陳立華,姚宇闐,尚 輝,劉 娟,潘德峰,常義軍,許有文
?
河道淤泥和堆肥蛭石混合發酵制備基質及其育苗效果
陳立華1,2,姚宇闐2,尚 輝3,劉 娟4,潘德峰4,常義軍5,許有文4
(1. 南方地區高效灌排與農業水土環境教育部重點實驗室(河海大學),南京 210098; 2.江蘇省沿海開發集團有限公司,南京 210013;3. 江蘇沿海開發(東臺)有限公司,東臺 224200; 4.江蘇省沿海水利科學研究所,東臺 224200; 5. 南京軍輝生物科技有限公司,南京 211155)
農村河道清淤產生的淤泥,體量大、有機物濃度高,處置不當會造成二次污染。現代農業的工廠化育苗需求大量的營養土,就地取土導致耕地退化。該研究利用功能微生物發酵淤泥制備育苗基質,研究不同菌株發酵基質的物理和生物學性狀,基質培育西瓜苗的生長、生理參數和抗逆性能。結果表明:微生物處理均能夠提升淤泥基質物理和生物學性能,同時能夠提升育苗質量。其中T83(T83)、IAE(BIAE)菌株發酵基質性能最好。相較于對照處理基質的最大持水量、總孔隙度、毛管孔隙度、通氣孔隙度,T83處理分別增加了64.25%、52.65%、45.05%、56.11%;BIAE處理分別增加了101.17%、45.43%、61.43%、38.14%。相較于對照處理西瓜苗的株高、鮮質量、干質量、葉綠素含量、根系活力、根際真菌、細菌數量,T83處理分別增加了66.85%、52.07%、72.16%、43.13%、54.93%、110.62倍、1.63倍;BIAE處理分別增加了80.40%、57.34%、82.37%、54.88%、46.40%、67.26%、2.60倍、2.94倍。T83和BIAE處理西瓜苗葉片過氧化氫酶和超氧化物歧化酶酶活顯著增加,根系丙二醛含量顯著降低。真菌菌株T83和細菌菌株IAE發酵淤泥,能夠顯著提升其農用品質,為淤泥高附加值化農用提供一條可行的途徑。
淤泥處理;基質;堆肥;發酵;木霉;芽孢桿菌
國家加強農村河道的治理力度,在提高河道防洪、排澇和灌溉能力的同時減少河道內源污染,為河道水質改善提供保障。河道清淤過程產生大量的淤泥堆置于地表,其受到外界物理、生物、化學等因素影響,會釋放大量污染物,再次流入環境水體會造成嚴重污染。高效資源化利用農村河道清淤淤泥,可以有效減少淤泥造成的二次污染。現階段有報道增加外源添加劑固化淤泥,形成的固形物可用于堤防工程、道路工程、填方工程和綠化工程[1-3];脫水后的淤泥用于燒磚、燒制陶粒、水泥原料等[1-3]。但是部分農村清淤產生的淤泥,不具備以上資源化途徑,開發新的淤泥資源化利用途徑十分重要。
隨著現代農業發展,工廠化育秧育苗已成為主流農作方式,由于育秧育苗需要大量的營養土,其就地取用大量農田耕層土壤,會導致特定區域農田土壤嚴重退化,運用外源的育秧育苗基質可以有效避免這種情況發生。現階段外源的營養土主要是生產企業利用腐熟的食用菌渣、木薯渣、牛糞等固體廢棄物和購置的農田土壤復配制成,生產過程仍然需要大量的耕作層土壤。有效地開發新的土壤資源,有利于耕地的保護。
農村河道淤泥主要是粒徑較小的粉砂和沉積的有機物組成,含有大量的植物營養物質,但是透水性、通氣性較差,脫水之后板結,不適用作植物生長的基質。土壤微生物分解有機物過程產熱產氣,可以提升土壤的通透性[4-5],同時微生物代謝物促進土壤團聚體形成,增加土壤孔隙率,促進土壤發育;同時微生物生命活動過程能夠活化土壤或者基質中N、P、K、Ca、Mg、Fe等植物營養元素,增加土壤或者基質植物營養元素可利用性[4-7],同時微生物是土壤植物激素的主要來源[6],能夠促進植物生長功能[7-9]。本文設想利用具有促進植物生長功能的PGPR(plant growth promoting rhizobacteria)微生物菌株,發酵處理農村河道清淤淤泥制備農用育秧育苗基質,同時利用微生物功能提升育秧育苗基質質量,實現農溝清淤淤泥資源化利用,為農村河道清淤淤泥利用新途徑提供理論和實踐基礎。
河道淤泥來源于江蘇東臺三倉鎮河道(32°45′N,120°45′E)清淤,污泥的理化性質如表1所示。污泥中砷(As)、汞(Hg)、鉻(Cr)、鎘(Cd)、鉛(Pr)等重金屬含量均低于農業應用標準限值[10]。
采用金針菇菇渣、牛糞、稻殼按照質量比5:1:0.5為原料發酵,形成完全腐熟堆肥,3種原料理化性質如表2所示。按照1%(w:w)的比例向腐熟堆肥中接種6株PGPR菌株(表3),徹底混勻,接種菌劑微生物數量和發酵7d后堆肥微生物數量如表3所示,未添加微生物處理設置為對照處理(CK)。

表1 淤泥的理化性質
注:*為干基;**為濕基。
Note:*dry substrate;**wet substrate.

