999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

含炭量對木炭/聚丙烯復合材料性能的影響

2018-11-23 07:23:54張慶法蔡紅珍張繼兵易維明
農業工程學報 2018年23期
關鍵詞:復合材料

張慶法,蔡紅珍,周 亮,張繼兵,易維明※

?

含炭量對木炭/聚丙烯復合材料性能的影響

張慶法1,2,蔡紅珍1,2,周 亮1,2,張繼兵3,易維明1,2※

(1. 山東理工大學農業工程與食品科學學院,淄博 255000;2. 山東省清潔能源工程技術研究中心,淄博 255000; 3. 安徽愛樂門窗系統工程有限公司,宿州 234000)

為了改善聚丙烯(polypropylene, PP)的力學性能,該文以木炭、聚丙烯(polypropylene, PP)為主要原料,采用雙螺桿擠出機制備木炭/PP復合材料。并利用X射線衍射儀(X-ray diffractometer, XRD)、差式掃描量熱儀(differential scanning calorimeter, DSC)、電子萬能力學試驗機、動態熱機械分析儀(dynamic mechanical analyzer, DMA)、場發射掃描電鏡(scanning electron microscope, SEM)等儀器對復合材料進行性能特性的表征分析。試驗結果表明,PP基體在高溫下以流體的形式流入木炭的孔隙,并與木炭相互纏繞、粘結,形成一種界面較為致密的結構,這種結構使得復合材料具有較好的靜態力學性能(拉伸強度最高為25.47 MPa)與動態力學性能(儲能模量最高為4 921.92 MPa)。研究結果可為木炭在生物基材料方面的應用提供新的思路。

復合材料;聚丙烯;炭化;力學性能

0 引 言

以天然纖維(木粉、秸稈粉、竹粉等)和熱塑性塑料(聚乙烯、聚丙烯、聚氯乙烯等)為主要原料,采用熔融擠出或者模壓的成型方式加工制得的復合材料(木塑復合材料)不僅兼有木材的質感和塑料的優勢,同時也為農林業廢棄物與廢舊塑料的回收利用提供了一種新思路。作為一種綠色環保材料,木塑復合材料憑借其低廉的成本和較好的強度被廣泛應用于室內室外裝飾裝修、交通、汽車等領域[2-8]。但是,天然纖維材料表面存在大量親水性極性基團,而熱塑性塑料又是非極性屬性,兩者結合性極差,致使材料內部產生大量空隙,較差的界面結合也是復合材料力學性能較差的最重要原因之一[9]。為此,許多專家學者在提高木塑復合材料強度方面做了大量的研究工作。趙劍英等[10]利用丙烯酸酯共聚物增容劑對木塑復合材料進行增容,使得木塑復合材料的拉伸強度提高了2.2倍;于旻等[11]采用復合處理法對麥秸稈纖維進行表面處理后制備木塑復合材料,結果表明:復合處理麥秸稈后制備的木塑復合材料力學性能要優于單純使用偶聯劑處理麥秸稈制備的木塑復合材料;潘明珠等[12]利用聚磷酸銨改善稻秸-高密度聚乙烯復合材料的理化性能,研究發現聚磷酸銨可有效改善木塑復合材料的韌性。除此之外,還有部分學者通過利用其它填料代替天然纖維的方式來增強復合材料的強度。張慶法等[13]利用稻殼炭代替稻殼制備復合材料并與稻殼/高密度聚乙烯(HDPE)復合材料進行對比分析,結果發現稻殼炭填充熱塑性塑料復合材料具有更強的力學性能;Ning[14]利用碳纖維增強塑料制備復合材料,該材料具有良好的拉伸性能。

木炭的使用由來已久,隨著經濟的高速發展,其需求量也不斷增大,木炭被廣泛應用于食品、制藥、化工、冶金、國防、農業及環境保護等諸多領域[15],與木材等天然纖維相比,木炭由木材在高溫下熱解炭化得到,在炭化過程中,木材表面的極性基團受到高溫影響被破壞,本身極性較低[16],更容易與非極性或弱極性的熱塑性塑料相容,不存在界面結合很差[17]的問題。但是,作為生物炭的一種,木炭在代替天然纖維增強熱塑性塑料制備復合材料方面的研究才剛剛起步,研究空間十分巨大。Das等[18]在木塑復合材料中加入木材熱解炭用以開辟生物炭的利用途徑,試驗表明該復合材料具有良好的力學性能和阻燃性能。Li等[19]利用木炭改性超高分子量聚乙烯制備復合材料,該材料不僅具有極好的力學性能還有較佳的導電性。以上學者對木炭在生物基材料方面的應用進行了深入研究,并取得了一定的進展。但是上述研究所采用的偶聯劑、超高分子量聚乙烯等原料成本較高,在一定程度上限制了該材料的應用。本文以木炭為填料、較為廉價的PP為基體,采用擠出法制備木炭/PP復合材料,通過利用XRD、DSC、抗拉伸測試、DMA、SEM等先進手段對復合材料進行表征測試分析,為木炭在生物基材料方面的應用提供有益的借鑒經驗。

