤磷的解吸率變化特征

表3 土壤吸附磷的平均解吸率
注:橫向比較,不同小寫字母表示處理間差異達5%顯著水平,下同。
Note: Different capital letters in horizontal mean significant at 0.05 level, the same as below.
此外,秸稈還田與磷肥對土壤磷的平均解吸率有顯著的交互作用(=3.086),總體而言S1P0處理下的平均解吸率略高于S0P1;S1P1和S2P1處理下的平均解吸率略高于S0P2;S1P2和S2P2處理下的平均解吸率與S0P3大致相同,說明秸稈還田條件下減量施磷與秸稈不還田條件下正常施磷的土壤磷平均解吸率大致相同,即秸稈還田可以補充并活化土壤中的一部分磷素,從而提高土壤磷的解吸率。
表4為土壤吸附磷的平均解吸滯后系數。由表4可知,相同施磷量下,土壤吸附磷的平均解吸滯后系數(HI)均表現為S0>S2>S1,除P3水平下,S0、S1、S2的平均HI差異不顯著外,其他施磷水平下,S1條件下的平均HI均顯著低于S0和S2處理。在P0和P1水平下,S2條件下的平均HI顯著低于S0處理,說明秸稈翻埋還田和秸稈焚燒還田處理下土壤解吸磷的滯后現象較弱,可以明顯降低土壤對磷素的固定,且秸稈翻埋還田的效果更好。在相同秸稈還田方式下,隨著施磷量的增加,HI呈降低趨勢,在S0、S1、S2條件下,P3較P0分別下降了3.15%、0.78%和1.92%,說明高量施磷增加了土壤中磷素的活動性,有利于磷素的解吸。同時秸稈翻埋還田條件下施磷量的增加對平均HI的影響較小,進一步表明秸稈還田條件下可以適當減少磷肥用量。

表4 土壤吸附磷的平均解吸滯后系數
土壤對磷的吸附量和吸附強度主要受土壤質地、有機質含量和磷肥施用水平等因素的影響[17]。本研究顯示,玉米連作條件下3 a秸稈還田及施磷量的累加均會明顯影響黑土對磷的吸附特性,Langmuir等溫吸附方程可以很好地擬合黑土對磷的吸附特征,與Lv等[18]研究結果一致。本試驗中無論秸稈還田與否,Q、、MBC及SPR均表現為隨施磷量的增加而逐漸降低,RDP和DPS則表現為隨施磷量的增加而增加,這與Vu等[19]在澳洲鈣質土壤及張海濤等[20]在潮褐土上研究施磷量對土壤磷吸附特性的結果一致。原因可能是土壤速效磷(Olsen-P)含量與Q、、MBC和SPR呈極顯著負相關,而與RDP和DPS呈極顯著正相關[21]。隨著施磷量的增加土壤中的速效磷含量逐漸增加,進而導致土壤膠體表面的磷吸附位點已被部分占據,從而減弱了土壤對磷的吸附特性[22]。在本試驗的相同施磷水平下,S1和S2條件下的Q、、MBC及SPR均低于S0處理,RDP和DPS則高于S0處理,而S1與S2間無明顯差異。Reddy等[23]在印度黏土上的研究也表明,與單獨施用化學磷肥相比,單純施用大豆、小麥秸稈或秸稈與磷肥組合施用能明顯降低土壤的磷吸附能力從而減少土壤標準需磷量(SPR)。S1條件下土壤磷吸附能力的減弱主要有2方面的原因,一是秸稈還田后提高了土壤中的磷酸酶活性和微生物數量,促使土壤及秸稈中的有機磷經礦化作用后轉化為無機磷,增加了土壤中的有效磷含量,進而與土壤膠體表面的磷吸附位點發生作用[24-25];另一方面,秸稈中富含碳素,玉米秸稈中碳的釋放主要集中在還田的前3 a[26],秸稈腐解過程中產生的碳水化合物可對土壤膠體表面的磷吸附位點起到一定的掩蔽作用,從而降低磷的吸附[27]。而在本試驗的相同施磷水平下,S1與S2處理對磷的吸附特性無明顯差異,這與Gupta等[4]在印度恒河流域連續4 a稻秸還田的研究結果一致。秸稈焚燒會造成秸稈中所含碳素和氮素的大量損失,但會使土壤速效磷含量增加[28],進一步說明了土壤速效磷含量是影響土壤磷吸附能力的重要因素。此外,秸稈焚燒后殘留的堿金屬元素會使秸稈灰分中pH值升高[28],施入土壤后產生的OH-也會與磷酸根離子競爭土壤膠體表面的磷吸附位點,從而減少對磷的吸附[29]。