表2 3種堆肥原料理化性質
注:*為干基;**為濕基。Note:*dry substrate;**wet substrate.

表3 不同菌劑的微生物種類、數量及其發酵后堆肥的微生物數量
按照生產中基料總體含水量70%~80%,易于通氣的原則,將河道淤泥、接種不同菌株發酵后的堆肥、甜葉菊渣堆肥、蛭石以質量比5:3:2:1的比例徹底混勻,形成基料含水量70.82%。在高5.5 m的陽光鋼結構大棚發酵,棚內溫度23~35 ℃,基料采用條垛式發酵工藝,條垛堆寬250 cm,高度120 cm,長度75 m,采用YLFP280型號翻拋機每6 d翻拋1次。翻拋結束后在條垛側面50 cm高度處、每隔10 m水平插入溫度計1根,總計插3根溫度計,每日8:00時記錄溫度計數值。發酵形成的淤泥基質容重、持水能力、總孔隙度、毛管孔隙度、通氣孔隙度測定采用環刀法[11],同時測定基質木霉菌數量[8]、細菌數量[8]、腸道菌群數量[8]、蛔蟲卵死亡率[10]、重金屬含量等指標[10]。
西瓜采用“早佳8424”品種,種子用0.3%次氯酸鈉消毒20 min,無菌水沖洗3遍,用35 ℃的無菌水浸種3 h,用無菌濕紗布包裹,28 ℃催芽72 h。根據使用淤泥基質的不同,試驗設置7個處理,分別為:1)CK處理,使用CK處理基質育苗;2)T83處理,使用T83菌株發酵的基質育苗;3)T12處理,使用T12菌株發酵的基質育苗;4)BIAE處理,使用BIAE菌株發酵的基質育苗;5)B1582處理,使用B1582菌株發酵的基質育苗;6)BA11處理,使用BA11菌株發酵的基質育苗;7)BD9處理,使用BD9菌株發酵的基質育苗。育苗盤穴添加80%體積淤泥基質,選取發芽一致西瓜種子放置育苗盤穴內,每穴一粒,苗盤覆蓋育苗基質,確保盤穴充滿淤泥基質,用自來水徹底澆濕苗盤,每處理5個重復,放置于溫室培養,溫室溫度18~30 ℃。西瓜苗生長40 d后,每個處理取生長一致苗20株,測定干苗和鮮苗的質量、株高、莖基部直徑、葉片葉綠素含量、根系活力、酶活力、根系微生物數量。將苗放置于8~10 ℃的環境中12 h,測定葉片過氧化氫酶、超氧化物氣化酶活力,測定根系丙二醛含量[7-8]。葉綠素含量(SPAD)采用SPAD-502 手持式葉綠素儀測定,根系活力采用氯化三苯基四氮唑(TTC)法測定[7-8],微生物數量采用稀釋涂布法[8]。
試驗數據用SPSS 18.0(Chicago,USA)統計軟件進行方差分析,差異顯著性比較采用Duncan’s 測驗,繪圖使用Excel 軟件。
淤泥基質發酵過程中溫度變化如圖1所示,CK處理升溫緩慢,接種的6株菌株均能夠加速基料升溫。這與添加外源微生物加速有機物的分解轉化,其發酵過程產生熱有關。發酵過程中,最高溫度低于60 ℃,而且維持50 ℃以上時間較短,表明淤泥中有機物得到充分分解利用,基本處于穩定狀態。發酵后期基質溫度接近室溫30 ℃,表明基質已經完全腐熟。發酵21d后測定的基質含水量結果如圖2所示,相較于CK處理,增加外源微生物進行發酵均顯著降低基質的含水量(<0.05),表明添加的6株外源微生物產熱均能夠加速水分蒸發。添加外源微生物的處理間基質含水量沒有表現出顯著差異(0.05),試驗使用菌株的發酵效率差別不顯著。

圖1 不同處理基質發酵過程溫度變化

注:圖中不同小寫字母表示處理間差異顯著(P<0.05)。
微生物發酵對淤泥基質的物理性質影響如表4所示。BA11處理淤泥基質容重沒有顯著變化(>0.05),其他微生物處理容重降低了15.57%~25.52%;微生物處理最大持水量均顯著增加(<0.05),其中BIAE處理最大持水量最高,相較于CK處理增加了101.17%;微生物處理總孔隙度顯著增加,增幅為22.65%~52.65%,其中T83處理的增幅最大,增加了52.65%,BIAE為45.43%;微生物處理毛管孔隙度增幅為17.03%~61.43%,其中BIAE處理的毛管孔隙度值最大(61.43%);T12處理的通氣孔隙度無顯著變化,其他處理均顯著增加,增幅為40.47%~56.11%。T83和BIAE的通氣孔隙度相較于CK處理分別增加了56.11%、38.16%。微生物處理顯著改變淤泥基質的物理性質。

表4 不同處理淤泥基質的物理性質
注:同列不同小寫字母表示差異顯著(<0.05),下同。
