王攀攀,袁巧霞,周文兵
?
光催化降解沼液中四環(huán)素類抗生素效果及反應(yīng)動力學(xué)研究
王攀攀1,袁巧霞1※,周文兵2
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院生態(tài)與環(huán)境工程研究室,武漢 430070)
該文采用光催化降解途徑探究沼液中四環(huán)素類抗生素降解的最佳光源、pH值以及光催化對不同初始質(zhì)量濃度抗生素的降解效果,同時進(jìn)行不同初始濃度、pH值條件下抗生素光催化降解動力學(xué)研究。結(jié)果表明:不同光源對四環(huán)素類抗生素的降解效果為:高壓汞燈>紫外消毒燈>長弧氙燈>無光。高壓汞燈催化2 h后,四環(huán)素、土霉素、金霉素的降解率分別達(dá)到91.68%、85.58%、81.18%。四環(huán)素類抗生素的初始質(zhì)量濃度越低,光催化效果越好。四環(huán)素、土霉素、金霉素初始質(zhì)量濃度為5 mg/L時,其降解率最高可達(dá)94.80%、88.35%和95.39%,沼液初始pH值對四環(huán)素、金霉素的降解率影響存在顯著性差異(<0.05)。當(dāng)pH值為6時,四環(huán)素的降解率最大為96.16%,反應(yīng)速率常數(shù)為1.597 1 h-1,半衰期為0.355 3 h;當(dāng)pH值為10時,金霉素的降解率最大為90.47%,反應(yīng)速率常數(shù)為1.084 4 h-1,半衰期為0.338 3 h。沼液初始pH值對土霉素的降解率影響無顯著差異(>0.05)。當(dāng)pH值為10時,3種抗生素的平均降解率最大為89.88%。采用高壓汞燈在沼液初始pH值為10時,催化降解5 mg/L四環(huán)素類抗生素效果最佳。
沼氣;抗生素;光催化;沼液;降解;動力學(xué)
抗生素作為殺菌性藥物,被廣泛用于畜牧業(yè),以預(yù)防動物疾病和治療病畜[1]。隨著中國畜禽養(yǎng)殖業(yè)的快速發(fā)展,獸用抗生素的用量不斷增加[2]。2013年中國抗生素的年使用量約為16.2萬t,其中52%用于牲畜[1],四環(huán)素類抗生素在中國及世界畜禽養(yǎng)殖業(yè)中的生產(chǎn)量與實際使用量均為最大[3]。大量的抗生素在動物體內(nèi)很難被完全吸收代謝,隨糞尿排出體外[4-5],并通過厭氧消化殘留在沼液中[6]。衛(wèi)丹等[7]對嘉興市10家大型規(guī)模化養(yǎng)豬場開展了沼液水質(zhì)調(diào)查,發(fā)現(xiàn)所有豬場沼液中四環(huán)素類抗生素(四環(huán)素、土霉素、金霉素)含量最高,占總抗生素濃度的91% ,分別達(dá)到43、994、228g/L。殘留在沼液中較高濃度的抗生素若不經(jīng)過降解排入環(huán)境后,可能會使一些微生物產(chǎn)生抗性基因,而這些抗性基因可以在環(huán)境中傳遞,從而使某些致病菌對藥物產(chǎn)生抗性,進(jìn)而會對生態(tài)系統(tǒng)及人類健康造成更大的威脅[8-9]。目前抗生素的去除方法主要有:光降解、水解、氧化降解、污泥吸附、生物降解等[10-11]。其中,光催化降解技術(shù)采用TiO2作為光催化劑,具有高催化活性、高化學(xué)穩(wěn)定性強(qiáng)、成本低、產(chǎn)物毒性小等優(yōu)點,成為一種很有前景的污染物降解方法[10, 12-13]。Reyes等[14]采用短波紫外燈、日光燈、長波紫外燈在有/無催化劑TiO2的條件下,照射四環(huán)素,探究光源及催化劑對四環(huán)素的光降解特性發(fā)現(xiàn),在無催化劑條件下,四環(huán)素幾乎沒有降解,而在0.5 g/L的TiO2存在下觀察到四環(huán)素快速降解。當(dāng)使用短波紫外燈、日光燈和長波紫外燈照射四環(huán)素時,發(fā)現(xiàn)四環(huán)素分別在10、20和120 min后降解了近50%。Zhu等[15]采用紫外線在納米TiO2催化條件下照射四環(huán)素溶液,照射60 min后,四環(huán)素降解率達(dá)到95%。光催化降解抗生素在污水處理等方面研究較為深入,但針對沼液中的抗生素光降解研究較少,本研究的目的是探討光催化降解沼液中的四環(huán)素類抗生素的可行性,確定光催化的最適光源、pH值等關(guān)鍵參數(shù),比較光催化方法對不同濃度抗生素的降解效果,提高光催化降解效率。