本研究還表明,連續3 a無磷肥施入(P0)時,S0、S1、S2處理間的磷吸附量及各等溫吸附參數差異最大,而在高量施磷(P3)時,各還田方式間的磷吸附能力大致相同。原因可能是本試驗中土壤自身速效磷含量較高,且高量施磷(P3)處理中P2O5用量高達103.5 kg/hm2,連續3 a施高磷使得土壤膠體表面的磷吸附位點被大量占據,導致土壤磷素吸附飽和度(DPS)顯著升高,因此減弱了秸稈還田對減少土壤磷吸附能力的貢獻。Guo等[30]研究也表明,已經施入土壤的磷對膠體礦物與黏粒等物質位點的占據,會影響后來施入的有機物與礦物的反應。而章永松等[31]采用室內培養試驗表明,與低磷水平土壤相比,高磷水平土壤上豬糞還田比豬糞不還田的差異更顯著,這可能與水田和旱田土壤環境不同、土壤本身速效磷含量和施磷水平不同、以及豬糞和秸稈中的可溶性組分不同有關。此外,本研究還發現,與S0相比,S1和S2條件下各施磷處理的土壤磷吸附量及各等溫吸附參數的差異較小,可能與連續3 a秸稈還田(S1、S2)條件下土壤中的速效磷含量明顯增加有關,土壤吸附飽和度增加,是導致土壤磷吸附能力降低的重要原因[32]。由于本試驗是在S1和S2基礎上配施化學磷肥,因此由于秸稈自身磷含量的投入,自然會造成在相同施磷量下,不同秸稈還田方式對磷吸附的差異。因此,本研究得出,秸稈還田與磷肥間存在明顯的交互作用,P1水平下的S0與P0水平下的S1和S2對土壤磷的吸附特性差異不顯著;P2水平下的S0與P1水平下的S1和S2差異不顯著;P3水平下的S0與P2水平下的S1和S2差異不顯著,說明秸稈還田(S1、S2)條件下可以適當減少磷肥用量,而不影響土壤磷的吸附特性。土壤標準需磷量(SPR)是指土壤溶液中磷濃度維持在0.2 mg/L時,一般作物的生長量即可達到最高生長量的95%左右[33]。通過Langmuir等溫吸附方程可計算出土壤的標準需磷量,為合理施用磷肥奠定基礎。按土壤深度為20 cm,土壤容重為1.1 g/cm3計算,在P0施磷水平下,S1和S2分別相當于多補充了15.19和14.33 kg/hm2(P2O5);在P1施磷水平下,S1和S2分別相當于多補充了9.49和8.22 kg/hm2(P2O5);在P2施磷水平下,S1和S2分別相當于多補充了8.00和7.31 kg/hm2(P2O5);在P3施磷水平下,S1和S2分別相當于多補充了0.35和0.11 kg/hm2(P2O5),說明連續3 a無化學磷肥施入時,秸稈還田的效應被放大,此時以土壤及秸稈中的磷素釋放為主,而在施入化學磷肥后,由于土壤的固磷特性,土壤中磷素積累量增加,此時秸稈的作用效果有所減弱。王文華等[34]研究也表明,在低磷條件下,植物根系及微生物分泌的酸性磷酸酶對有機磷的礦化作用十分明顯,而在高磷條件下,二者則無明顯的相關性。不同施磷處理下的標準需磷量(standard P requirement,SPR)為71.02~91.67 kg/hm2。此外,本試驗設置的P2施磷水平,施磷量為69 kg/hm2(P2O5),在S0P2處理下,SPR為81.58 kg/hm2,而S1P2和S2P2處理下的SPR分別為73.58和74.27 kg/hm2,與生產中的實際施磷量相近,說明在P2施磷水平下配合秸稈翻埋還田(S1)是最適宜的施磷方式。S0P2處理下的標準需磷量與張麗等[35]在黑土上的推薦施磷量為82.46 kg/hm2(P2O5)相一致,表明連續3 a秸稈還田條件下可減少施磷8.19~8.88 kg/hm2(P2O5)。
土壤磷的解吸是吸附的逆過程,被吸附到土壤固態的磷可以被部分解吸下來,從而對土壤磷溶液起到一定的補充作用[36]。因此,土壤磷的解吸率也是評價土壤供磷能力的重要指標。Varinderpal-singh等[37]在印度玉米-小麥輪作區長達32 a的定位試驗表明,隨著施磷量的增加,土壤的磷解吸率逐漸增大。本研究表明,無論秸稈還田與否,均表現為高施磷(P3)處理下的解吸率顯著高于不施磷(P0)處理,且以S0條件下土壤磷解吸率增幅最大,S2條件下次之,S1條件下增幅最小。原因由表 2可知,連續3 a施磷量較低時,土壤中的Olsen-P較低,土壤膠體表面的磷吸附位點相對充足(Q較大),磷吸附飽和度(DPS)較小,磷吸附結合力較強(較大),所以磷不容易被解吸下來;而在施磷量較高時,恰好相反。王斌等[32]在灰漠土上的研究也表明,土壤磷吸附親和力常數()與土壤磷解吸率呈負相關關系。
