999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于 4-甲基-3-苯基-5-(2-吡啶基)-1,2,4-三唑的CuⅡ、NiⅡ和CdⅡ配合物的合成、晶體結構及性質

2019-01-14 06:00:30何衛衛馮肆洋瞿志榮王作祥
無機化學學報 2019年1期
關鍵詞:杭州化學

何衛衛 馮肆洋 瞿志榮*, 唐 輝 王作祥*,

(1杭州師范大學有機硅化學及材料技術教育部重點實驗室,杭州 311121)

(2東南大學化學化工學院,南京 211189)

In the past few decades,the transition metal complex composed of inorganic metal ions and organic ligands has attracted great attention from scientists due to their tailorable structures and promising properties in different fields[1-3].Among them,1,2,4-triazole and its derivatives are important compounds which have gained great attentions in recent years,since they play a crucial role in many fields such as medical science[4-7],biological science[8-10]and so on[11-13].At the same time,a new family of energetic salts has been synthesized recently based on the 1,2,4-triazole derivative[14].Moreover,coordination polymers consisting of 1,2,4-triazole derivative and other materials have been synthesized and demonstrated for the first time intrinsic proton conduction by a coordination network[15].Besides,much attention has also been paid to 1,2,4-triazole compounds for their versatile coordination modes[16-20]in coordination chemistry.

Although many metal complexes with substituted 1,2,4-triazole have been synthesized and characterized[18-25], the copperⅡ,nickelⅡ and cadmiumⅡcomplexes with 4-methyl-3-phenyl-5-(2-pyridyl)-1,2,4-triazole have not been reported so far.Herein we report the crystal structures and spectroscopic properties of four complexes,[CuL2Cl]Cl·H2O (1),[NiL2(H2O)2](NO3)2(2),[CuL2(H2O)2](ClO4)2(3)and[CdL2(NO3)2]·CH3CN (4),where L=4-methyl-3-phenyl-5-(2-pyridyl)-1,2,4-triazole.

1 Experimental

1.1 Chemicals and measurement

The reagents and solvents used were analytical grade without further purified.Melting points were determined using an X4 digital microscopic melting point apparatus and uncorrected.The C,H,N elemental analyses were performed on a Perkin-Elmer 240 analyzer.1H NMR spectrum was measured with a Bruker Avance 300 spectrometer at ambient temperature in CDCl3using TMS as an internal reference.Infrared spectra were determined on a Prestige-21 FTIR spectrometer from 400~4 000 cm-1using KBr pellets.Thermogravimetric analyses were obtained on a NETZSCH′s TG209C thermogravimetric analyzer in nitrogen atmosphere at heating rate of 10 ℃·min-1.UV-Vis spectra were measured on U-6000PC spectrometer in ethanol solutions.Fluorescence emission spectra were taken using F-2700FL spectrometer in ethanol solutions.Powder XRD measurements were performed using a Bruker D8 advanced X-ray diffractometer equipped with graphite monochromated Cu Kα (λ=0.154 18 nm)radiation(40 kV,40 mA)with 2θranging from 5°to 60°at room temperature.

1.2 Synthesis of L

The ligand L was synthesized by the following process:oxalylchloride (7.7 mL,90 mmol)was added to a solution of N-methylbenzamide (12.15 g,90 mmol)and 2,6-lutidine (21.0 mL,180 mmol)in CH2Cl2(300 mL)at 0℃ under nitrogen atmosphere.The mixture was stirred for 40 min,and 2-picolinic acid hydrazide(12.33 g,90 mmol)was added.The reaction mixture was stirred for 5 h at room temperature,and then the volatiles were removed.The residue was dissolved in NaHCO3(sat)(300 mL)and refluxed for 3 h at 100 ℃.The water phase was extracted with CHCl3.The organic phase was dried over MgSO4,and concentrated.Recrystallization from EtOAc gave white crystals(10.7 g,yield 50.4%).m.p.152~153℃.Anal.Calcd.for C14H12N4(%):C 71.17,H 5.12,N 23.71.Found(%):C 71.26,H 5.01,N 23.63.1H NMR (300 MHz,CDCl3):δ4.069(s,3H),7.338~7.341(d,1H),7.350~7.369(m,1H),7.525 ~7.552 (m,2H),7.697 ~7.721 (m,2H),7.826~7.869 (m,1H),8.344~8.364 (d,1H).8.680~8.684(d,1H).MS (m/z):[M+H]+237.1.IR (KBr,cm-1):3 052,3 011,2 971,1 588,1 486,1 470,1 444,1 431,1 278,1 150,1 078,991,790,738,706.