Note: Different lowercase letters in the same column represented significant difference (<0.05), same as follow.
發酵后淤泥基質微生物數量如表5所示。微生物發酵的淤泥基質,其細菌數量顯著高于CK處理(<0.05);接種真菌型微生物菌劑顯著提高基質真菌和木霉菌數量(<0.05),接種細菌型微生物對基質中真菌和木霉菌數量影響不顯著(>0.05);接種微生物菌劑處理,其鐮刀菌和腸道菌群數量顯著降低(<0.05)。

表5 不同處理淤泥基質的微生物數量
不同處理瓜苗生物學性狀如表6所示。相較于CK處理,除了BA11處理外,其他處理株高均顯著增加(<0.05);各處理鮮苗質量均顯著增加(<0.05);除T12處理外,其他處理苗烘干地上部質量顯著增加(<0.05);BD9處理地下部烘干質量和CK處理沒有顯著差異(>0.05),其他處理地下部烘干質量均顯著高于CK處理(<0.05);BA11和T12處理莖粗與CK處理沒有顯著差異(>0.05),其他處理莖粗均顯著高于CK處理(<0.05)。不同處理均表現出促生效果,微生物處理株高比CK處理增加了17.78%~80.51%。不同處理促生效果差別較大,不同基質對于瓜苗生長發育的影響部位不同。在瓜苗生物學性狀總體表現上,BIAE和T83處理表現最好(<0.05),相較于對照處理西瓜苗的株高、鮮質量、干質量,T83處理分別增加了66.85%、52.07%、70.77%;BIAE處理分別增加了80.40%、40.84%、80.00%。

表6 不同處理西瓜苗的生物學性狀
淤泥基質對瓜苗生理生化性狀的影響如表7所示。相較于CK處理,T12、T83、BIAE和B1582處理超氧化物歧化酶酶活顯著增加(<0.05),T12、T83、BIAE和BD9處理過氧化氫酶酶活顯著增加(<0.05)。除了B1582和BA11處理外,相較于CK處理,其他處理根系丙二醛量均顯著降低(<0.05),其中T83、T12、BIAE、BD9處理相較于對照處理分別降低了70.62%、50.00%、61.86%和38.66%。T12和BA11處理的根系活力和葉綠素含量和CK處理之間沒有顯著差異(>0.05),但是T83、BIAE、B1582和DB9處理根系活力分別比CK處理高54.93%、67.26%、35.07%和35.01%(<0.05),葉綠素含量分別比CK處理高43.13%、46.40%、31.71%、32.62%(<0.05)。T83、T12和BIAE基質顯著增加西瓜苗抗逆性。

表7 不同處理西瓜苗生理生化性狀
表8為不同處理西瓜苗根表微生物數量,不同處理對瓜苗根表微生物數量影響顯著(<0.05)。相較于CK處理,T83、T12和BIAE處理真菌數量顯著增加,分別增加111.62、119.01和1.59倍,其他處理真菌數量增加了1.30~2.00倍(<0.05)。相較于CK處理,T83和BIAE處理細菌數量分別增加1.63、2.94倍。T12和BD9處理放線菌數量和CK處理沒有顯著差異(>0.05),而T83、BIAE、B1582和BA11處理放線菌數量分別增加了4.38、5.66、5.15和2.22倍。根際微生物具有促生作用,能夠提升作物抗逆性,淤泥基質顯著增加瓜苗根表微生物數量,有利于提升淤泥基質產品的附加值。

表8 不同處理西瓜苗根表微生物數量
農村河道清淤產生的淤泥含有大量的有機物、粘結性大、通透性差,很難有效農業利用。微生物可分解有機固體廢棄物中纖維素、蛋白質等大分子物質[12-16],活化有機固體廢棄物氮、磷、鉀等大量元素以及硼、鉬、鐵等微量元素[13,16],同時鈍化具生物毒性的鉛、鎘、汞等重金屬元素[13],改變淤泥的理化性質,使其適于作物生長。同時微生物分泌植物激素、合成植物所需的營養物質、抑制土壤病原菌侵染,提高植物抗逆境能力[5,7-9],提升淤泥基質促生功能。