1 材料與方法

1.1 試驗材料

木炭:市售土窯木炭,60目,濟南富吉化工有限公司;PP:SMS-514F,熔融指數為3.2 g/10 min,密度為0.9 g/cm3,熔點為190~200 ℃,上海意恩塑化有限公司;鈣鋅復合穩定劑為硬脂酸鈣和硬脂酸鋅復合穩定劑,其中硬脂酸鈣和硬脂酸鋅的摩爾比為2:1,邵陽天堂助劑化工有限公司;潤滑劑,TPW613,美國Struktol公司。

1.2 木炭/PP復合材料的制備

將木炭敲成小塊置于超細粉碎機內粉碎成粉狀并過80目篩,然后將粉狀木炭置于鼓風干燥箱(DHG-9620A,上海一恒科技儀器有限公司)內干燥24 h,溫度設定為105 ℃,使其質量含水率降至2%以下;然后將干燥后的木炭(20%,40%,60%,80%)、PP(70%,50%,30%,10%)、鈣鋅復合穩定劑(6%)、潤滑劑(4%)置于雙運動三維高速混合機(JHN-15,鄭州金泰金屬材料有限公司)中充分混合10 min,得到均勻混料;將均勻混料投入到雙螺桿擠出機(BP-8177-ZB,東莞市寶品精密儀器有限公司)中進行擠出造粒得到粒料;將所得粒料再次投入到雙螺桿擠出機中進行二次擠出成型,擠出機轉速為40 r/min,擠出溫度為200~220 ℃。

1.3 性能測試

XRD分析:利用X射線衍射儀(Bruker AXS D8 Advance,德國 Bruker AXS有限公司)對復合材料試樣進行XRD分析,操作電壓為 40 kV,電流為50 mA,掃描范圍為5°~40°,掃描速度為5°/min;

DSC分析:利用差示掃描量熱儀(Q100-DSC,美國TA有限公司)對復合材料樣品進行DSC分析,取樣5~10 mg,在氮氣氣氛下以5 ℃/min的升溫速率升至180 ℃,然后再以同樣的速率冷卻至80 ℃。

拉伸強度測試:拉伸強度通過電子萬能試驗機(WDW1020,長春科新公司)測試,將復合材料樣品用多功能切割臺鋸(WMT-10TS,浙江華豐電動工具有限公司)切割成180 mm×10 mm×4 mm待測,拉伸速率為10 mm/min。取5次平均值作為測試結果。

動態熱機械分析:利用動態熱機械分析儀(Q800,美國TA有限公司)進行動態熱機械分析,試驗選取雙懸臂模式,試樣尺寸為60 mm×10 mm×3 mm,掃描頻率為5 Hz,試驗溫度范圍設置為–30~160 ℃,升溫速率為5 ℃/min。

微觀結構:對木炭粉末以及復合材料拉伸斷面進行噴金處理后利用場發射掃描電鏡(Sirion 200,美國FEI有限公司)觀察微觀形貌,掃描電壓為3.0 kV。

2 結果與分析

2.1 木炭/PP復合材料X射線衍射分析

圖1為不同木炭含量的木炭/PP復合材料XRD曲線圖。從圖1中可以看出,木炭/PP復合材料的XRD曲線的變化基本保持一致,且圖線的形狀趨勢跟純PP的XRD圖線基本一致[20]。不同木炭含量的復合材料在14°、17°、18°以及27°有明顯的峰,這些峰分別對應于晶面(110)、(040)、(130)、(002),表現為晶型,完全符合PP的半結晶性質。說明復合材料中所有的結晶峰都是PP引起的,木炭并沒有對復合材料的衍射峰做出貢獻,同時也說明木炭的本質屬于非晶態[21]。值得注意的是,隨著木炭含量的增加,所有樣品的峰強度都相應降低,這是因為大量非晶態木炭導致復合材料中晶態材料的缺乏,進而導致復合材料XRD衍射峰強度降低[22]。綜上所述,木炭/PP復合材料跟PP一樣是部分結晶,木炭含量的變化對復合材料的衍射峰強度具有重要影響,但對復合材料的微晶結構影響不大。