1.3 Synthesis of complex 1

To a warm solution of L (0.236 g,1.0 mmol)in 30 mL acetonitrile,CuCl2·2H2O (0.085 g,0.5 mmol)was added with stirring,then the solution turned green immediately.The solution was filtrated,and the filtrate was left to evaporate slowly at room temperature.Several days later,green crystals were collected (Yield:0.223 g,71.4%).A single crystal was picked out to measure the structure by X-ray single crystal diffraction.Anal.Calcd.for C28H26Cl2CuN8O(%):C 53.81,H 4.19,N17.93;Found(%):C 53.57,H 4.01,N 17.64.IR (KBr,cm-1):3 098,3 058,2 924,1 609,1 501,1 472,1 445,1 252,1 082,1 047,793,779,734,703.UV (λmax/nm):245,277.

1.4 Synthesis of complex 2

The synthesis of 2 was same as that of 1 except that Ni(NO3)2·6H2O (0.145 g,0.5 mmol)was used instead of CuCl2·2H2O.Purple crystals were collected(Yield:0.292 g,84.5% ).Anal.Calcd.for C28H28N10NiO8(%):C 48.65,H 4.08,N 20.26;Found(%):C 48.31,H 3.87,N 20.51.IR (KBr,cm-1):3 076,3 028,2 957,1 611,1 501,1 472,1 384,1 315,1 166,1 111,1 048,776,734,707.UV (λmax/nm):248,282.

1.5 Synthesis of complex 3

The synthesis of 3 was similar to that of 1 except that 0.472 g L (2.0 mmol)and 0.371 g Cu(ClO4)2·6H2O(1.0 mmol)were used.Blue crystals were obtained(Yield:0.638 g,82.7% ).Anal.Calcd.for C28H28Cl2CuN8O10(%):C 43.62,H 3.66,N 14.53;Found(%):C 43.74,H 3.48,N 14.71.IR (KBr,cm-1):3 122,3 080,2 965,2 003,1 614,1 506,1 475,1 446,1 362,1 311,1 256,1 145,1 121,1 085,780,717,703,624.UV (λmax/nm):246,278.

1.6 Synthesis of complex 4

The synthesis of 4 was same as that of 1 except that Cd(NO3)2·4H2O (0.154 g,0.5 mmol)was used instead of CuCl2·2H2O.Colorlesscrystalswerecollected(Yield:0.303 g,81.0% ).Anal.Calcd.for C30H27Cd N11O6(%):C 48.04,H 3.63,N 20.54;Found(%):C 48.24,H 3.71,N 20.42.IR (KBr,cm-1):3 060,2 965,2 922,2 254,1 601,1 493,1 470,1 439,1 384,1 317,1 168,1 039,789,730,703.UV (λmax/nm):250,277.

1.7 X-ray crystallography

The picked single crystals were placed on a Bruker Smart APEXⅡCCD X-ray single crystal diffractometer (λ=0.071 073 nm),and the data were collected at 296(2)K.The crystal structures were solved by direct methods and refined on F2by fullmatrix least squares procedures using SHELXTL software[29]. All non-hydrogen atoms were refined anisotropically,and all hydrogen atoms on carbon atoms were allowed to ride on the parent atoms geometrically.The hydrogen atoms of water molecules were found from the Fourier map,but not refined anisotropically.Crystallographic data of complexes 1~4 are shown in Table 1,selected bond lengths and bond angles for 1~4 are shown in Table 2,and H-bonding and C-H…π interactions for 1~4 are shown in Table 3~6,respectively.

CCDC:1854277,1;1854278,2;1854289,3;1854284,4.