Reddy等[38]在印度大豆-小麥輪作系統中發現,秸稈翻埋還田能顯著增加土壤磷解吸潛力,提高作物對磷的利用效率。本研究結果與前人研究結果一致,在相同施磷水平下,均表現為S1和S2條件下的解吸率顯著大于S0,S1條件下的解吸率略大于S2,但差異不顯著。原因可能是,還田秸稈腐解導致土壤速效磷含量顯著增加,同時釋放的有機酸通過競爭磷吸附位點而有效降低土壤礦物膠體對磷酸根離子的吸附潛能,由此提高土壤磷的解吸特性[25,27],S2條件下磷解吸率的增加主要是因為土壤速效磷含量的升高。本研究還發現,S1和S2條件下的土壤速效磷含量大致相同,但磷的平均解吸率卻表現為S1的解吸率略高,可能與秸稈翻埋還田條件下水溶性有機碳的增加,以及秸稈翻埋還田和秸稈焚燒還田后土壤中碳酸鈣、活性鐵和鋁的變化有關[25]。本研究中,各處理下土壤磷的解吸率變化曲線均表現為先下降后上升的趨勢,說明供試土壤的速效磷含量較高,導致在磷濃度較低時自身的一部分磷素也被釋放,進一步佐證了在高量施磷(P3)條件下不同秸稈還田方式間吸附-解吸特性無明顯差異的主要原因是由于土壤膠體表面磷吸附飽和度較大。本試驗中不同處理下的平均解吸率均未超過25%,說明土壤對磷的吸附-解吸存在明顯的滯后現象,與Okajima等[39]的研究結果一致。在秸稈翻埋還田配施高量磷肥時(S1P3)土壤磷的解吸率最大而解吸滯后系數最小,也進一步說明了高量施磷與秸稈翻埋還田配合施用能有效促進土壤已吸附態磷的解吸。然而對于土壤磷解吸率的雙因素分析表明,P1水平下的S0與P0水平下的S1和S2的平均解吸率無明顯差異;P2水平下的S0與P1水平下的S1和S2無明顯差異;P3水平下的S0與P2水平下的S1和S2無明顯差異,說明秸稈還田(S1、S2)促進了土壤中磷素的釋放,可以在一定程度上減少化學磷肥的用量,但考慮到秸稈養分的合理利用與生態環境安全,秸稈翻埋還田(S1)是最適宜的還田方式。
1)Langmuir等溫吸附方程最適合擬合黑土對磷的吸附特征。隨著施磷量的增加,黑土對磷的吸附量、最大吸磷量(Q)、吸附親和力常數()、最大緩沖容量(MBC)和標準需磷量(SPR)逐漸降低,易解吸磷(RDP)和吸附飽和度(DPS)逐漸增加,土壤磷平均解吸率也逐漸增加。
2)與秸稈不還田(S0)相比,秸稈翻埋還田(S1)和秸稈焚燒還田(S2)均可以降低土壤對磷的吸附量,增加土壤磷的平均解吸率,而S1、S2處理間無顯著差異。其中在P0施磷水平下,S1、S2處理下的土壤磷吸附量下降幅度最大,分別為6.87%和5.31%(<0.05),至P3施磷水平下,S0、S1、S2處理下的土壤磷吸附量無顯著差異。
3)通過計算各處理下土壤標準需磷量(SPR)得出,在P2施磷水平下,與S0處理相比,S1、S2處理分別相當于多補充了8.00和7.31 kg/hm2(P2O5),且S1P2和S2P2處理下的SPR值分別為73.58和74.27 kg/hm2與P2施磷水平(69.00 kg/hm2)最接近,但綜合考慮到秸稈資源的合理利用與生態環境安全,S1P2處理是松嫩平原黑土區較為科學的施磷方式。
[1]曹志洪,李慶逵. 黃土性土壤對磷的吸附與解吸[J]. 土壤學報,1988,25(3):218-226. Cao Zhihong, Li Qingkui. Phosphorus sorption and desorption isotherms for some loessial soils of north China plain[J]. Acta Pedologica Sinica, 1988, 25(3): 218-226. (in Chinese with English abstract)
[2]徐秋桐,張莉,章明奎. 不同有機廢棄物對土壤磷吸附能力及有效性的影響[J]. 農業工程學報,2014,30(22):236-244. Xu Qiutong, Zhang Li, Zhang Mingkui. Effects of different organic wastes on phosphorus sorption capacity and availability in soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 236-244. (in Chinese with English abstract)
[3]Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537.