1.1.1 沼 液
試驗沼液取自于湖北省鄂州市某沼氣工程厭氧發(fā)酵后的沼液,該沼氣工程以豬糞為主要原料,配合添加少量的生活污水,在35 ℃下中溫發(fā)酵。試驗前,將沼液在離心機(jī)(TSZ5-WS型低速多管架自動平衡離心機(jī),湖南湘儀離心機(jī)儀器有限公司)中以4 000 r /min 離心 10 min,然后取上清液進(jìn)行試驗和測試。離心后的沼液基本理化性質(zhì)如表1所示。

表1 離心后沼液基本理化性質(zhì)
注:Tc(tetracycline)、OTC(oxytetracyline)、CTC(chlorotetracycline),下同。
1.1.2 試 劑
3種四環(huán)素類抗生素四環(huán)素(tetracycline,TC)、土霉素(oxytetracycline,OTC)、金霉素(chlorotetracycline,CTC)均購自上海源葉生物科技有限公司,純度分別不低于95%、98%、90%;甲醇、乙腈為色譜純(Fisher Scientific公司);TiO2、草酸、硫酸等均為分析純(國藥集團(tuán)化學(xué)試劑有限公司),試驗用水為超純水。
本研究選用高壓汞燈、紫外消毒燈、長弧氙燈3種光源進(jìn)行試驗,探究光催化降解沼液中四環(huán)素類抗生素的最佳光源,并在此基礎(chǔ)上深入探究該光源在不同初始pH值及不同初始濃度抗生素條件下的降解效果及反應(yīng)動力學(xué),確定光催化降解沼液中四環(huán)素類抗生素的最佳工藝條件。由于原始沼液于2017年秋季從沼氣池中抽出,四環(huán)素類抗生素含量較低,為便于觀察與分析試驗結(jié)果,試驗前在沼液中分別添加10 mg/L的四環(huán)素、土霉素、金霉素(不同初始濃度抗生素組分別添加5、10和20 mg/L),并加入1 g/L的催化劑TiO2,暗反應(yīng)30 min,使TiO2吸附達(dá)到飽和,再打開光源,進(jìn)行抗生素的光催化降解試驗。沼液初始pH值為7.87(不同初始pH值組分別為4、6、8、10),催化溫度20 ℃,催化時間2 h,試驗開始后每隔30 min取樣分析。每組試驗重復(fù)3次。
取沼液200 mL于250 mL雙層夾套燒杯中(壘固/Loilkaw,外徑90 mm、內(nèi)徑65 mm、外高117 mm、內(nèi)高103 mm、有效照射面積33.18 cm2),加入催化劑后,置于磁力攪拌器(金壇市科析儀器有限公司,)上,其轉(zhuǎn)速設(shè)置為50 r/min,暗吸附30 min后打開光源(表2)進(jìn)行光催化反應(yīng)。光源距燒杯底部20 cm,并加裝鋁制反光罩,裝置置于暗箱中。雙層燒杯中放置溫度計,并與低溫冷卻循環(huán)泵相連。光催化降解抗生素試驗裝置如圖1。

1. 光源 2. 雙層燒杯 3. 磁力攪拌器 4. 溫度計 5. 低溫冷卻液循環(huán)泵 6. 暗箱

表2 3種光源參數(shù)對比
待測樣品先經(jīng)高速離心機(jī)10 000 r/min 離心10 min,過0.22m濾膜過濾后,采用高效液相色譜儀(Agilent 1220)測試。色譜柱:Agilent XDB-C18柱(4.6 mm× 150 mm,5m),柱溫30 ℃;檢測器為紫外檢測器,檢測波長為270 nm,流動相:0.01 mol/L草酸∶乙腈∶甲醇(79∶7∶14,體積比),流速:1.0 mL/min;進(jìn)樣量20L。
試驗數(shù)據(jù)采用 Excel 2013進(jìn)行數(shù)據(jù)處理,Origin 2016軟件繪圖,不同pH值、溫度之間的差異顯著性通過SPSS 20進(jìn)行單因素方差分析(one-way ANOVA)和多重比較(Duncan test)檢驗(<0.05)。
沼液中四環(huán)素類抗生素的光催化效果用降解率(removal efficiency,RE)表示,其計算公式如式(1)。

式中RE為沼液中四環(huán)素類抗生素的降解率;0、分別表示光催化降解前、后沼液中四環(huán)素類抗生素的質(zhì)量濃度,mg/L。