農溝淤泥長時間處于土著微生物的厭氧發酵過程,淤泥基本處于穩定狀態,只要其病原微生物、有害化學物質、重金屬等因子不超標,可以滿足農業應用[7,10,16];不會存在畜禽糞便、秸稈等物質沒有充分腐熟導致其在土壤中分解,耗氧、產熱導致植物爛根現象。與常規堆肥過程中70 ℃以上維持20 d現象不同,試驗中添加腐熟的堆肥和外源微生物,整體基料溫度仍然沒有超過60 ℃,而且只維持6~9 d時長,表明淤泥中有機物基本處于穩定態;沒有外源能源的情況下,堆置的清淤淤泥不會劇烈產熱和產氣,短時間內很難改變其結構。試驗所用的菌株為本單位專利菌株,具有高效利用固體廢棄物功能和促進植物生長的功能。.T83菌株能夠促進灘涂鹽堿土壤中堿蓬的生長[8],.T12菌株能夠通過抑制水稻土傳病害立枯絲核菌促進水稻的生長[17],.IAE菌株能夠通過增加土壤的保水和保肥的能力,提升鹽土植物的成活率和促進植物的生長,D9菌株抑制土壤病原真菌的生長促進植物生長[18]。本文所用的菌株均提升了淤泥基質性能,有效緩解了其作為農用育苗育秧基質過程中,由于透氣透水性較差導致缺氧和澇漬損傷秧苗的根系的情況。其容重減小,孔隙度增加,這與菌株能夠快速利用小分子有機物產酸產氣,增加基質孔隙性有一定相關性。其中T83和BIAE菌株表現最好,可能與T83菌株生物量較大,菌絲橋聯粉砂質顆粒形成大團聚體有關;BIAE能夠產生高聚物-多聚谷氨酸,有利于團聚體形成;具體原理將開展進一步研究。
試驗中所有處理蛔蟲卵死亡率均高于95%,達到安全標準,可能源于發酵產生高溫對蛔蟲卵殺滅作用,也有可能源于發酵過程微生物代謝幾丁質酶等胞外酶對蛔蟲卵的裂解作用,具體原因需要進一步研究。鐮刀菌是重要植物病原菌,淤泥是其重要傳染源[19-22],淤泥基質鐮刀菌數量涉及到農用安全性,試驗中微生物處理,鐮刀菌數量均顯著降低。微生物分泌的胞外纖維素分解酶、幾丁質分解酶、聚糖分解酶能夠分解真菌細胞壁,導致真菌失活[20-21],試驗中使用木霉屬真菌和芽孢桿菌均屬高產胞外酶類型的微生物[9,15,21],發酵過程該類功能微生物的活動對病原微生物殺滅具有重要的作用。腸道菌群數量是涉及到食品安全的重要指標[20-25],微生物處理腸道菌群數量顯著降低,遠低于農用肥料行業標準限值[10],發酵過程高溫對腸道菌群滅活作用[26-27],同時與功能微生物能夠產生大量的抗生類物質[9,22-23],對腸道菌群也有殺滅作用也具有相關性。接種T83、T12、BIAE菌株顯著提升基質細菌數量,可能源于T83、T12菌株分解有機物促進土著細菌增長。
各微生物處理均表現顯著的促生效果,是微生物改變基質物理性質以及微生物菌株自身的促生效果疊加效應[27-28],其中T83和BIAE處理表現最好,可以依托該菌株進一步優化淤泥基質的生產工藝。基質通氣性和持水能力不滿足農用標準,會導致作物根系產生脅迫效應[30-31],導致根系受損,植株活力下降。丙二醛是細胞膜受損分解產物[8],相較于對照處理,微生物處理丙二醛含量均較低,表明微生物處理西瓜苗根系受損程度低于對照處理,微生物處理降低了瓜苗根系脅迫性。微生物處理酶活、根系活力、葉綠素含量均高于對照,表明植株活力、光合能力、吸收能力顯著高于對照。微生物技術能夠提升淤泥基質培育西瓜苗質量。有益微生物在植物根表定植,能夠提升植株吸收營養元素能力[28-29]、抑制土壤病原菌侵染根系[25, 29-31]、分泌植物所需物質[29-31],有利于提升植物抗逆性和抗病性。本試驗的菌株均能夠在西瓜苗根表定植,有利于提升淤泥育苗基質附加值,對擴大淤泥農用量具有重要的意義。
1)功能微生物發酵以農村河道清淤淤泥為主要原料的基質,能夠顯著改變基質的物理性質,提高其持水能力、透氣和透水性。
2)不同功能微生物菌株發酵的基質對育苗生長指標、生理生化性狀的影響差異較大,試驗中T83和IAE菌株發酵的基質培育的西瓜苗質量最好。
3)微生物發酵處理淤泥基質,有利于有益微生物在所培育作物的根表定植,提升所育苗的抗逆性和抗病性,有利于提升淤泥資源化利用產品的附加值。
[1] Dohnálková B, Drochytka R, Hodul J. New possibilities of neutralisation sludge solidification technology [J]. Journal of Cleaner Production, 2018, 204: 1097-1107.
[2] ?wierczek L, Cie?lik B, Konieczka P. The potential of raw sewage sludge in construction industry:A review[J]. Journal of Cleaner Production, 2018, 200: 342-356.
