999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

以4,4′-(1-咪唑基亞甲基)二苯甲酸為配體的鋅配合物的合成、晶體結構和熒光性質

2019-01-14 06:00:28劉光祥
無機化學學報 2019年1期
關鍵詞:南京

喻 敏 宣 芳 劉光祥

(南京曉莊學院環境科學學院,新型功能材料南京市重點實驗室,南京 211171)

The design and synthesis of coordination polymers (CPs)have continued unabated over the past decade.These materials possess diverse and enticing applications in gas storage and separation,sensing,ion exchange,heterogeneous catalysis,non-linear optics,explosives residue detection,luminescence and even drug delivery[1-8].However,the applications of CPs are directly related to their structural features.Thus,the fabrication of desired CPs with the targeted structures and properties has become a great challenge for research scientists owing to many key factors including metal ions,organic ligands,metalligand ratio,pH,reaction solvents,temperature,as well as the oxidation state of the metal ion[9-12].Among them,the design and judicious selection of organic ligands are of crucial concern in the CP construction because the structure,symmetry,solubility,size,and coordination mode of these ligands directly correlate with the architectures of CPs[13-16].Generally speaking,multifunctional ligands are the first choice for the construction of coordination polymers because they are sensitive to pH value of the reaction solution and can adopt variety of coordination modes to bridge metal ions[17-20].Here, the 4,4′-((1H-imidazol-1-yl)methylene)dibenzoic acid (H2IMB)ligand was chosen as the linker,and the reasons are as follows:flexible carboxyphenyl and rigid imidazolyl group can provide multidentate metal-binding sites and diverse coordination modes;the varying coordination modes of the ligands have great potential in synthesizing different coordination polymers with intriguing structures and unique properties[21-23].Moreover,it is equally important that the metal ions have a d10configuration to construct coordination polymers with an excellent luminescent property[24-26]. Motivated by these abovementioned aspects,we obtain two new coordination polymers,namely,[Zn(HIMB)2]n(1)and{[Zn(IMB)]·1.5H2O}n(2).Herein,we report their syntheses,crystal structures and luminescent properties.

1 Experimental

1.1 Materials and general methods

All reagents and solvents employed in this work were commercially available and used without further purification.The H2IMB ligand was purchased from WuXi AppTec Group.Elemental analyses(C,H and N)were performed on a Vario ELⅢelemental analyzer.Infrared spectra were recorded on KBr discs using a Nicolet Avatar 360 spectrophotometer in the range of 4 000~400 cm-1.The luminescent spectra for the powdered solid samples were measured at ambient temperature on a Horiba FluoroMax-4P-TCSPC fluorescence spectrophotometer.Powder X-ray diffraction(PXRD)measurements were performed on a Bruker D8 Advance diffractometer at 40 kV,40 mA with Cu Kα radiation (λ=0.154 056 nm)and a graphite monochromator scanning from 5°to 50°at room temperature.

1.2 Synthesis of[Zn(HIMB)2]n(1)

A mixture containing Zn(NO3)2·6H2O (29.6 mg,0.1 mmol)and H2IMB (32.2 mg,0.1 mmol)in 15 mL of DMF/CH3OH/H2O (1∶2∶2,V/V)mixed solution was sealed in a 25 mL Teflon lined stainless steel container and heated at 100℃for 3 days.Colorless block crystals of 1 were collected by filtration and washed with water and ethanol several times with a yield of 44%based on H2IMB ligand.Anal.Calcd.for C36H26N4O8Zn(%):C,61.07;H,3.70;N,7.91.Found(%):C,60.98;H,3.72;N,7.93.IR (KBr,cm-1):3 457 (br),3 139 (w),1 702 (s),1 561 (s),1 521 (s),1 419 (m),1 391 (s),1 273 (w),1 208 (m),1 122 (w),997 (w),892 (m),835 (w),782 (w),651 (w),565 (w),542 (w).

1.3 Synthesis of{[Zn(IMB)]·1.5H 2O}n(2)

A mixture containing Zn(NO3)2·6H2O (29.6 mg,0.1 mmol)and H2IMB (32.2 mg,0.1 mmol)in 15 mL of DMF/H2O (2∶1,V/V)mixed solution was sealed in a 25 mL Teflon lined stainless steel container and heated at 100℃for 3 days.Colorless pillar crystals of 2 were collected by filtration and washed with water and ethanol several times with a yield of 26%based on H2IMB ligand.Anal.Calcd.for C18H15N2O5.5Zn (%):C,52.38;H,3.66;N,6.79.Found (%):C,52.47;H,3.65;N,6.81.IR (KBr,cm-1):3 473 (br),3 165 (w),1 608 (s),1 519 (m),1 422 (s),1 377 (s),1 273 (m),1 123 (w),1 034 (w),1 010 (s),871 (m),835 (w),778 (w),659 (m),527 (m).