抗生素的光解程度和光解速率取決于抗生素的分子結(jié)構(gòu)、光源發(fā)射光的波長和光強(qiáng)等因素,且不同種類抗生素有不同的特征吸收光[16]。圖2反應(yīng)了不同光源對四環(huán)素類抗生素的光催化降解效果。3種光源對四環(huán)素類抗生素的催化降解效果為:高壓汞燈>紫外消毒燈>長弧氙燈>無光。高壓汞燈催化0.5 h后,四環(huán)素、土霉素、金霉素的降解率分別為50.48%、47.55%、53.77%。隨著催化時間的增加,抗生素的降解率逐漸增大。2 h后,3種抗生素分別達(dá)到91.68%、85.58%和81.18%。紫外消毒燈對3種抗生素的降解效果差異不大,平均在65%左右。長弧氙燈的對3種抗生素的降解效果較差,光催化2 h后,金霉素的降解率為58.81%,四環(huán)素、土霉素的降解率僅為36.61%、34.39%,且光催化后期,降解率隨催化時間的增加變化不大。無光條件下,3種抗生素的降解效果最差,最高僅為20%左右。主要是因為當(dāng)使用TiO2作為催化劑進(jìn)行水處理時,當(dāng)波長小于380 nm的光照射TiO2時,才會產(chǎn)生高活性劑價帶孔h+、價帶孔氧化水產(chǎn)生的羥基自由基·OH,從而礦化降解多種有機(jī)化合物[17-19]。
長弧氙燈是一種常見的模擬太陽光譜的光源,其主要發(fā)射可見光,波長范圍400~760 nm,幾乎不發(fā)射紫外光,其光催化效果較差。紫外消毒燈發(fā)射單一波長254 nm,屬于短波紫外線,其能量較小,穿透力較差,離心后的沼液濁度較高,使紫外光發(fā)生散射、反射,不利于抗生素的光催化降解[20]。李同等[21]采用紫外線(波長254 nm)對沼液進(jìn)行殺菌處理時發(fā)現(xiàn),由于原始沼液的濁度(452.0)、色度(2 525.9)較高,紫外線的透射率接近于0,采取絮凝方法對沼液進(jìn)行前處理,當(dāng)紫外線透射率為0.69%時,紫外線的殺菌效果顯著增強(qiáng),對細(xì)菌總數(shù)、大腸菌群和糞大腸菌群的平均殺菌率分別達(dá)到98.71%、98.17%和93.87%。高壓汞燈發(fā)射波長為長波紫外線,主波長為365 nm,具有高能量、高透過性,具有較好的催化效果。因此,選擇高壓汞燈作為催化光源進(jìn)行后續(xù)試驗。

圖2 不同光源下四環(huán)素類抗生素的降解效果
由于厭氧消化的原料、工藝等的不同,沼液中的抗生素含量差異較大。不同初始抗生素質(zhì)量濃度的光催化降解效果如圖3所示。隨著四環(huán)素類抗生素質(zhì)量濃度的升高,光催化降解效率逐漸下降。當(dāng)抗生素初始質(zhì)量濃度為5 mg/L時,光催化0.5 h后,四環(huán)素、土霉素、金霉素的降解率達(dá)到60%左右,催化時間為2 h時,3種抗生素的降解率提高到94.80%、88.35%和95.39%。當(dāng)抗生素初始質(zhì)量濃度增加到20 mg/L時,光催化0.5 h后,3種抗生素的降解率僅為40%左右,2 h后,3種抗生素的降解率分別為88.31%、83.15%、73.17%。主要是因為當(dāng)催化光源、pH值等不變時,催化產(chǎn)生的高活性劑價帶孔h+和·OH總量一定,因此當(dāng)抗生素初始濃度升高時,降解率下降[22]。此外,當(dāng)抗生素初始濃度較高時,光催化降解產(chǎn)生的中間產(chǎn)物較多,不利于光催化反應(yīng)的繼續(xù)進(jìn)行[10]。

圖3 不同初始濃度抗生素下光催化降解效果
不同初始質(zhì)量濃度的四環(huán)素類抗生素光催化降解一級反應(yīng)動力學(xué)方程如式(2)所示[23]。
ln(0/)=(2)
式中表示光催化降解的一級反應(yīng)速率常數(shù),h-1;表示降解時間,h。
由式(2)作ln(0/)-圖,進(jìn)行線性擬合,結(jié)果如圖4所示。沼液中3種四環(huán)素類抗生素光催化降解符合一級反應(yīng)動力學(xué)模型,其一級反應(yīng)動力學(xué)方程、一級反應(yīng)速率常數(shù)、半衰期0.5,如表3所示。由表3可知,隨著初始濃度的增加,3種抗生素光催化降解反應(yīng)速率常數(shù)逐漸減小,半衰期增加。當(dāng)3種抗生素初始質(zhì)量濃度由5增加到20 mg/L時,金霉素的降解速率變化最大,其反應(yīng)速率常數(shù)由1.505 6減小到0.638 9 h-1,減小了57.57%,半衰期由0.431 7 增加到0.958 7 h,增加了122.08%。土霉素的降解速率變化最小,其反應(yīng)速率常數(shù)減小8.73%,半衰期增加39.90%。