[3] Liu M, Liu X, Wang W, et al. Effect of SiO2and Al2O3on characteristics of lightweight aggregate made from sewage sludge and river sediment[J]. Ceramics International, 2018, 44: 4313-4319.
[4] Yang X, Geng B, Zhu C, et al. Fermentation performance optimization in an ectopic fermentation system[J]. Bioresource Technology, 2018, 260: 329-337.
[5] Wei Y, Zhao Y, Fan Y, et al. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting[J]. Bioresource Technology, 2017, 241: 134-141.
[6] Etesami H, Maheshwari D K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018, 156: 225-246.
[7] Chen L, Huang X, Zhang F, et al. Application ofSQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber [J]. Journal of the Science of Food and Agriculture, 2012, 92: 2465-2470.
[8] Chen L, Zheng J, Shao X, et al. Effects ofT83 onL. in coastal saline soil[J]. Ecological Engineering, 2016, 91: 58-64.
[9] Harman G E, Howell C R, Viterbo A et al.species-opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2: 43-56.
[10] NY525-2012,有機肥料[S].
[11] 楊丹,熊東紅,劉守江,等. 土壤理化及力學性質對干熱河谷臺地邊坡溝蝕發育的影響[J]. 農業工程學報,2018,34(4):170-176.
Yang Dan, Xiong Donghong, Liu Shoujiang, et al. Impacts of soil physical-chemical and mechanical properties on gully erosion development on terrace slopes in dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 170-176. (in Chinese with English abstract)
[12] 趙晨浩,張民,劉之廣,等. 控釋復合肥配施保水劑的盆栽月季節水保肥效果[J]. 農業工程學報,2017,33(13):175-182.
Zhao Chenhao, Zhang Min, Liu Zhiguang, et al. Effects of saving water and fertilizer conservation for potted Chinese rose using controlled-release compound fertilizers combined with water retention agent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 175-182. (in Chinese with English abstract)
[13] Liu S, Zeng G, Niu Q, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review[J]. Bioresource Technology, 2017, 224: 25-33.
