尹寧浩,劉瑞安,劉楠,曾貝貝



摘 ?要: 為滿足特殊場景中交通管理系統的高時效性、高準確率、低成本需求,本文以一維激光雷達距離數據為基礎,將RGB圖像、SAR圖像等視覺圖像處理方法中使用的角點特征的概念用于一維離散數據,從而獲取一維離散數據的輪廓特征。本文提出了利用均值差變和離差獲得離散角點數據的方法,然后通過對數據樣本的長、寬、高、離散角點數據等信息進行分析,獲得每類目標的統計特征,進一步調整基于決策樹的分類系統參數,提高目標分類的準確率。實驗結果表明,該方法對目標分類的正確率在91%以上,能夠滿足特定環境場景的需求。
關鍵詞: 激光雷達;一維距離數據;角點;目標分類
中圖分類號: TN181 ? ?文獻標識碼: A ? ?DOI:10.3969/j.issn.1003-6970.2019.12.045
本文著錄格式:尹寧浩,劉瑞安,劉楠,等. 基于一維激光雷達數據的交通車輛分類研究[J]. 軟件,2019,40(12):206210
Car Classification Based on One-Dimensional Lidar Data
YIN Ning-hao, LIU Rui-an, LIN Nan, ZENG Bei-bei
(College of Electronic and Communication Engineering of Tianjin Normal University, Tianjin, 300387, China)
【Abstract】: To meet the high timeliness, high accuracy and low cost requirements of the traffic management system ? in special scenarios. This paper uses the one-dimensional lidar distance data as the basis, and applies the corner features from the visual image processing methods such as RGB images and SAR images to one-dimensional discrete data, thereby obtaining the contour features of the one-dimensional discrete data. In this paper, a method of obtaining discrete corner data using mean difference variation and dispersion is proposed. Then, by analyzing the length, width, height and discrete corner data, etc, the statistical characteristics of each type of target are obtained. It is used to adjust the parameters of the classification system that based on decision tree to improve the accuracy of the target classification. The experimental results show that the correct rate of the target classification is over 91%, which can meet the needs of specific environmental scenarios.
【Key words】: Lidar; One-dimensional distance data; Corner; Target classification
0 ?引言
近幾年,國產汽車的產量以及質量不斷地提高,加之人們對高質量生活的向往,使得國內汽車數量在短期內急速增長,尤其在三四線城市。因此,加強車輛以及道路管理,優化交通系統的需求也亟待滿足。在這些欠發達的地區,現存的交通管理系統過于低端老舊的,不能很好地滿足新時代新的需求;這些系統通常是基于視覺圖像的,極易受到天氣以及光線的影響。激光雷達傳感器以其特有的優勢逐漸成為新興的數據采集傳感器,其具有遠距離測距能力,能有效地監測目標物體的方位和深度信息,受天氣、光照等條件的影響較小?!?br>