注:C0為光催化降解前沼液中四環(huán)素類抗生素質(zhì)量濃度、C為光催化降解后沼液中四環(huán)素類抗生素質(zhì)量濃度,mg/L。

表3 不同初始濃度抗生素下光催化降解一級反應(yīng)動力學(xué)參數(shù)
pH值對四環(huán)素類抗生素的降解效果如圖4所示。由圖4可知,光催化2 h后,3種抗生素在不同初始pH值下的降解率均達(dá)到80%以上。其中,四環(huán)素、金霉素在不同初始pH值條件下的降解率差異顯著(<0.05)。當(dāng)pH值為6時,四環(huán)素降解率最大為96.16%;當(dāng)pH值為4時,四環(huán)素降解率最小為85.35%,降解率呈現(xiàn)先增大后減小的趨勢。土霉素的降解率隨著初始pH值的增加差異不顯著(>0.05),其降解率為85%左右。不同初始pH值下金霉素的降解率存在顯著差異(<0.05),當(dāng)pH值為6時,其降解率最小為79.04%;當(dāng)pH值為10時,其降解率最大,達(dá)到90.47%。主要是因為溶液的pH值對抗生素的吸附和解離、催化劑表面電荷、價帶的氧化電位和系統(tǒng)的其他物理化學(xué)性質(zhì)產(chǎn)生影響[24]。TiO2在水中的等電點為6.0左右[25],當(dāng)pH值較低時,溶液中H+濃度較高,羥基自由基的生成受到抑制,從而影響抗生素的降解效果。當(dāng)pH值較高時,溶液中存在大量的OH-,與高活性劑價帶孔h+反應(yīng),生成大量的羥基自由基,從而提高降解效果。四環(huán)素類抗生素在初始pH值為4、6、8、10時,平均降解率分別為83.96%、87.24%、88.16%、89.88%,在pH值為10時,3中抗生素的平均降解率最大。

注:不同字母表示差異顯著(P<0.05)
不同初始pH值下四環(huán)素類抗生素光催化降解符合一級反應(yīng)動力學(xué)模型,結(jié)果如圖6和表4所示。由表4可知,3種抗生素在不同初始pH值條件下的光催化降解速率差異較大。四環(huán)素在pH值為6時,反應(yīng)速率常數(shù)最大為1.597 1 h-1,半衰期最小為0.355 3 h;土霉素在不同pH值條件下的反應(yīng)速率常數(shù)差異較小,在0.846 4~0.989 8 h-1之間,其半衰期在pH值為10時最小為0.441 9 h;金霉素在pH值為10時,反應(yīng)速率常數(shù)最大為1.084 4 h-1,半衰期最小為0.338 3 h。

圖6 不同初始pH值下四環(huán)素類抗生素光催化降解動力學(xué)曲線

表4 不同初始pH值下四環(huán)素類抗生素光催化降解一級反應(yīng)動力學(xué)參數(shù)
1)光源對四環(huán)素類抗生素的催化降解效果為:高壓汞燈>紫外消毒燈>長弧氙燈>無光。高壓汞燈催化2 h后,四環(huán)素、土霉素、金霉素的降解率分別達(dá)到91.68%、85.58%、81.18%。
2)四環(huán)素類抗生素的初始質(zhì)量濃度越低,光催化降解效果越好。四環(huán)素、土霉素、金霉素的初始質(zhì)量濃度為5 mg/L時,其降解率最高可達(dá)94.80%、88.35%和95.39%。
3)沼液初始pH值對四環(huán)素、金霉素的降解率存在顯著性差異(<0.05)。當(dāng)pH值為6時,四環(huán)素的降解率最大為96.16%,反應(yīng)速率常數(shù)為1.597 1 h-1,半衰期為0.355 3 h;當(dāng)pH值為10時,金霉素的降解率最大為90.47%,反應(yīng)速率常數(shù)為1.084 4 h-1,半衰期為0.338 3 h。沼液初始pH值對土霉素的降解率無顯著差異(>0.05)。當(dāng)pH值為10時,3種抗生素的平均降解率最大為89.88%。
綜上所述,采用高壓汞燈在沼液初始pH值為10時,催化降解5 mg/L的四環(huán)素類抗生素效果最佳。
[1] Zhang Min, He Liangying, Liu Yousheng, et al. Fate of veterinary antibiotics during animal manure composting[J]. Science of the Total Environment, 2019, 650(1): 1363-1370.