1.4 X-ray crystallography

Two single crystals with dimensions of 0.22 mm×0.16 mm×0.08 mm for 1 and 0.18 mm×0.14 mm×0.10 mm for 2 were mounted on glass fibers for measurement,respectively.X-ray diffraction intensity data were collected on a Bruker APEXⅡCCD diffractometer equipped with a graphite-monochromatic Mo Kα radiation (λ=0.071 073 nm)using the φ-ω scan mode at 293(2)K.Data reduction and empirical absorption correction were performed using the SAINT and SADABSprogram[27],respectively.The structures were solved by the direct method using SHELXS-2016[28]and refined by full-matrix least squares on F2using SHELXL-2016[29].All of the non-hydrogen atoms were refined anisotropically.The solvent molecules in 2 were highly disordered and were removed from the diffraction data by the SQUEEZE routine of PLATON program.The final formula of 2 were determined by single-crystal structures,elemental analysis results and TGA.The details of the crystal parameters,data collection and refinement for 1 and 2 are summarized in Table 1,and selected bond lengths and angles with their estimated standard deviations are listed in Table 2.

CCDC:1851301,1;1851302,2.

Table 1 Crystal data and structure refinement for 1 and 2

Table 2 Selected bond lengths(nm)and angles(°)for 1 and 2

Continued Table 2

2 Results and discussion

2.1 Crystal structure

Single crystal X-ray diffraction analysis revealed that complex 1 crystallizes in the orthorhombic space group C2221and features a 2D→2D polycatenane of 2-fold interpenetrated sql layer.As illustrated in Fig.1,the asymmetric unit of complex 1 contains a half zinc ion located on a crystallographic 2-fold axis and one crystallography independent HIMB-anion.The central ZnⅡion is four-coordinated by two carboxylate oxygen atoms from two HIMB-anions,and two nitrogen atoms from two other HIMB-anions in a distorted tetrahedral coordination geometry.Bond lengths and angles about the zinc ion are standard for tetrahedral coordination (Table 2).The central carbon of HIMB-anion shows sp3hybridization,exhibiting C(N)-Ncentral-C angles of 111.9(5)°,111.7(6)° and 114.8(5)°.The dihedral angles between the phenyl rings of the HIMB-anion are 88.25°,84.64°and 66.18°,and the Ncentral-C(N)bond lengths are 0.148 0(8),0.153 3(9)and 0.153 2(9)nm,respectively.In 1,adjacent ZnⅡcenters are linked by partially deprotonation HIMB-anions to generate Zn-HIMB chains,which are further extended by HIMB-anions to form a puckered sheet with Zn…Zn distance of 1.171 6 nm(Fig.2).The sheet has only a kind of rhombic window of Zn4(HIMB)4with dimensions of 1.870 4 nm×1.396 4 nm.

Fig.1 Coordination environment of the ZnⅡions in 1 with the ellipsoids drawn at the 30%probabilitylevel

Fig.2 Perspective view of the sql layer in 1

Fig.3 Schematic view of the 2D→2D polycatenane of 2-fold interpenetrated layers

Based on the concept of topology,the layer can be simplified into a (4,4)-connected sql net.The potential voids are filled via mutual interpenetration of two independent equivalent networks in a normal mode,giving rise to a 2D→2Dpolycatenane framework of 2-fold interpenetration (Fig.3).Their mean planes are parallel and coincident.In addition,intramolecular O4-H4…O1 (O4…O1 0.264 1(5)nm)hydrogen-bonding interactions between the layers further stabilize the 2D structure of 1.

Changing the solution from DMF/CH3OH/H2O to DMF/H2O for the same reaction mixture of 1 affords complex 2,which crystallizes in the tetragonal I41/acd space group and possesses a 3D framework with a dinuclear structure.The asymmetric unit of 2 contains one crystallographically independent ZnⅡion,one individual IMB2-anion as well as one and a half free water molecule.As depicted in Fig.4,each ZnⅡion is four-coordinated by three oxygen atoms from three different IMB2-anions and one nitrogen atom from the imidazole group of IMB2-anions,exhibiting a slightly distorted tetrahedral geometry.All chemical bonds fall in the normal ranges[30].