[14] 范富,張慶國,馬玉露,等. 蘇打鹽堿地圍堤養魚改良土壤的生物性狀[J]. 農業工程學報,2018,34:142-146.
Fan Fu, Zhang Qingguo, Ma Yulu, et al. Improving biological traits by soda alkali-saline land diking for fish[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 142—146. (in Chinese with English abstract)
[15] 趙肖玲,鄭澤慧,蔡亞凡,等. 哈茨木霉和黑曲霉粗酶液預處理改善秸稈產甲烷性能[J]. 農業工程學報,2018,34(3):219-226.
Zhao Xiaoling, Zheng Zehui, Cai Yafan, et al. Pretreatment by crude enzymatic liquid fromandsp improving methane production performance during anaerobic digestion of straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 219—226. (in Chinese with English abstract)
[16] Bünemann E K, Bongiorno G, Bai Z, et al. Soil quality-A critical review[J]. Soil Biology and Biochemistry, 2018, 120: 105-125.
[17] Chen L, Zhang J, Shao X, et al. Development and evaluation ofpreparation for control of sheath blight of rice (L.)[J]. Biocontrol Science and Technology, 2015, 25: 316-328.
[18] Chen L, Han R, Zhang H, et al. Irrigating-continuous cropping withD9 fortified waste water could control the Fusarium wilt of[J]. Applied Soil Ecology, 2017, 113: 127-134.
[19] Huang X, Liu L, Wen T, et al. Illumina MiSeq investigations on the changes of microbial community in thef. sp.infected soil during and after reductive soil disinfestation[J]. Microbiological Research, 2015, 181: 33-42.
[20] Wen T, Huang X, Zhang J, et al. Effects of water regime, crop residues, and application rates on control off. sp.e[J]. Journal of Environmental Sciences, 2015, 31: 30-37.
[21] Yang X, Chen L, Yong X, et al. Formulations can affect rhizosphere colonization and biocontrol efficiency ofSQR-T037 against Fusarium wilt of cucumbers[J]. Biology and fertility of soils, 2011, 47(3): 239-248.
[22] Slimene I B, Tabbene O, Gharbi D, et al. Isolation of a ChitinolyticS213 Strain Exerting a Biological Control AgainstInfection [J]. Applied Biochemistry and Biotechnology, 2015, 175(7): 3494-3506.
[23] Rishad KS, Rebello S, Shabanamol P S, et al. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novelMCB-7 autochthonous to mangrove ecosystem[J]. Pesticide Biochemistry and Physiology, 2017, 137: 36-41.
[24] Lynch S V, Pedersen O. The human intestinal microbiome in health and disease[J]. New England Journal of Medicine, 2016, 375(24): 2369-2379.
[25] Albenberg L G, Wu G D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease[J]. Gastroenterology, 2014, 146(6): 1564-1572.
[26] Chen L, Yang X, Raza W, et al. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil[J]. Bioresource technology, 2011, 102(4): 3900-3910.
[27] Bernal M P, Sommer S G, Chadwick D, et al. Chapter three- current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits[J]. Advances in Agronomy, 2017,144: 143-233.
[28] Tabassum B, Khan A, Tariq M, et al. Bottlenecks in commercialisation and future prospects of PGPR[J]. Applied Soil Ecology, 2017, 121: 102-117.
[29] Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018(147): 175-191.
[30] Huang X F, Chaparro J M, Reardon K F, et al. Rhizosphere interactions: root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4): 267-275.
[31] 曲萍,趙永富,宋婧,等. 改性脲醛樹脂粘合基質塊性能及其對黃瓜幼苗生長的影響[J]. 農業工程學報,2017,33(15):253-259.