[4]Gupta R K, Yadvinder-Singh, Ladha J K, et al. Yield and phosphorus transformations in a rice-wheat system with crop residue and phosphorus management[J]. Soil Science Society of America Journal, 2007, 71(5): 1500-1507.
[5]曾希柏,劉更另. 化肥施用和秸稈還田對紅壤磷吸附性能的影響研究[J]. 土壤與環境,1999,8(1):45-49. Ceng Xibo, Liu Gengling. Effects of inorganic fertilizers and returning the crop straw into soil on adsorption-desorption of red soil[J]. Soil and Environmental Sciences, 1999, 8(1): 45-49. (in Chinese with English abstract)
[6]林誠,王飛,林新堅,等. 長期施肥對南方黃泥田土壤磷吸附與解吸的影響[J]. 福建農業學報,2011,26(6):1034-1038. Lin Cheng, Wang Fei, Lin Xinjian, et al. The effection of phosphorus adsorption and desorption of long-term fertilization on south yellow clayey soil[J]. Fujian Journal of Agricultural Sciences, 2011, 26(6): 1034-1038. (in Chinese with English abstract)
[7]王新民,侯彥林. 有機物料對石灰性土壤磷素形態轉化及吸附特性的影響研究[J]. 環境科學學報,2004,24(3):440-443. Wang Xinmin, Hou Yanlin. Effects of organic matter addition on the characteristics of phosphate adsorption and forms of phosphorus in a calcareous soil[J]. Acta Scientiae Circumstantiae, 2004, 24(3): 440-443. (in Chinese with English abstract)
[8]Fink J R, Inda A V, Bayer C, et al. Mineralogy and phosphorus adsorption in soils of south and central-west Brazil under conventional and no-tillage systems[J]. Acta Scientiarum Agronomy, 2014, 36(3): 379-387.
[9]洪欠欠,顏曉,魏宗強,等. 長期施肥與土壤性質對水稻土磷吸附的影響[J]. 中國土壤與肥料,2018(3):61-66. Hong Qianqian, Yan Xiao, Wei Zongqiang, et al. Effects of long-term fertilization on phosphorus sorption and soil properties in paddy soil[J]. Soil and Fertilizer Sciences in China, 2018(3): 61-66. (in Chinese with English abstract)
[10]Yan C, Yan S S, Hou Z F, et al. Phosphorus adsorption characteristics of soil with rice straw retention in northeast China[J]. Ekoloji, 2019, 28(107): 1671-1678.