Table 1 Crystal data and structure refinement for complexes 1~4

Table 2 Selected bond lengths(nm)and bond angles(°)for 1~4

Table 3 H-bonding,C-H…πandπ…πinteractions parameters for 1

Table 4 H-bonding,C-H…πandπ…πinteractions parameters for 2

Table 5 H-bonding,C-H…πandπ…πinteractions parameters for 3

Table 6 H-bonding and C-H…πinteractions parameters for 4

2 Results and discussion

2.1 Crystal structure of[CuL 2Cl]Cl·H 2O(1)

The crystal structure of 1 belongs to orthorhombic system with space group Fddd.The asymmetric unit of 1 consists of one [CuL2Cl]+,one Cl-and one lattice water.The crystal structure of 1 is shown in Fig.1a.Two nitrogen atoms from 1,2,4-triazole rings(N2 and N2i)and two nitrogen atoms from pyridine rings (N4 and N4i)are almost in the same plane and coordinated to the center Cu1Ⅱion,and the Cl1 atom coordinated to the Cu1Ⅱion at the axial position.All these coordinated atoms make the central Cu1Ⅱion form a distorted tetragonal pyramid geometry [CuN4Cl].The bond lengths of Cu1-N2,Cu1-N4 and Cu1-Cl1 are 0.197 87(16),0.206 88(17)and 0.252 57(12)nm,respectively.The 1,2,4-triazole ring and pyridine ring are almost coplanar,the dihedral angle between them is 1.79°.Four hydrogen-bonding interactions are found in 1 (Fig.1b and Table 3),including one H-bonding interaction between the water and uncoordinated Clanion,and other three non-classical hydrogen bonds interactions.Two weakπ…πinteractions are involved between the pyridine ring and the neighboring benzene ring.There are also two C-H…πinteractions C13-H13…Cg3v(Symmetry codes:v3/4-x,y,7/4-z)and C14-H14A…Cg4vi(Symmetry codes:vi3/2-x,-y,3/2-z).All these interactions link the molecules of complex 1 into a three-dimensional network structure(Fig.1).

2.2 Crystal structures of[NiL 2(H2O)2](NO3)2(2)and[CuL 2(H 2O)2](ClO4)2(3)

The crystal structure of 2 belongs to monoclinic system with space group P21/n.The asymmetric unit of 2 consists of one[NiL2(H2O)2]2+and one NO3-.The central Ni1Ⅱion is coordinated by four nitrogen atoms (N2,N2i,N4 and N4i)from ligand L and two oxygen atoms from two water molecules (O1W and O1Wi).All these atoms coordinated in trans-mode and make the central Ni1Ⅱion form a distorted octahedral geometry [NiN4O2] (Fig.2a).The bond lengths of Ni1-N2,Ni1-N4 and Ni1-O1W are 0.203 22 (17),0.210 36(17)and 0.210 73(16)nm,respectively.The oxygen atoms in NO3-ions are in thermal disorder.Three H-bonding interactions are found in 2(Fig.2b and Table 4),and two C-H … π interactions exist between C12-H12…Cg5iii(Symmetry codes:iii5/2-x,-1/2+y,1/2-z)and C14-H14A…Cg5iv(Symmetry codes:iv3/2-x,1/2+y,1/2-z).All these interactions help to form three-dimensional network structure of 2(Fig.2).

The crystal structure of complex 3 is similar to 2,with the central Cu1Ⅱions having distorted octahedral geometries[CuN4O2].Thecrystal structureof 3 and 3D stacking are shown in Fig.3.

Fig.1 (a)Structure of 1 with Cl-ions and lattice water molecules omitted for clarity;(b)H-bonding and C-H…π interactions in 1;(c)3D stacking of 1

Fig.2 (a)Structure of 2 with nitrate ions omitted for clarity;(b)H-bonding and C-H…π interactions in 2;(c)3D stacking of 2

Fig.3 (a)Structure of 3 with Clions omitted for clarity;(b)Hydrogen-bonding and π…π interactions in 3;(c)3D stacking of 3

2.3 Crystal structure of[CdL 2(NO3)2]·CH 3CN(4)

The crystal of 4 belong to the monoclinic system with space group P21/c.Two 1,2,4-triazole ring nitrogen atoms (N2 and N6),two pyridine ring nitrogen atoms(N4 and N8)and two oxygen atoms (O1 and O4)of two NO3-ions are coordinated to the central Cd1Ⅱion,and the central Cd1Ⅱion has a distorted octahedral geometry [CdN4O2] (Fig.4a).As the nitrogen atoms coordinated to the Cd1Ⅱion,the corresponding bond lengths are slight different(Cd1-N2 0.234 6(3),Cd1-N6 0.232 0(3)nm,Cd1-N4 0.241 6(3)nm,Cd1-N8 0.245 8(3)nm).