Fig.4 Coordination environment of the ZnⅡions in 2 with the ellipsoids drawn at the 30%probability level

The central carbon of HIMB-anion of 2 shows sp3hybridization,exhibiting C(N)-Ncentral-C angles of 111.9(5)°,111.7(6)°and 114.8(5)°.The dihedral angles between the phenyl rings of the HIMB-anion are 88.25°,84.64°and 66.18°,and the Ncentral-C (N)bond lengths are 0.148 0(8),0.153 3(9)and 0.153 2(9)nm,respectively.In 2,the H2IMB ligands are fully deprotonated and the carboxyl groups of IMB2-adopt two coordination modes: μ2-η2∶η1(bis-bridging mode)and μ1-η1∶η0(monodentate mode),and connect two ZnⅡ ions to generate the dinuclear SBUs[Zn2(COO)2]with Zn…Zn distance of 0.375 5 nm (Fig.5).Each IMB2-links three SUBs to give a lattice-shaped 2D layer structure along the c-axis (Fig.6),which is further expanded by IMB2-to form a 3D framework.

Fig.5 Two dimensional network of 2 viewing along the c-axis

Fig.6 Three dimensional framework of 2 viewing along b direction

By topological analysis,when the dinuclear SBUs are regarded as 6-connected node and the IMB2-as 3-connected node,respectively,the structure of 2 can be simplified as a 2-nodal (3,6)-connected network with the point symbol of (611.84)(63)2.Interestingly,two independent equivalent frameworks interlace each other,resulting in a 2-fold interpenetrated 3D framework (Fig.7).

Two different complexes 1 and 2 were synthesized on the basis of the selection of reaction solvent systems,while the other synthetic parameters were intentionally held constant.The dimensionality and topology of the networks produced in this work are determined by the coordination environments of ZnⅡion and linking modes of H2IMB ligand,which are clearly dictated by the solvent molecules.The solvent not only can affect the extent of deprotonation of organic multicarboxylate ligand but also can induce different conformation of the flexible organic mutilcarboxylate ligand[31-33].During the self-assemble process,the H2IMB ligand deprotonated one proton into HIMB-for 1,two protons into IMB2-for 2,respectively.In complex 1,HIMB-ligand links two different ZnⅡions inμ2-N,O coordination mode.While in complex 2,IMB2-ligand links four different ZnⅡ ions in μ2-N,(η2-O′,O″),(η1-O′)coordination mode.The different conformations and coordination modes for HIMB-and IMB2-resulted in structural variation from 2D layer to 3D framework.Thus,the solvent of reaction mixture plays a key role in controlling the structures of the coordination compounds.

Fig.7 Three dimensional 2-fold interpenetrated(3,6)-connected framework of 2

Fig.8 PXRD patterns of complexes 1 (a)and 2 (b)

2.2 FTIR spectra

The IR spectra of 1 showing the presence of the characteristic bands at 1 702 cm-1indicate the partially deprotonation of H2IMB,while the IR spectra of 2 showing the absence of the characteristic bands at around 1 700 cm-1attributed to the protonated carboxylate group indicate that the complete deprotonation upon reaction with metal ion.The characteristic bands of carboxyl groups were shown in the range of 1 560~1 610 cm-1for antisymmetric stretching and 1 370~1 420 cm-1for symmetric stretching.The separations(Δν)between νasym(CO2)and νsym(CO2)bands indicate the presence of different coordination modes.The bands in the region 660~1 300 cm-1are attributed to the-CH-in-plane or out-of-plane bend,ring breathing,and ring deformation absorptions of benzene ring,respectively.Weak absorptions observed at 3 139~3 165 cm-1can be attributed toνC-Hof benzene ring.The IR spectra exhibited the characteristic peaks of imidazole groups at ca.1 520 cm-1[34].

2.3 Powder X-ray diffraction(PXRD)and thermal analyses

Powder X-ray diffraction analysis (PXRD)experiments were carried out for 1 and 2 at room temperature to characterize their purity.As shown in Fig.8,the measured peak positions closely match the simulated peak positions,indicative of pure products.The thermal behaviors of complexes 1 and 2 were measured under a dry N2atmosphere at a heating rate of 10℃·min-1from 25 to 700℃ and the TG curves are presented in Fig.9.Complex 1 began to collapse at 210℃.Complex 2 lost water molecules before 158℃,and the framework began to decompose at 320℃.