[11]Ma Y B, Li J M, Li X Y, et al. Phosphorus accumulation and depletion in soils in wheat-maize cropping systems: Modeling and validation[J]. Field Crops Research, 2009, 110(3): 207-212.
[12]趙宏偉. 寒地作物栽培學[M]. 北京:中國農業出版社,2013:55-56.
[13]魯如坤. 土壤農業化學分析方法[M]. 北京:中國農業科技出版社,2000:183-185.
[14]葉炳,王虹. 應用Langmuir等溫式解釋我國東北某些土壤對磷酸離子的吸附作用[J]. 土壤學報,1984,21(1):21-28. Ye Bing, Wang Hong. An interpretation for the phosphate adsorption in some soils in north-eastern China by means of langmuir isotherm[J]. Acta Pedologica Sinica, 1984, 21(1): 21-28. (in Chinese with English abstract)
[15]鮑士旦. 土壤農化分析[M]. 北京:中國農業出版社,2008:81-83.
[16]Huang W, Weber W J. A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains[J]. Environment Science and Technology, 1997, 31(9): 2562-2569.
[17]Zhang Y H, Huang S M, Guo D D, et al. Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization[J]. Journal of Soils and Sediments, 2019, 19(3): 1306-1318.
[18]Lv H Y, Yang H T. Effects of long-term fertilization on the form of inorganic phosphorus and the characteristic of adsorption and desorption in black soil[J]. Communications in Soil Science and Plant Analysis, 2019, 50(6): 763-771.
[19]Vu D T, Tang C, Armstrong R D. Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate[J]. Plant and Soil, 2007, 304(1): 21-33.
[20]張海濤,劉建玲,廖文華,等. 磷肥和有機肥對不同磷水平土壤磷吸附-解吸的影響[J]. 植物營養與肥料學報,2008,14(2):284-290. Zhang Haitao, Liu Jianling, Liao Wenhua, et al. Effect of phosphate fertilizer and manure on properties of phosphorus sorption and desorption in soils with different phosphorus levels[J]. Plant Nutrition and Fertilizer Science, 2008, 14(2): 284-290. (in Chinese with English abstract)
[21]趙慶雷,王凱榮,謝小立. 長期有機物循環對紅壤稻田土壤磷吸附和解吸特性的影響[J]. 中國農業科學,2009,42(1):355-362. Zhao Qinglei, Wang Kairong, Xie Xiaoli. Effects of organic nutrient recycling on phosphorus adsorption-desorption characteristics in a reddish paddy rice system[J]. Scientia Agricultura Sinica, 2009, 42(1): 355-362. (in Chinese with English abstract)
[22]Barrow N J, Debnath A. Effect of phosphate status on the sorption and desorption properties of some soils of northern India[J]. Plant and Soil, 2014, 378(1/2): 383-395.
[23]Reddy D D, Rao A S, Singh M. Crop residue addition effects on myriad forms and sorption of phosphorus in a Vertisol[J]. Bioresource Technology, 2001, 80(2): 93-99.
[24]劉盼盼,周毅,付光璽,等. 基于秸稈還田的小麥-玉米輪作體系施肥效應及其對土壤磷素有效性的影響[J]. 南京農業大學學報,2014,37(5):27-33. Liu Panpan, Zhou Yi, Fu Guangxi, et al. Effects of fertilization on crop yield and soil phosphorus availablity based on the returning straw[J]. Journal of Nanjing Agricultural University, 2014, 37(5): 27-33. (in Chinese with English abstract)
[25]Pavinato P S, Rosolem C A. Effects of organic compounds produced by plants on soil nutrient availability[J]. Revista Brasileira De Ciencia Do Solo, 2008, 32(3): 911-920.