圖1 不同木炭含量的木炭/PP復合材料XRD曲線

2.2 木炭/PP復合材料DSC分析

圖2為PP以及不同木炭含量的木炭/PP復合材料DSC曲線圖。由圖2可知,純PP在165 ℃時開始吸熱并進入熔化階段。當PP中添加木炭時,復合材料的熔融溫度依然保持在165 ℃左右,基本保持不變。但是隨著木炭含量的增加,復合材料熔化所需的能量隨之增加了,這是因為PP基復合材料中添加了熱穩定性較強的木炭。另一方面,純PP在118 ℃開始放熱并進入結晶成型階段,與木炭/PP復合材料的熔融溫度不同的是,當PP中加入木炭時,復合材料的結晶溫度明顯升高,且木炭含量越高,結晶溫度越高。這可能是由于PP基體中的木炭粒子的成核效應所致,木炭粒子成為了晶體生長的起始點。這同時也說明,木炭含量的增加有利于復合材料的早期結晶。另外,從圖2中還可以看出,隨著木炭含量的增加,結晶峰的強度在逐漸減小,這說明木炭含量越高,復合材料結晶所需要的能量越少,這再次說明木炭含量的增加對復合材料的結晶是有利的。

2.3 木炭/PP復合材料拉伸強度

圖3為不同木炭含量下的木炭/PP復合材料拉伸強度圖。由圖3可知,木炭含量對復合材料的拉伸強度影響比較大。當木炭含量為20 %時,木炭/PP復合材料的拉伸強度較低,只有12 MPa,幾乎接近純PP,此時復合材料的主要成分為PP,較少的木炭顆粒被分散在PP基體內部的各處,木炭顆粒之間的間距較大,木炭起不到增強作用。當木炭含量達到60 %時,復合材料的拉伸強度為25.47 MPa,達到最大值。木炭由木材高溫炭化得到,跟木材相比,木炭本身所具有的極性基團的含量較低,與非極性的PP之間的排斥作用也比較弱,且此時木炭與PP的含量相當,兩者混合最為均勻、充分,結合最為緊密,木炭顆粒之間的間距適中,復合材料界面最優[20]。值得注意的是,隨著木炭含量增加到80 %,復合材料的拉伸強度大幅度下降至7 MPa,PP在復合材料內部起到一個粘結劑的作用[23],將不同的木炭顆粒粘結到一起。此時木炭的含量遠遠超過了PP,含量極為有限的PP,不能有效地將木炭顆粒粘結到一起,木炭在PP中形成大量團聚,復合材料的結合界面被嚴重破壞,當受到外力時,極易產生應力集中,所以木炭/PP復合材料的拉伸強度大幅度下降至7 MPa。從分子結構層面講,與PE相比,PP主鏈上含有側基-CH3,其高分子鏈的空間位阻比PE大,不利于高分子鏈的內旋轉,使鏈的剛性增加,柔順性降低;PE分子鏈規整性比PP高,結晶度也高于PP[24],所以在高填充量(80 %)時PE基體的復合材料可以獲得高的拉伸強度,而PP基體的復合材料則無法獲得。

