付中玉,孫康,梁棟,徐震



摘 ?要: 由于許多實際納米顆粒的電荷和極性十分微弱甚至可以忽略不計,這阻礙了電場產生直接驅動納米顆粒。基于在梯度電場誘導下的納米顆粒可自發從電場強度高的位置迅速移動到電場強度低的位置這一原理,本課題使用不同斜率的垂直梯度電場驅動控制水溶液中納米顆粒,實現納米顆粒定向運動。根據分子動力學模擬結果得出當梯度電場斜率合適并且顆粒的大小與輸送顆粒管道直徑相匹配時,納米顆粒可以達到較好的輸送效果。該結果對于水溶液中分子馬達、分子水泵、分子篩以及分子開關的設計有著重要的參考價值。
關鍵詞: 水溶液;顆粒輸送器;梯度電場;分子動力學
中圖分類號: TP271+.3 ? ?文獻標識碼: A ? ?DOI:10.3969/j.issn.1003-6970.2019.12.007
本文著錄格式:付中玉,孫康,梁棟,等. 水溶液中顆粒輸送器的分子動力學模擬[J]. 軟件,2019,40(12):2832
Molecular Dynamics Simulation of Particle Conveyor in Aqueous Solution
FU Zhong-yu, SUN Kang, LIANG Dong, XU Zhen*
(Shanghai University of Engineering Science, Shanghai 201620)
【Abstract】: Since the charge and polarity of many actual nanoparticles are very weak or even negligible, this hinders the electric field from directly driving the nanoparticles. Based on the principle that the nanoparticles induced by the gradient electric field can spontaneously move from the position where the electric field strength is high to the position where the electric field strength is low, this topic uses the vertical gradient electric field with different slopes to drive and control the nanoparticles in the aqueous solution to realize the directional movement of the nanoparticles. According to the results of molecular dynamics simulation, when the slope of the gradient electric field is suitable and the particle size matches the diameter of the transporting particle tube, the nanoparticle can achieve better transport effect. The results have important reference value for the design of molecular motors, molecular water pumps, molecular sieves and molecular switches in aqueous solution.
【Key words】: Aqueous solution; Particle conveyor; Gradient electric field; Molecular dynamics
0 ?引言
納米顆粒的尺寸通常在1~100 nm之間,并被人們認為是宏觀物質與微觀原子、分子之間的紐帶[1]。納米尺度下的納米顆粒表現出很多新穎甚至奇異的物理、化學和生物學性質,因此納米顆粒在材料改性和生物醫療等方面具有重要的應用前景。
納米顆粒可以通過血管、神經突觸和淋巴血管傳輸,而且還能夠有選擇性地積累在不同細胞或者一定的細胞結構中,對進入細胞的分子等細微顆粒進行有效的過濾篩選。納米顆粒的這些特性奠定了其在藥物輸運[2-4]、靶向治療[5-7]及分子篩選[8]等方面的應用潛能。關于納米顆粒的研究近些年來已經取得了一些成果,例如谷紅梅等人[9]研究了納米顆粒與生物膜之間的相互作用對納米顆粒跨膜輸運的影響。……