[2] 潘蘭佳,唐曉達(dá),汪印. 畜禽糞便堆肥降解殘留抗生素的研究進(jìn)展[J]. 環(huán)境科學(xué)與技術(shù),2015,38(12Q):191-198. Pan Lanjia, Tang Xiaoda, Wang Yin. Research progress of residual antibiotics degradation in livestock and poultry feces composting[J]. Environmental Science & Technology, 2015, 38(12Q): 191-198. (in Chinese with English abstract)
[3] 王瑞,魏源送. 畜禽糞便中殘留四環(huán)素類抗生素和重金屬的污染特征及其控制[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2013,32(9):1705-1719. Wang Rui, Wei Yuansong. Pollution and control of tetracyclines and heavy metals residues in animal manure[J]. Journal of Agro-Environment Science, 2013, 32(9): 1705-1719. (in Chinese with English abstract)
[4] Bja B, Lahr J, Nibbeling C, et al. The persistence of a broad range of antibiotics during calve, pig and broiler manure storage[J]. Chemosphere, 2018, 204(15): 267-276.
[5] Guo Ting, Lou Chenlu, Zhai Weiwei, et al. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure[J]. Science of the Total Environment, 2018, 635(19): 995-1003.
[6] 田偉. 畜禽類水沼液中抗生素與激素的微波處理[D]. 重慶:西南大學(xué),2012. Tian Wei. Treatment of Olaquindox and Tetracydline Antibiotics in Livestock Biogas Slurry by Microwave[D]. Chongqing: SouthwestUniversity, 2012. (in Chinese with English abstract)
[7] 衛(wèi)丹,萬梅,劉銳,等. 嘉興市規(guī)模化養(yǎng)豬場沼液水質(zhì)調(diào)查研究[J]. 環(huán)境科學(xué),2014,35(7):2650-2657. Wei Dan, Wan Mei, Liu Rui, et al. Study on the quality of digested piggery wastewater in large-scale farms in Jiaxing[J]. Environmental Science, 2014, 35(7): 2650-2657. (in Chinese with English abstract)
[8] 王霜,鄧良偉,王蘭,等. 豬場糞污中重金屬和抗生素的研究現(xiàn)狀[J]. 中國沼氣,2016,34(4):25-33. Wang Shuang, Deng Liangwei, Wang Lan, et al. The heavy metals and antibiotics in swine manure: A review[J]. China Biogas, 2016, 34(4): 25-33. (in Chinese with English abstract)
[9] Li Si, Hu Jiangyong. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms[J]. Journal of Hazardous Materials, 2016, 318(18): 134-144.