圖2 不同木炭含量的木炭/PP復合材料DSC曲線

圖3 不同木炭含量的木炭/PP復合材料的拉伸強度

2.4 木炭/PP復合材料的動態力學分析

動態力學分析可反映復合材料界面性能的優劣,亦可反映材料的結構、組分間的相容性和分子運動能,與靜態力學相比,更能客觀反映材料在實際使用時的基本性能[25-27]。圖4為不同木炭含量下木炭/PP復合材料的儲能模量()與損耗因子(tan)。由圖4可知,當溫度較低時,復合材料的儲能模量較大,但是隨著溫度的升高,復合材料儲能模量不斷下降,這是因為溫度較低時,木炭/PP復合材料分子運動量較小,剛性較大。而隨著溫度的升高,直到達到復合材料的玻璃轉化點后,PP本身的熱塑性降低,復合材料的剛性也隨之降低。由圖4還可以看出,隨著溫度的升高,5種復合材料的損耗因子tan都呈現出逐漸上升的趨勢,這是因為溫度的升高加劇了木炭/PP復合材料內部的熱運動,PP分子鏈的可滑動性增加,表現為復合材料柔性的增加[28]。圖4中還可以看出木炭含量對復合材料與tan的影響規律。在–25 ℃時,5種復合材料的都達到最大值,純PP的僅為2 380.33 MPa,隨著木炭含量的增加,木炭/PP復合材料的不斷增大,當含炭量達到80 %時,復合材料的高達4 921.92 MPa,木炭起到了剛性增強作用,木炭與PP在熔融狀態下混合成型之后,木炭的骨架結構[29]在PP基體中起到增強作用,而這種骨架同時限制住了PP基體的流動,起到了一種阻礙作用,木炭含量越高,這種阻礙作用越大,復合材料的剛性就越強。而從損耗因子曲線上可以看出,隨著木炭含量的增加,復合材料的tan不斷下降,這表明木炭的增加有利于增強復合材料的彈性[30]。這是因為木炭阻礙了PP基體鏈段的運動,從而影響了復合材料的阻尼特性,所以木炭含量越高,復合材料彈性越好。

圖4 不同木炭含量的木炭/PP復合材料的儲能模量和損耗因子

2.5 木炭及木炭/PP復合材料的微觀結構分析

圖5為木炭在不同放大倍數下的微觀形貌圖。由圖5可以看出,在放大1 000倍下,木炭呈現出大小不同的顆粒狀,這主要是由于在粉碎機中粉碎不均勻造成的。而在放大5 000倍下,木炭表面較為干凈、光滑,有大量的溝壑與孔隙,整體上屬于一種多孔結構。這種多孔結構的形成主要是木材在高溫炭化過程中,成分遭到破壞,揮發分析出所致,這種多孔結構與大多數學者的研究基本一致[31]。

圖5 木炭在不同放大倍數下的SEM圖

木炭與天然纖維微觀結構的不同,使得木炭/PP復合材料的微觀結構與木塑復合材料差別很大,木塑復合材料的微觀結構表現為纖維顆粒分散在塑料基體中并被基體所包裹,塑料基體起到粘結劑的作用[32-33];對木炭/PP復合材料而言,PP盡管也起到粘結劑的作用,將木炭顆粒粘結到一起,但是在高溫狀態下,PP基體也會成為流體并流入木炭的溝壑與孔隙中,兩者互相纏繞、粘結并形成一種界面較為緊湊的結構,顯然,木炭/PP復合材料的內部結合更加致密良好。圖6為4種不同木炭含量的木炭/PP復合材料的斷面微觀形貌。由圖6可知,當木炭含量為20%時,復合材料的界面比較光滑,可以看到少量的木炭顆粒被鑲嵌在PP基體中,此時復合材料的成分主要以PP為主,木炭的作用較小;當木炭含量達到60%,此時木炭含量與PP基體含量相當,復合材料的界面最為清晰,可以清楚的觀察到木炭與PP互相纏繞、互相包裹,PP嵌入木炭孔隙的同時也將不同的木炭顆粒粘結到一起,形成一種界面較為致密的結構,此時木炭/PP復合材料的界面結合最佳,界面強度最高,這也是含炭量為60%時復合材料拉伸強度最高的重要原因;隨著木炭進一步增加到80%,可以明顯看到,木炭在較少的PP基體中形成了大量的團聚,復合材料出現了大量的空洞和空隙,界面破壞嚴重,這是因為少量的PP基體不足以將木炭顆粒全部包裹,木炭顆粒之間的粘結作用被大大削弱。

圖6 不同木炭含量的木炭/PP復合材料斷面SEM圖

3 結 論

本文以木炭和PP為原料,利用擠出法制備木炭/PP復合材料,并對其相關性能進行測試和表征,得到以下主要結論:

1)木炭含量的增加對復合材料的微晶結構影響不大,但是會降低復合材料的衍射峰強度,有利于復合材料的放熱結晶,提高了復合材料的熱穩定性;

2)木炭的適量加入可以獲得拉伸強度較好的復合材料,木炭含量在60%為最佳添加量,此時拉伸強度可達到25.47 MPa;

3)動態力學分析試驗表明:溫度的升高會對復合材料的儲能模量產生不利的影響,但是木炭含量的增加有利于提高復合材料的儲能模量(儲能模量最高為4 921.92 MPa),進而提高復合材料的剛性;