Qu Ping, Zhao Yongfu, Song Jing, et al. Performance of substrate blocks glued by modified urea formaldehyde resins and its effecton cucumber seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 253-259. (in Chinese with English abstract)
Producing substrate by fermentation of rural river sludge mixed with compost and roseite and its seedling effect
Chen Lihua1,2, Yao Yutian2, Shang Hui3, Liu Juan4, Pan Defeng4, Chang Yijun5, Xu Youwen4
(1.-(),210098,; 2.210013,; 3.()224200,; 4.224200,; 5.211155,)
The sludge produced by rural rivers desilting is large in volume and high in organic matter content, which causes significant pollution if not well disposed. Industrialized agricultural seedling raising requires a large amount of nutritional soil, which leads to the degradation of cultivated land if those soil are from the farmland. In this study, the microorganisms were used for fermenting sludge to produce the seedling raising substrate, instead of using nutritional farm soil. By changing temperature and water content in the fermentation process of the sludge, physical and biological features of the substrate produced by fermentation, and the biological characters, physiological feature and resistance of the watermelon seedlings raised by the substrate were assayed for determine best microbial strains for fermenting substrate. The results showed that, compared to control treatment, the microbial treatments increased the fermentation temperature and decreased water content of the substrate (<0.05), but no statistical difference was found between microbial treatments. The highest temperatures assayed in the piles in fermentation process all were lower than 60℃, and the duration when temperature higher than 50℃ all were shorter than 9 days. The substrates were well fermented while the piles temperature decreased to room temperature. Assaying the physical features of the substrates demonstrated that the microbial fermentation improved the physical and biological properties of the substrate. Among the microorganisms, Trichoderma harzianum T83 (T83) and Bacillus amyloliquefaciens IAE (BIAE) showed the best performance. Compared to the control treatment, bulk density, maximum water holding capacity, total porosity, capillary porosity and aeration porosity of the T83 treatment decreased by 25.52% and increased by 95.50%, 52.65%, 45.05% and 56.11%, respectively, while in BIAE treatment decreased by 27.78% and increased by 101.17%, 45.43%, 61.43% and 38.14%, respectively (<0.05). Populations of total bacteria and fungi were found 1.94 times and 4.55 times respectively higher than control treatment in T83 treatment (<0.05), and populations of total bacteria was 2.33 times higher than control treatment in BIAE treatment (<0.05). Populations of Fusarium spp. and intestinal flora, compared to control treatment, were decreased by 70.97% and 82.31%, respectively in T83 treatment, and decreased by 81.29% and 77.70% in BIAE treatment (<0.05). Compared to the control treatment, the height, ground fresh weight, root fresh weight, ground dry weight, root dry weight, stem diameter, chlorophyll content, root activity, population of the rhizospheric fungi, bacteria and actinomycetes of watermelon seedlings of the T83 treatment increased by 66.85%, 38.12%, 65.38%, 69.64%, 77.78%, 34.23%, 43.13%, 54.93%, 110.62 times, 1.63 times and 4.38 times, respectively and for BIAE treatment, the increases were by 80.40%, 38.49%, 64.74%, 76.19%, 100.00%, 54.88%, 46.40%, 67.26%, 67.26%, 1.59 times, 2.94 times and 5.66 times, respectively (<0.05). Contents of malondialdehyde in roots were significantly decreased (<0.05), and decreased of 70.62% and 61.86% were respectively found in T83 and BIAE treatments as compared to control treatment. The activities of catalase and superoxide dismutase in watermelon seedlings leaves were significantly increased (<0.05) as compared to control treatment. The sludge could be fermented with the fungus T. harzianum T83 and bacteria B. amyloliquefaciens IAE to produce watermelon seedling raising substrate. The two microbial strains can significantly increase properties and the quality of sludge substrate, improve physiological features and resistance of raised seedling, and promote growth of watermelon seedlings, which provide a high added value way for the sludge agricultural utilization.
sludge disposal; substrate; composting; fermentation;spp.;spp.
陳立華,姚宇闐,尚 輝,劉 娟,潘德峰,常義軍,許有文.河道淤泥和堆肥蛭石混合發酵制備基質及其育苗效果[J]. 農業工程學報,2018,34(22):228-234. doi:10.11975/j.issn.1002-6819.2018.22.029 http://www.tcsae.org
Chen Lihua, Yao Yutian, Shang Hui, Liu Juan, Pan Defeng, Chang Yijun, Xu Youwen. Producing substrate by fermentation of rural river sludge mixed with compost and roseite and its seedling effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 228-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.029 http://www.tcsae.org
2018-05-29
2018-09-22
江蘇省重點研發計劃項目(BE2018736);國家自然科學基金項目(51309079);江蘇省水利科技項目(2013053);江寧農業與農村科技發展計劃(2017Cc01)
陳立華,博士,副教授,主要研究方向為應用環境微生物技術、海涂鹽土生態改良技術。Email:chenlihua@hhu.edu.cn.
10.11975/j.issn.1002-6819.2018.22.029
S15
A
1002-6819(2018)-22-0228-07