


摘 ?要: 針對語音簽到系統在實際運用中識別率較低的問題,從提高對標簽缺失數據的利用角度出發,提出一種利用無監督學習來提高識別率的方法。該方法基于深度置信網絡隱馬爾可夫混合模型(DBN-HMM),利用受限波爾茨曼機(RBM)為無監督學習提取特征參數,接著利用深度置信網絡(DBN)得到對原始數據的觀測概率。隱馬爾可夫(HMM)據此通過前向算法求出數據的似然概率,并將概率值最大的類別作為識別結果。實驗表明,使用DBN-HMM模型可以有效利用存在標簽缺失的數據,提高語音簽到系統的識別能力。
關鍵詞: 語音識別;簽到系統;無監督學習;DBN-HMM
中圖分類號: TN912.3;TP183 ? ?文獻標識碼: A ? ?DOI:10.3969/j.issn.1003-6970.2019.12.041
本文著錄格式:趙從健,雷菊陽,李明明. 基于無監督學習的語音簽到系統[J]. 軟件,2019,40(12):183187
Voice Check-in System Based on Unsupervised Learning
ZHAO Cong-jian, LEI Ju-yang, LI Ming-ming
(Shanghai University of Engineering Science, College of Mechanical and Automotive Engineering, Shanghai, 201620, China)
【Abstract】: Aiming at the low recognition rate of speech check-in system in practical application, this paper proposed a method, from improving the utilization of tag missing data, to improve recognition rate by unsupervised learning. This method was based on Deep Belief Network mixed Hidden Markov Model (DBN-HMM), used the Restricted Boltzmann Machine (RBM) to extract the characteristic parameters for unsupervised learning, then used Deep Belief Network (DBN) to get the observation probability of raw data. Based on this, Hidden Markov Model (HMM) calculated the likelihood probability of data by forward algorithm, and took the category with the largest probability value as recognition results. Experiments showed that DBN-HMM model could effectively utilize the data with missing tags and improved the recognition ability of speech check-in system.
【Key words】: Speech recognition; Check-in system; Unsupervised learning; DBN-HMM
0 ?引言
目前,國內高校、企業對考勤系統的要求不斷提高,如何安全且經濟地完成考勤成為一項研究課題[1-5]。傳統的考勤方式,如人工點名、刷卡簽到等方式存在他人代替、遺失和被盜用等風險[6]。因此,傳統的考勤方式面臨著嚴峻的挑戰,與當今人工智能的發展越來越不協調。
語言作為人類最常用、最重要和最有效的交流載體,是最適合用來身份認證的方式之一。和其他方式相比,語音信號獲取方便,人機交流時最自然和便利,而不基于固定文本下的語音識別具有很高的安全性[1-8]。過去的研究缺乏準確的模型,無法處理大量未經注釋的數據,而深度學習的興起為語音識別提供了強大的建模能力,提高了原始數據的利用率[9-12]。……