4)SEM試驗表明:木炭/PP復合材料的微觀結構與木塑復合材料不同,PP在木炭/PP復合材料中既填充了木炭的溝壑和孔隙,又有效地充當了木炭顆粒之間的粘結劑,兩者形成了一種界面結合較為致密的結構。

[1] 周嚇星,蘇國基,陳禮輝.竹粉熱處理改善竹粉/聚丙烯復合材料的防霉性能[J].農業工程學報,2017,33(24):308-314. Zhou Xiaxing, Su Guoji, Chen Lihui. Heat-treated bamboo powder improves anti-mold performance of bamboo powder/polypropylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 308-314. (in Chinese with English abstract)

[2] 王清文,易欣,沈靜.木塑復合材料在家具制造領域的發展機遇[J].林業工程學報,2016,1(3):1-8. Wang Qingwen, Yi Xin, Shen Jing. Tailoring wood-plastic composites for furniture production: Possibilities and opportunities[J]. China Forestry Science and Technology, 2016, 1(3): 1-8. (in Chinese with English abstract)

[3] 張東輝,何春霞,劉軍軍.稻秸稈粉/聚丙烯復合材料力學性能[J].農業工程學報,2010,26(7):380-384. Zhang Donghui, He Chunxia, Liu Junjun. Mechanical properties of straw-powder/PP composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 380-384. (in Chinese with English abstract)

[4] 何春霞,顧紅艷,薛盤芳.四種植物纖維粉/聚丙烯復合材料應用性能[J].農業工程學報,2010,26(2):381-384. He Chunxia, Gu Hongyan, Xue Panfang. Performances of polypropylene composite material filled with four kinds of plant fiber powders[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 381-384. (in Chinese with English abstract)

[5] Haghdan S, Smith G D. Natural fiber reinforced polyester composites: A literature review[J]. Journal of Reinforced Plastics & Composites, 2015, 34(14): 1179-1190.

[6] 吳秋寧,宋劍斌,余方兵,等.可逆熱致變色竹塑復合材料的溫度與光響應及熱學性能[J].農業工程學報,2013,29(14):277-283. Wu Qiuning, Song Jianbin, Yu Fangbing, et al. Response to temperature and light and thermal property of reversibly thermochromic bamboo/plastic composite[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 277-283. (in Chinese with English abstract)

[7] 趙鯤鵬,巴子鈺,張慶法,等.新型木塑3D打印材料聚乳酸/木粉復合材料的非等溫結晶動力學[J].塑料科技,2017,45(12):76-80. Zhao Kunpeng, Ba Ziyu, Zhang Qingfa, et al. Non-isothermal crystallization kinetics of PLA/wood powder composites as new wood plastic 3D printing material[J]. Plastics Science and Technology, 2017, 45(12): 76-80. (in Chinese with English abstract)

[8] 楊文斌,章耀林,陳恩惠,等.竹粉/高密度聚乙烯復合材料動態流變特性[J].農業工程學報,2012,28(7):288-292. Yang Wenbin, Zhang Yaolin, Chen Enhui, et al. Dynamic rheological properties of bamboo flour/high density polyethylene (HDPE) composite[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 288-292. (in Chinese with English abstract)

[9] 宋劍斌,袁全平,黃彪,等.適宜共混速度改善低密度聚乙烯/竹粉復合材料力學與流變性能[J].農業工程學報,2015,31(13):309-314. Song Jianbin, Yuan Quanping, Huang Biao, et al. Proper blending rate improving mechanical and rheological properties of low density polyethylene/bamboo composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 309-314. (in Chinese with English abstract)

[10] 趙劍英,區穎剛,蔡紅珍,等.丙烯酸酯木塑復合材料增容劑的性能及應用[J].農業工程學報,2010,26(增刊2):421-424. Zhao Jianying, Ou Yinggang, Cai Hongzhen, et al. Application and performance of acrylate copolymer compatibilizer in wood-plastics composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.2): 421-424. (in Chinese with English abstract)

[11] 于旻,何春霞,劉軍軍,等.不同表面處理麥秸稈對木塑復合材料性能的影響[J].農業工程學報,2012,28(9):171-177. Yu Min, He Chunxia, Liu Junjun, et al. Effects of different surface treatment for wheat straw on performances of wood- plastic composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(9): 171-177. (in Chinese with English abstract)