[26]龔振平,鄧乃榛,宋秋來,等. 基于長期定位試驗的松嫩平原還田玉米秸稈腐解特征研究[J]. 農業工程學報,2018,34(8):139-145. Gong Zhenping, Deng Naizhen, Song Qiulai, et al. Decomposing characteristics of maize straw returning in Songnen Plain in long-time located experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 139-145. (in Chinese with English abstract)
[27]Guppy C N, Menzies N W, Moody P W, et al. Competitive sorption reactions between phosphorus and organic matter in soil: A review[J]. Australian Journal of Soil Research, 2005, 43(2): 189-202.
[28]Kolawole G O, Tijani-Eniola H, Tian G. Phosphorus fractions in fallow systems of West Africa: Effect of residue management[J]. Plant and Soil, 2004, 263(1/2): 113-120.
[29]Arai Y, Sparks D L. Phosphate reaction dynamics in soils and soil components: A multiscale approach[J]. Advances in Agronomy, 2007, 94: 135-179.
[30]Guo S L, Dang T H, Hao M D. Phosphorus changes and sorption characteristics in a calcareous soil under long-term fertilization[J]. Pedosphere, 2008, 18(2): 248-256.
[31]章永松,林咸永,倪吾鐘. 有機肥對土壤磷吸附-解吸的直接影響[J]. 植物營養與肥料學報,1996,2(3):200-205. Zhang Yongsong, Lin Xianyong, Ni Wuzhong. Direct influence of organic manure on phosphorus adsorption-desorption in the soils[J]. Plant Nutrition and Fertilizer Science, 1996, 2(3): 200-205. (in Chinese with English abstract)
[32]王斌,劉驊,李耀輝,等. 長期施肥條件下灰漠土磷的吸附與解吸特征[J]. 土壤學報,2013,50(4):726-733. Wang Bin, Liu Hua, Li Yaohui, et al. Phosphorus adsorption and desorption characteristics of gray desert soil under long-term fertilization[J]. Acta Pedologica Sinica, 2013, 50(4): 726-733. (in Chinese with English abstract)
[33]Fox R L, Kamprath E J. Phosphate sorption isotherms for evaluating the phosphate requirements of soils[J]. Soil Science Society of America Journal, 1970, 34(6): 902-907.
[34]王文華,周鑫斌,周永祥,等. 不同磷效率油菜根際土壤磷活化機理研究[J]. 植物營養與肥料學報,2011,17(6):1379-1387. Wang Wenhua, Zhou Xinbin, Zhou Yongxiang, et al. The mechanism of rhizosphere phosphorus activation of two rape genotypes (L. ) with different P efficiencies[J]. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1379-1387. (in Chinese with English abstract)
[35]張麗,任意,展曉瑩,等. 常規施肥條件下黑土磷盈虧及其有效磷的變化[J]. 核農學報,2014,28(9):1685-1692. Zhang Li, Ren Yi, Zhan Xiaoying, et al. Soil phosphorus balance and changes of Olsen-P of black soil under long-term conventional fertilization[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(9): 1685-1692. (in Chinese with English abstract)
[36]Wang L Q, Liang T. Effects of exogenous rare earth elements on phosphorus adsorption and desorption in different types of soils[J]. Chemosphere, 2014, 103: 148-155.
[37]Varinderpal-Singh, Dhillon N S, Brar B S. Influence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils[J]. Nutrient Cycling in Agroecosystems, 2006, 75(1/2/3): 67-78.
[38]Reddy D D, Kushwaha S, Srivastava S, et al. Long-term wheat residue management and supplementary nutrient input effects on phosphorus fractions and adsorption behavior in a Vertisol[J]. Communications in Soil Science and Plant Analysis, 2014, 45(4): 541-554.
[39]Okajima H, Kubota H, Sakuma T. Hysteresis in the phosphorus sorption and desorption processes of soils[J]. Soil Science and Plant Nutrition, 1983, 29(3): 271-283.