[10] Ahmadi M, Ramezani M H, Jaafarzadeh N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano- composite[J]. Journal of Environmental Management, 2017, 186(2): 55-63.
[11] 丁佳麗. 間歇曝氣式膜生物反應(yīng)器對養(yǎng)豬沼液中獸用抗生素去除途徑和特性的研究[D]. 上海:上海師范大學(xué),2015. Ding Jiali. Study on the Ways and Performance of an Intermittent Aeration Membrane Bioreactor for Removal of Veterinary Antibiotics from Piggery Wastewater[D]. Shanghai: Shanghai Normal University Master of Philosophy, 2015. (in Chinese with English abstract)
[12] Rimoldi L, Meroni D, Cappelletti G, et al. Green and low cost tetracycline degradation processes by nanometric and immobilized TiO2systems[J]. Catalysis Today, 2017, 281(5): 38-44.
[13] Wang Xiaoning, Jia Jinping, Wang Yalin. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline[J]. Chemical Engineering Journal, 2017, 315(9): 274-282.
[14] Reyes C, Fernández J, Freer J, et al. Degradation and inactivation of tetracycline by TiO2photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 184(1): 141-146.
[15] Zhu Xiangdong, Wang Yunjun, Sun Ruijuan, et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2[J]. Chemosphere, 2013, 92(8): 925-932.
[16] 邵一如,席北斗,曹金玲,等. 抗生素在城市污水處理系統(tǒng)中的分布及去除[J]. 環(huán)境科學(xué)與技術(shù),2013,36(7):85-92.
Shao Yiru, Xi Beidou, Cao Jinling, et al. Occurrence of antibiotics and their removal mechanism in municipal sewage treatment plants[J]. Environmental Science & Technology,
2013, 36(7): 85-92. (in Chinese with English abstract)
[17] Robertson J M C, Robertson P K J, Lawton L A. A comparison of the effectiveness of TiO2photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175(1): 51-56.
[18] Sadik W A, Nashed A W, El-Demerdash A G M. Photodecolourization of ponceau 4R by heterogeneous photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189(1): 135-140.
[19] Elmolla E S, Chaudhuri M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2and UV/H2O2/TiO2photocatalysis[J]. Desalination, 2010, 252(1): 46-52.
[20] 劉利偉,吳小蓮,莫測輝,等. TiO2光催化降解水中喹諾酮類抗生素[J]. 中南大學(xué)學(xué)報:自然科學(xué)版,2012,43(8):3300-3307. Liu Liwei, Wu Xiaolian, Mo Cehui, et al. Photocatalytic degradation of quinolone antibiotits in water using TiO2[J]. Journal of Central South University: Science and Technology, 2012, 43(8): 3300-3307. (in Chinese with English abstract)
[21] 李同,董紅敏,陶秀萍. 豬場沼液絮凝上清液的紫外線殺菌效果[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(6):165-171.
Li Tong, Dong Hongmin, Tao Xiuping. Disinfection effects of ultraviolet on supernatants of flocculated digestate from swine farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 165-171. (in Chinese with English abstract)
[22] Shankar M V, Anandan S, Venkatachalam N, et al. Novel thin-film reactor for photocatalytic degradation of pesticides in an aqueous solution[J]. Journal of Chemical Technology & Biotechnology Biotechnology, 2010, 79(11): 1279-1285.
[23] Reshalaiti H, Wang Zhiqiang, Li Yingxuan, et al. Oxygen vacancies induced visible-light photocatalytic activities of CaCu3Ti4O12with controllable morphologies for antibiotic degradation[J]. Applied Catalysis B: Environmental, 2018, 221(2): 422-432.
[24] Wang Hui, Wang Huilong, Jiang Wenfeng. Solar photocatalytic degradation of 2,6-dinitro--cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)-TiO2composite photocatalysts[J]. Chemosphere, 2009, 75(8): 1105-1111.