[12] 潘明珠,梅長彤,李國臣,等.聚磷酸銨改善稻秸-高密度聚乙烯復合材料的理化性能[J].農業工程學報,2014,30(16):328-333. Pan Mingzhu, Mei Changtong, Li Guochen, et al. Ammonium polyphosphate improving physicochemical properties of rice straw-high density polyethylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 328-333. (in Chinese with English abstract)

[13] 張慶法,楊科研,蔡紅珍,等.稻殼/HDPE 復合材料與稻殼炭/HDP復合材料性能對比[J].復合材料學報,2018,35. DOI: 10.13801/j.cnki.fhclxb.20180227.002 Zhang Qingfa, Yang Keyan, Cai Hongzhen, et al. Comparison of properties between rice husk/HDPE and rice husk biochar/HDPE composites[J]. Acta Materiae Compositae Sinica, 2018, 35. DOI: 10.13801/j.cnki.fhclxb.20180227.002 (in Chinese with English abstract)

[14] Ning F, Cong W, Hu Y, et al. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties[J]. Journal of Composite Materials, 2017, 51(4): 451-462.

[15] Mor S, Ravindra K, Bishnoi N R. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal[J]. Bioresource Technology, 2007, 98(4): 954-957.

[16] Liu Z, Balasubramanian R. A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite[J]. Bioresource Technology, 2013, 146(10): 371-378.

[17] 劉文鵬,姚姍姍,陳曉麗,等. 影響聚丙烯基木塑復合材料力學性能因素[J]. 現代塑料加工應用,2006,18(2):19-22. Liu Wenpeng, Yao Shanshan, Chen Xiaoli, et al. Influence factors on mechanical properties of the polypropylene-based wood plastic composite[J]. Modern Plastics Progressing and Application, 2006, 18(2): 19-22. (in Chinese with English abstract)

[18] Das O, Sarmah A K, Bhattacharyya D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites[J]. Waste Manag, 2015, 38(1): 132-140.

[19] Li S, Li D. Carbon fiber reinforced highly filled charcoal powder/ultrahigh molecular weight polyethylene composites[J]. Materials Letters, 2014, 134(134): 99-102.

[20] Das O, Kim N K, Hedenqvist M S, et al. An attempt to find a suitable biomass for biochar-based polypropylene biocomposites[J]. Environmental Management, 2018, 62(2): 403-413.

[21] Lu T, Jiang M, Jiang Z, et al. Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites[J]. Composites Part B Engineering, 2013, 51(51): 28-34.

[22] Nan N, Devallance D B, Xie X, et al. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites[J]. Journal of Composite Materials, 2016, 50(2): 251-258.

[23] 龔新懷,趙升云,陳良璧.茶粉/聚丙烯復合材料加速老化性能[J].農業工程學報,2015,31(12):308-314. Gong Xinhuai, Zhao Shengyun, Chen Liangbi. Properties of accelerated weathering of tea stalk/polypropylene composites [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 308-314. (in Chinese with English abstract)

[24] Nurul M S, Mariatti M. Effect of hybrid nanofillers on the thermal, mechanical, and physical properties of polypropylene composites[J]. Polymer Bulletin, 2013, 70(3): 871-884.

[25] Xian Y, Wang C, Wang G, et al. Understanding the mechanical and interfacial properties of core–shell structured bamboo–plastic composites[J]. Journal of Applied Polymer Science, 2016, 133(10): 1-8.

[26] 王翠翠,程海濤,羨瑜,等.納米CaCO3增強竹漿纖維/環氧樹脂復合材料的動態力學性能[J].農業工程學報,2017,33(6):281-287. Wang Cuicui, Cheng Haitao, Xian Yu, et al. Improving dynamic mechanical property of bamboo pulp fiber reinforced epoxy resin composite treated by nano calcium carbonate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 281-287. (in Chinese with English abstract)

[27] Zhang Q, Cai H, Ren X, et al. The dynamic mechanical analysis of highly filled rice husk biochar/high-density polyethylene composites[J]. Polymers, 2017, 9(11): 628-638.

[28] You Z, Li D. Highly filled bamboo charcoal powder reinforced ultra-high molecular weight polyethylene[J]. Materials Letters, 2014, 122(5): 121-124.

[29] You Z, Li D. The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites[J]. Materials Letters, 2013, 112(12): 197-199.