Fig.9 TGA curves of complexes 1 and 2

2.4 Luminescent properties

Based on the references about the fluorescent properties of Zn complexes[35-38],the solid state luminescent properties of the title complexes and H2IMB ligand were measured at room temperature under the excitation of 285 nm (Fig.10).The H2IMB displayed a maximum peak at 462 nm,which is attributed to the π→π*and n→π*transition of intra-ligands.The emission peaks of two complexes occurred at 386 nm(λex=315 nm)for 1 and 395 nm (λex=323 nm)for 2,respectively.Theemission of 1 and 2 can be essentially ascribed to the intraligand fluorescent emission.The red-shift of the emission can be attributed to the ligand coordination to the metal center,which effectively increases the rigidity of the ligand and reduces the loss of energy by radiationless decay[39-42].The emission strength of 2 was stronger than complex 1,whichmaybecaused bydifferentcoordinationmodes.

Fig.10 Emission spectra of free H2IMB ligand,1 and 2 at room temperature

猜你喜歡
南京
南京比鄰
“南京不會忘記”
環球時報(2022-08-16)2022-08-16 15:13:53
南京大闖關
江蘇南京卷
學生天地(2020年31期)2020-06-01 02:32:22
南京·九間堂
金色年華(2017年8期)2017-06-21 09:35:27
南京·鴻信云深處
金色年華(2017年7期)2017-06-21 09:27:54
南京院子
電影(2017年1期)2017-06-15 16:28:04
又是磷復會 又在大南京
南京:誠實書店開張
南京、南京
連環畫報(2015年8期)2015-12-04 11:29:31
主站蜘蛛池模板: 国产精品香蕉| 在线播放国产99re| 最新国产精品第1页| 美女无遮挡被啪啪到高潮免费| 免费看一级毛片波多结衣| 秘书高跟黑色丝袜国产91在线| 成人午夜久久| 色妞www精品视频一级下载| 色婷婷在线播放| 国产成人1024精品| 99视频在线免费| 91免费国产高清观看| 国产对白刺激真实精品91| 色婷婷亚洲综合五月| 99热国产这里只有精品无卡顿"| 日韩免费毛片视频| 色欲不卡无码一区二区| 天天躁夜夜躁狠狠躁躁88| 国产激情无码一区二区免费| av在线人妻熟妇| 亚洲无码视频一区二区三区| 无码精品国产dvd在线观看9久 | 欧美乱妇高清无乱码免费| 美臀人妻中出中文字幕在线| 美女无遮挡免费视频网站| 夜夜操国产| 日韩美毛片| www.亚洲一区二区三区| 一本久道久久综合多人 | 亚洲欧美日韩成人在线| 色有码无码视频| 成人国产免费| 五月天在线网站| 久久www视频| 欧美成人精品高清在线下载| 草草线在成年免费视频2| 狼友视频一区二区三区| 亚洲大尺码专区影院| 久久久久青草线综合超碰| 黄色网页在线播放| 日韩经典精品无码一区二区| 国产情侣一区| 亚洲丝袜第一页| 色窝窝免费一区二区三区| 国产精品视频a| 国产成人做受免费视频| 欧美h在线观看| 色欲不卡无码一区二区| 中文成人在线| 国产成人精品午夜视频'| 青青青国产视频手机| 在线日本国产成人免费的| 亚洲aaa视频| 91国内视频在线观看| 国产超薄肉色丝袜网站| 夜夜操天天摸| 丝袜国产一区| 污视频日本| 欧美日韩成人在线观看| 欧美在线国产| 一区二区三区四区精品视频| 久久毛片网| 亚洲欧美日韩精品专区| 亚洲午夜国产片在线观看| 呦系列视频一区二区三区| 在线观看免费国产| 久久久久久高潮白浆| 亚洲成肉网| 69av在线| 超碰91免费人妻| 狠狠干综合| 国产全黄a一级毛片| 久久性妇女精品免费| 精品無碼一區在線觀看 | 日韩毛片在线视频| 无码粉嫩虎白一线天在线观看| 特级aaaaaaaaa毛片免费视频| 99re热精品视频国产免费| 91福利一区二区三区| 国产欧美日韩在线一区| 在线看片中文字幕| 久久不卡国产精品无码|