Effects of corn straw returning and phosphorus application rate on phosphorus adsorption and desorption characteristics of black soil
Gong Zhenping1, Du Tingting1, Yan Chao1, Ma Chunmei1, Dong Shoukun1, Sun Hongchao1, Li Hairui2
(1.,,150030,; 2.,,163000,)
The black soil area of Songnen Plain is an important corn production area in China. The area of continuous corn cropping is large, and a large amount of straw is left over, which causes environmental pollution by burning in the open air. Returning straw to the field is one of the important ways for sustainable development of agriculture. At the same time, straw returning affects the adsorption and fixation of phosphorus in soil, which has a direct impact on the availability of soil phosphorus. In order to explore the effects of straw returning and phosphorus application rate on phosphorus adsorption and desorption characteristics of black soil under the continuous corn cropping in Songnen Plain. A frame culture experiment was initiated in 2016 at Northeast Agricultural University Experimental Station, where corn was continuously planted for three years. A two-factor split-plot design was adopted in this experiment, the main plot was straw returning method with no straw returning (S0), straw burying (S1) and straw burning (S2), and the sub-plot was phosphorus application level with 0 (P0), 34.50 (P1), 69 (P2), 103.50 (P3) kg/hm2(P2O5). After the corn was harvested in 2018, the 0-20 cm soil layer was collected to determine the adsorption and desorption performance of soil phosphorus and the content of soil available phosphorus. The results showed that: 1) Langmuir isothermal adsorption equation was the most suitable for fitting the adsorption characteristics of phosphorus of black soil. 2) Both straw returning and phosphorus application rate significantly affected the phosphorus adsorption and desorption characteristics of black soil, and the interaction between them was significant. Under the same straw returning method, with the increase of phosphorus application rate, the phosphorus adsorption amount of soil,Q(maximal P adsorption),(adsorption affinity constant), MBC(maximum buffer capacity) and SPR(standard phosphorus requirement) decreased gradually, while the RDP(readily desorbable P), DPS(degree of P saturation) and the phosphorus desorption amount and rate of soil increased gradually, with the largest difference under S0 treatment, followed by that under S2 treatment, and the smallest difference under S1 treatment. Under S0 treatment, the average phosphorus adsorption amount of P3 treatment decreased by 10.22% compared with P0 treatment (<0.05). Under S2 treatment, the average phosphorus adsorption amount of P3 treatment decreased by 4.51% compared with P0 treatment (<0.05). However, under S1 treatment, there was no significant difference between P3 and P0. Under the same phosphorus application level, compared with S0 treatment, both S1 and S2 could reduce the phosphorus adsorption capacity and increase the phosphorus desorption amount and rate of soil, however there was no significant difference between S1 and S2. Among them, under no phosphorus application (P0), the phosphorus adsorption amount of soil under S1 and S2 treatment decreased the most, which were 6.87% and 5.31% (<0.05), respectively. Under high phosphorus application (P3), there was no significant difference in the phosphorus adsorption amount of soil under S0, S1 and S2 treatment. 3) The standard phosphorus requirement (SPR) under different phosphorus application treatments ranged from 71.02 to 91.67 kg/hm2, of which the SPR (73.58 kg/hm2) of S1P2 was the closest to the phosphorus application level of P2 (69 kg/hm2), which was the appropriate phosphorus application method of black soil area in Songnen Plain. The purpose of this study is to provide some theoretical basis and reference for the rational application of straw returning and phosphate fertilizer in black soil area.
soils; phosphorus; adsorption; desorption; continuous corn cropping; straw returning
龔振平,杜婷婷,閆 超,馬春梅,董守坤,孫洪超,李海瑞. 玉米秸稈還田及施磷量對黑土磷吸附與解吸特性的影響[J]. 農業工程學報,2019,35(22):161-169. doi:10.11975/j.issn.1002-6819.2019.22.019 http://www.tcsae.org
Gong Zhenping, Du Tingting, Yan Chao, Ma Chunmei, Dong Shoukun, Sun Hongchao, Li Hairui. Effects of corn straw returning and phosphorus application rate on phosphorus adsorption and desorption characteristics of black soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 161-169. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.019 http://www.tcsae.org
2019-08-16
2019-10-12
國家重點研發計劃(2016YFD0300204);黑龍江省應用技術研究與開發計劃(GA16B401)
龔振平,教授,博士生導師,主要從事保護性耕作及大豆生理的研究。Email:gzpyx2004@163.com
10.11975/j.issn.1002-6819.2019.22.019
S154.1
A
1002-6819(2019)-22-0161-09