[30] 宋劍斌,黃彪,袁全平,等.適量木炭粉改善環氧樹脂復合材料熱/力學性能[J].農業工程學報,2015,31(14):309-314. Song Jianbin, Huang Biao, Yuan Quanping, et al. Suitable charcoal loadings improving heat-resistance and mechanical properties of epoxy resins composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 309-314. (in Chinese with English abstract)

[31] Kyotani T. Control of pore structure in carbon[J]. Carbon, 2000, 38(2): 269-286.

[32] Zhang Q, Yi W, Li Z, et al. Mechanical properties of rice husk biochar reinforced high density polyethylene composites[J]. Polymers, 2018, 10(3): 286-296.

[33] 周嚇星,陳禮輝,巧佳.竹粉/聚丙烯發泡復合材料的增韌效果[J].農業工程學報,2013,29(2):266-272. Zhou Xiaxing, Chen Lihui, Lin Qiaojia. Toughening effect of bamboo flour /polypropylene foamed composite[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 266-272. (in Chinese with English abstract)

Effect of charcoal content on properties of charcoal/polypropylene composites

Zhang Qingfa1,2, Cai Hongzhen1,2, Zhou Liang1,2, Zhang Jibing3, Yi Weiming1,2※

(1.255000,; 2.255000,; 3.234000,)

As a green and environmental material, wood plastic composite is widely used in indoor and outdoor decoration, transportation, automobile and other fields for its low cost and good strength. However, there are a large number of hydrophilic polar groups on the surface of natural fiber materials, and the thermoplastic is non-polar, which creates a large number of voids in the material, making the mechanical properties of the material worse. Charcoal is produced from pyrolysis and carbonization of wood at high temperature. The polar groups on the wood surface are damaged by high temperature and the polarity is weakened, which make it easier to be compatible with thermoplastics. In this paper, charcoal/polypropylene (PP) composites were prepared by twin-screw extruder using charcoal and PP as the main raw materials. The properties of the composites were characterized by means of X-ray diffractometer (XRD), differential scanning calorimeter (DSC), electronic universal testing machine, dynamic thermal mechanical analyzer (DMA) and field emission scanning electron microscope (SEM). The experimental results showed that: 1) the composites had obvious peaks at 14°/17°/18°and 27° which corresponded to the crystal plane (110) (040) (130) (002), showing α -crystalline form, respectively, and this was consistent with pure PP. The peak strength of each sample decreased with the increase of carbon content, this indicated that the increase of charcoal content had little effect on the microcrystalline structure of the composite, but it would decrease the diffraction peak strength of the composite. 2) after the addition of charcoal, the melting temperature of the composite did not changed, but the crystallization temperature of the composite increased and the strength of the crystallization peak gradually decreased. This indicated that the addition of charcoal was beneficial to exothermic crystallization of composites and improved the thermal stability of composites. 3) when the charcoal content was 20%, the tensile strength of the charcoal/PP composite was low, which was only 12 MPa, when the content of charcoal was 60%, the tensile strength of the composite was about 25.47 MPa, which was the maximum value, as the increase of charcoal content to 80%, the tensile strength of the composite decreased to 7 MPa significantly. On the one hand, the lower amount of PP could not bind charcoal particles together effectively, forming a large number of agglomerations in PP, and the bonding interface of the composite was severely damaged, the stress concentration of the composites was easy to occur under the action of external forces. On the other hand, PP chain contains -CH3, and the three-dimensional resistance of the polymer chain is greater than PE, which is not conducive to the internal rotation of the polymer chain, increasing the rigidity of the chain and reducing the flexibility of the chain, This is why the tensile strength of composites is low. This indicated that the composites with better tensile strength could be obtained by adding proper amount of charcoal. 3) when the temperature was low, the storage modulus of the composite was larger, but with the increase of the temperature, the storage modulus of the composite decreased continuously. with the increase of charcoal content, the storage modulus of charcoal/PP composites increased and the loss factor of composites decreased. This indicated that the increase of temperature would have an adverse effect on the storage modulus of composites, but the increase of charcoal content could help to improve the rigidity of composites. 4) the SEM images showed that the microstructure of charcoal was porous structure, so the microstructure of charcoal/PP composites was different from that of wood-plastic composites. PP filled the gullies and pores of the charcoal, and effectively acted as the binder between the charcoal particles inside the composites, which formed a compact interlocking structure.

composites; polypropylene (PP);carbonization; mechanical properties

張慶法,蔡紅珍,周 亮,張繼兵,易維明.含炭量對木炭/聚丙烯復合材料性能的影響[J]. 農業工程學報,2018,34(23):254-259.doi:10.11975/j.issn.1002-6819.2018.23.033 http://www.tcsae.org