Fig.4 (a)Structure of 4;(b)H-bonding interactions in 4;(c)3D stacking of 4

There are six non-classical H-bonding interactions in 4 (Fig.4b and Table 6),which are C4-H4…N11i(Symmetry codes:i2-x,-1/2+y,3/2-z),C7-H7…O1,C20-H20…O2ii(Symmetry codes:ii2-x,1-y,1-z),C21-H21…O4,C28-H28B…O3iii(Symmetry codes:iii-1+x,y,z)and C30-H30C…O2.There are also several C-H…π interactions in the crystal (Table 5).Three-dimensional network structure of 4 is formed by all these interactions (Fig.4).

2.4 Spectral characterization

2.4.1 IR and UV-Vis spectroscopy

In the IR spectrum of free ligand L,the bands of 1 588 and 1 486 cm-1are attributed to the aromatic ring skeleton vibration absorption.When the nitrogen atoms on the triazole and pyridine rings(such as N2 and N4)coordinated with metal ions in 1~4,the corresponding absorption bands were blue-shifted[30].The bands of 1 609 and 1 501 cm-1were observed in complex 1,while those for complex 2 are 1 611 and 1 501 cm-1,1 614 and 1 506 cm-1for complex 3,and 1 601 and 1 493 cm-1for complex 4,respectively(Fig.5).In the UV-Vis spectra of 1~4 in ethanol solutions with the concentration of 10 μmol·L-1measured at room temperature (Fig.6), ε1=7.6×104L·mol-1·cm-1,ε2=9.1×104L·mol-1·cm-1,ε3=0.66×105L·mol-1·cm-1,ε4=0.75×105L·mol-1·cm-1.All the complexes showed intense absorption bands at ~250 and ~280 nm,which are attributed to the π-π*and n-π*transitions.

Fig.5 IR spectra of 1~4

Fig.6 UV spectra of 1~4

2.4.2 Luminescence properties

The emission spectra of 1~4 in ethanol solutions with the concentration of 10 μmol·L-1were measured at room temperature (Fig.7).The slit of excitation and emission is 2 nm.Using rhodamine 6G (ΦF=0.85 in ethanol)as the reference,the formula for calculating the fluorescence quantum yield is as follows:

Where subscript sample and std represent the sample and the reference material,respectively,I represents the fluorescence integral strength,A represents the absorbance,n represents the refractive index.The fluorescence quantum yields of 1~4 were 0.63,0.56,0.65 and 0.58,respectively.In the emission spectra of 1 and 3,a broad emission maximum at 351 and 350 nm were observed with excitation at 257 and 256 nm,the emission maximum for 2 and 4 were at 352 and 355 nm with excitation at 280 and 275 nm,respectively.All these are caused by π-π*transitions in the ligands.

Fig.7 Excitation and emission spectra of 1~4

2.4.3 Thermogravimetric analyses (TGA)and PXRD

The thermal stabilities of 1,2 and 4 were determined at the temperature range of 30~800 ℃ in nitrogen atmosphere (Fig.8).For complex 1,the weight loss was 2.12%at 120℃due to loss of the lattice water (Calcd.2.88%).Complex 1 decomposed sharply between 200 and 500℃.The weight loss was 77.45%at 800 ℃,and the residue was CuCl2(Calcd.78.48%).Complex 2 are stable below 75°C.The weight loss was 5.49%at 160℃due to loss of water molecules(Calcd.5.21%),and it decomposed rapidly above 250℃.Complex 4 started to lose the weight above 50℃.It first lost the lattice acetonitrile molecule,and decomposed sharply above 250℃.The weight loss was 68.40%at 660 ℃ ,and the residue was Cd (NO3)2(Calcd.68.48%).