[25] 劉存海,喻瑩. 低溫法制備二氧化鈦薄膜及其光催化氧化處理電鍍含鉻廢水[J]. 電鍍與涂飾,2012,31(3):35-38. Liu Haicun, Yu Ying. Preparation of titanium dioxide thin film at low temperature and its use in treatment of electroplating chromium-containing wastewater by photocatalytic oxidation[J]. Electroplating & Finishing, 2012, 31(3): 35-38. (in Chinese with English abstract)
Study on photocatalytic degradation and reaction kinetics of tetracycline antibiotics in biogas slurry
Wang Panpan1, Yuan Qiaoxia1※, Zhou Wenbing2
(1.,,430070,; 2.,,,430070,)
As a bactericidal drug, antibiotics are widely used in animal husbandry to prevent animal diseases and treat sick animals. With the rapid development of Chinese livestock and poultry breeding industry, the use of veterinary antibiotics continues to increase. In 2013, the annual use of antibiotics in China was about 162 000 t, of which 52% was used for livestock. The production and the actual usage of tetracycline antibiotics in livestock and poultry breeding industry of the world are the largest than other antibiotics. A large number of antibiotics are difficult to be absorbed and metabolized completely in animals, then they will be excreted and stay in biogas slurry during anaerobic digestion. High concentrations of antibiotics in biogas slurry may cause some microorganisms produce resistance genes and won’t be degraded into the environment, and these resistance genes can transmit, it may make some pathogenic bacteria resist drugs, which in turn poses a great threat to ecosystems and human health. At present, the main methods of removing antibiotics include photocatalytic degradation, hydrolysis, oxidative degradation, sludge adsorption, and biodegradation. Among them, the photocatalytic degradation technology uses TiO2as a photocatalyst, which has the advantages of high catalytic activity, high chemical stability, low cost, and low toxicity product, and has become a promising method for pollutant degradation. In this study, the photocatalytic degradation pathway was used to explore the optimal light source, pH value and the degradation effect of photocatalysis under different initial concentration of tetracyclines antibiotics in biogas slurry, and the degradation kinetics of antibiotics under different initial concentrations and pH value were studied. The results showed that the degradation effects of different light sources on tetracycline antibiotics were: High pressure mercury lamp > ultraviolet disinfection lamp > long arc xenon lamp>dark. After 2 h of high pressure mercury lamp catalysis, the degradation rates of tetracycline, oxytetracycline and chlortetracycline reached 91.68%, 85.58% and 81.18%, respectively. The lower the initial mass concentration of the tetracycline antibiotic, the better the photocatalytic effect. When the initial concentration of tetracycline, oxytetracycline and chlortetracycline is 5 mg/L, the degradation rate was up to 94.80%, 88.35% and 95.39%, the reaction rate constant was 1.505 6 h-1, and the half-life was 0.431 7 h. There was a significant difference in the degradation rate of tetracycline and chlortetracycline in the initial pH value of biogas slurry (<0.05). When pH value was 6, the degradation rate of tetracycline was 96.16%, the reaction rate constant was 1.597 1 h-1, and the half-life was 0.355 3 h; when pH value was10, the degradation rate of chlortetracycline was 90.47%, the reaction rate constant was 1.084 4 h-1, half-life was 0.338 3 h. There was no significant difference in the degradation rate of oxytetracycline between the initial pH value of biogas slurry (>0.05). When pH value was 10, the average degradation rate of three antibiotics was 89.88%. when the initial pH value of biogas slurry was 10, the concentration of tetracycline antibiotics was 5 mg/L, it is the best to catalytic degradation tetracycline antibiotics using the high-pressure mercury lamp.
biogas; antibiotics; photocatalytic; biogas slurry; degradation; kinetics
王攀攀,袁巧霞,周文兵.光催化降解沼液中四環(huán)素類抗生素效果及反應(yīng)動力學(xué)研究[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(23):193-198. doi:10.11975/j.issn.1002-6819.2018.23.024 http://www.tcsae.org
Wang Panpan, Yuan Qiaoxia, Zhou Wenbing. Study on photocatalytic degradation and reaction kinetics of tetracycline antibiotics in biogas slurry [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 193-198. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.024 http://www.tcsae.org
2018-09-27
2018-10-30
國家重點研發(fā)計劃專項課題(2017YFD0800804)。
王攀攀,博士生,主要從事農(nóng)業(yè)生物環(huán)境與能源工程方面研究。Email:wangppau@qq.com。
袁巧霞,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)生物環(huán)境與能源工程方面研究。Email:qxyuan@mail.hzau.edu.cn。
10.11975/j.issn.1002-6819.2018.23.024
X713
A
1002-6819(2018)-23-0193-06