Zhang Qingfa, Cai Hongzhen, Zhou Liang, Zhang Jibing, Yi Weiming.Effect of charcoal content on properties of charcoal/polypropylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 254-259. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.033 http://www.tcsae.org

10.11975/j.issn.1002-6819.2018.23.033

TB332

A

1002-6819(2018)-23-0254-06

2018-06-01

2018-09-28

2016年山東省重點研發計劃(重大關鍵技術)(2016ZDJS11A01);安徽省重點研究與開發計劃項目(1704a0802138);山東省泰山學者特聘專家;山東省高等學校優勢學科人才團隊培育計劃

張慶法,博士生,主要從事生物質復合材料的研究。Email:zhangqingfacll@126.com

易維明,教授,博士生導師,主要從事生物質能源開發和綜合利用技術研究工作。E-mail:yiweiming@sdut.edu.cn

中國農業工程學會會員:易維明(E041200041S)

猜你喜歡
復合材料
淺談現代建筑中新型復合材料的應用
金屬復合材料在機械制造中的應用研究
敢為人先 持續創新:先進復合材料支撐我國國防裝備升級換代
民機復合材料的適航鑒定
復合材料無損檢測探討
電子測試(2017年11期)2017-12-15 08:57:13
復合材料性能與應用分析
PET/nano-MgO復合材料的性能研究
中國塑料(2015年6期)2015-11-13 03:02:54
ABS/改性高嶺土復合材料的制備與表征
中國塑料(2015年11期)2015-10-14 01:14:14
聚乳酸/植物纖維全生物降解復合材料的研究進展
中國塑料(2015年8期)2015-10-14 01:10:41
TiO2/ACF復合材料的制備及表征
應用化工(2014年10期)2014-08-16 13:11:29
主站蜘蛛池模板: 激情乱人伦| 国产极品美女在线观看| 免费女人18毛片a级毛片视频| 免费毛片视频| 亚洲国产天堂久久综合226114| 国产SUV精品一区二区| 全部免费毛片免费播放| 永久免费无码成人网站| 亚洲综合片| 日本精品影院| 国产成人亚洲精品色欲AV| 中文字幕在线看| 一本久道久久综合多人| 国产精品高清国产三级囯产AV| 五月天天天色| 久久综合AV免费观看| 国产永久在线视频| 国产成人高清精品免费5388| 亚洲a免费| 狠狠色综合网| 欧美亚洲日韩中文| 22sihu国产精品视频影视资讯| 91成人免费观看在线观看| 国产av一码二码三码无码| 无码一区二区波多野结衣播放搜索| 在线观看亚洲精品福利片| 国产欧美中文字幕| 欧美综合在线观看| 午夜福利网址| 国内精品久久久久久久久久影视| 成人在线综合| 一级毛片免费不卡在线视频| AV在线麻免费观看网站| 好吊妞欧美视频免费| 国产成人一区| 国产欧美日韩另类| 欧美在线视频不卡第一页| 为你提供最新久久精品久久综合| 精品视频在线观看你懂的一区| 亚洲色欲色欲www在线观看| 亚洲无码高清一区二区| 国产交换配偶在线视频| 欧美五月婷婷| 国产在线观看99| 欧美19综合中文字幕| 久久五月天综合| 91香蕉视频下载网站| 97免费在线观看视频| 亚洲一级毛片免费看| 99热这里只有成人精品国产| 亚洲侵犯无码网址在线观看| 中国精品自拍| 亚洲熟妇AV日韩熟妇在线| 无码电影在线观看| 亚洲成av人无码综合在线观看| 亚洲国产精品无码AV| 亚洲av日韩av制服丝袜| 国产精品久久久久久久久久久久| 国产欧美高清| 精品视频91| 久久午夜影院| 青青草原国产免费av观看| 四虎成人在线视频| 日韩毛片在线视频| 亚洲男人在线| 亚洲国产综合精品一区| 国产精品永久久久久| 老司国产精品视频| 色综合天天综合中文网| 欧美精品另类| 人妻免费无码不卡视频| 亚洲中久无码永久在线观看软件| 国产激情无码一区二区免费| 91亚洲视频下载| 国产成人凹凸视频在线| 无码福利视频| 一区二区偷拍美女撒尿视频| 国产在线精品99一区不卡| 国产精品福利一区二区久久| 欧美成a人片在线观看| 67194成是人免费无码| 日韩欧美在线观看|