Fig.8 TGA curves of 1,2 and 4

Powder X-ray diffraction (PXRD)patterns of 1~4 were determined (Fig.9).The as-synthesized peak positions were in agreement with the simulated XRD patterns,which indicates the single phase purity of all complexes.

Fig.9 PXRD patterns of 1~4

3 Conclusions

Four complexes based on 4-methyl-3-phenyl-5-(2-pyridyl)-1,2,4-triazole were synthesized,and their structures were determined by X-ray crystallography,IR,UV-Vis,fluorescence measurement,TGA and PXRD.The central Cu1Ⅱion in 1 has a distorted tetragonal pyramid geometry[CuN4Cl],and the central metal ions in 2~4 have distorted octahedral geometries.Hydrogen bonds,C-H…πinteractions andπ…π stacking interactions make them form three-dimensional networks.Complexes 1~4 all show fluorescence properties with the fluorescence quantum yield being 0.63,0.56,0.65 and 0.58,respectively.

猜你喜歡
杭州化學
走,去杭州亞運會逛一圈兒
科學大眾(2023年17期)2023-10-26 07:38:38
杭州
幼兒畫刊(2022年11期)2022-11-16 07:22:36
杭州亥迪
奇妙的化學
奇妙的化學
奇妙的化學
G20 映像杭州的“取勝之鑰”
傳媒評論(2017年12期)2017-03-01 07:04:58
奇妙的化學
杭州
汽車與安全(2016年5期)2016-12-01 05:21:55
奇妙的化學
主站蜘蛛池模板: 国产精品无码翘臀在线看纯欲| h视频在线观看网站| 亚洲欧美国产高清va在线播放| 成人国产精品2021| 91亚洲视频下载| 久久亚洲综合伊人| 在线国产毛片| 澳门av无码| 高清国产va日韩亚洲免费午夜电影| 97人妻精品专区久久久久| 久久特级毛片| 不卡的在线视频免费观看| 国产精品七七在线播放| 国产乱子伦视频三区| 一本大道无码高清| 国产jizz| 国产99久久亚洲综合精品西瓜tv| 性欧美在线| 黑人巨大精品欧美一区二区区| 中文字幕在线永久在线视频2020| 国产亚洲精| 国产精品lululu在线观看| 国产日韩欧美在线播放| 91原创视频在线| 亚洲欧洲综合| 麻豆精品在线播放| 国产成人精品高清不卡在线| 欧美午夜视频在线| a毛片在线| 国产理论最新国产精品视频| 国产精品免费p区| 91精品啪在线观看国产91九色| 国产欧美视频在线| 免费不卡在线观看av| 免费aa毛片| 亚洲天堂首页| 国产精品伦视频观看免费| 日韩精品一区二区三区中文无码 | 久久久久久国产精品mv| 最新国产网站| 国产浮力第一页永久地址| 在线网站18禁| 国产99视频精品免费观看9e| 欧洲熟妇精品视频| 亚洲国产一成久久精品国产成人综合| www.狠狠| 91小视频在线播放| 国产在线观看91精品亚瑟| 精品福利国产| 欧美日韩国产精品va| 青青操视频在线| 久综合日韩| 久久人人爽人人爽人人片aV东京热| 亚洲人妖在线| 18黑白丝水手服自慰喷水网站| 久久国产精品无码hdav| 四虎在线观看视频高清无码| 国产精品亚洲精品爽爽| 少妇精品久久久一区二区三区| 成人小视频在线观看免费| 亚洲人成日本在线观看| 人妻出轨无码中文一区二区| 欧美亚洲第一页| 在线va视频| 亚洲无码高清一区二区| 精品成人免费自拍视频| 波多野结衣在线se| 欧美亚洲综合免费精品高清在线观看| 亚洲欧美激情另类| 国产精品无码一二三视频| 怡春院欧美一区二区三区免费| 中文字幕在线视频免费| 就去吻亚洲精品国产欧美| 亚洲欧洲日产国产无码AV| 在线观看免费国产| 99成人在线观看| 综合天天色| 欧美精品v| 国产精品美人久久久久久AV| 91探花国产综合在线精品| 九九线精品视频在线观看| 久久综合丝袜长腿丝袜|