999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

耦合非線性Schr?dinger方程初邊值問題整體解的適定性

2018-10-17 01:45:30陳渝芝張曉強金世剛
關鍵詞:重慶

陳渝芝,張曉強, 金世剛

(重慶理工大學 理學院, 重慶 400054)

1 Introduction

The coupled nonlinear Schrodinger equations:

(SE)

were proposed by [3] to describe the two-wave interaction through cubic nonlinear optical media(see also [2,4]). LetΩbe a domain inR2with compactly smooth boundaryΓ. We consider the following initial-boudary value problem:

(1.1)

(1.2)

u(t,x)=0,v(t,x)=0 (t,x)∈[0,∞)×Γ

(1.3)

u(0,x)=u0(x),v(0,x)=v0(x),x∈Ω

(1.4)

whereu(t,x) andv(t,x) are complex valued functions denoting the complex amplitudes of two interacting waves in nonlinear optical media,respectively.

Problem (1.1)-(1.4) whenΩ=R2has been studied in[2-5],but to our best knowledge,there is no any result whenΩ≠R2. In the present paper, we study the existence and uniqueness of global solution to the initial-boundary value problem (1.1)-(1.4). The main result of this paper reads as follows.

(1.5)

Δφ-φ+φ3=0

(1.6)

Then there exists a unique solution (u,v) for the problem (1.1)-(1.4) such that

(u,v)∈[C([0,∞);H2(Ω))∩C1([0,∞);L2(Ω))]×

[C([0,∞);H2(Ω))∩C1([0,∞);L2(Ω))]

2 Preliminaries

In this section, we give some preliminaries which are key to the proof of Theorem 1.1. In what follows we denote byCvarious constants depending only onΩ.

Firstly, the following result holds from Lemma 2 in[1]

Lemma2.1For (u,v)∈H2(Ω)×H2(Ω) with ||u||H1(Ω)+||v||H1(Ω)≤1, we have

(2.1)

Lemma2.2For (u,v)∈H2(Ω)×H2(Ω), we have

(2.2)

(2.3)

(2.4)

(2.5)

ProofFor (u,v)∈H2(Ω)×H2(Ω),letDdenote any first order differential operator, we have

(2.6)

which implies that

(2.7)

On the other hand,by Gagliardo-Nirenberg inquality,one has

(2.8)

(2.7) and (2.8) yield the estimante (2.2).

We next prove the estimate (2.3).By a direct calculation, we have

(2.9)

(2.10)

Combining (2.9) with (2.10) yields that

(2.11)

Thus, (2.3) follows from (2.11).

Similarly,we can obtain the estimates (2.4) and (2.5).

At the end of this section, we give the following result which is similar to Theorem 1 in Segal [6].

Lemma2.3Assume thatHis a Hibert space andAi:D(Ai)?H→His an m-acctrtive linear operator,wherei=1,2. LetFi(i=1,2) be a mapping fromD(A1)×D(A2) into itself which is Lipschitz on every bounded set ofD(A1)×D(A2).Then for any (u0,v0)∈D(A1)×D(A2),there exists a unique solution (u,v) of the Cauchy problem

(2.12)

3 Proof of Theorem 1.1

In this section,we prove Theorem 1.1.We first give a lemma which concerns the conservation laws of the energy and of the mass by a direct calculation.

||u(t)||L2(Ω)=||u0||L2(Ω), ||v(t)||L2(Ω)=||v0||L2(Ω)

(3.1)

E(u(t),v(t))=E(u0,v0)

(3.2)

where

(3.3)

We now return to show Theorem 1.1

ProofofTheorem1.1Using Lemma 2.3, we let

(3.4)

We divide the proof into two steps.

Step1In this step, we show that ||u(t)||H1(Ω)and ||v(t)||H1(Ω)remain bounded fort>0.

(3.5)

Applying Gagliardo-Nirenberg inequality

(3.6)

whereφis the ground state solution of (1.6), noting that (3.1), we have

(3.7)

Combining (3.5) with (3.7) yields that

||u(t)||H1(Ω)+||v(t)||H1(Ω)≤C

whereCis independent oft.

Step2In this step, we istablish that boundedness of ||u(t)||H2(Ω)and ||v(t)||H2(Ω).

LetSu(t) be theL2isometry group generated byA1,Sv(t) be theL2isometry group generated byA2. By (1.1) and (1.2), we have

(3.8)

(3.9)

and

(3.10)

(3.11)

Thus one has

(3.12)

(3.13)

It follows from Lemma 2.2 that

(||u(s)||H2(Ω)+||v(s)||H2(Ω))≤C(||u(s)||L∞(Ω)+||v(s)||L∞(Ω))2·

(||u(s)||H2(Ω)+||v(s)||H2(Ω))

(3.14)

(||u(s)||H2(Ω)+||v(s)||H2(Ω))≤C(||u(s)||L∞(Ω)+||v(s)||L∞(Ω))2·

(||u(s)||H2(Ω)+||v(s)||H2(Ω))

(3.15)

Furthermore, Lemma 2.1, (3.12), (3.13), (3.14) and (3.15) lead to

[1+log(1+||u(s)||H2(Ω)+||v(s)||H2(Ω))]ds

(3.16)

Let

(3.17)

Then we have

J′(t)=C(||u(t)||H2(Ω)+||v(t)||H2(Ω))·[1+log(1+||u(t)||H2(Ω)+||v(t)||H2(Ω))]≤

CJ(t)[1+log(1+J(t))]≤C(1+J(t))[1+log(1+J(t))]

(3.18)

Hence (3.18) yields that

(3.19)

Hence Integrating (3.19), we obtain the estimate for ||u(t)||H2(Ω)+||v(t)||H2(Ω)of the form

||u(t)||H2(Ω)+||v(t)||H2(Ω)≤eαeβt

(3.20)

whereαandβare two constants indepent oft. Therefore, ||u(t)||H2(Ω)+||v(t)||H2(Ω)remains bounded on every finite time interval. Thus we must haveTmax=∞.

The proof of Theorem 1.1 is completed.

猜你喜歡
重慶
重慶人的浪漫
重慶客APP
新基建,重慶該怎么干?
公民導刊(2022年4期)2022-04-15 21:03:14
平凡英雄 感動重慶
當代黨員(2022年6期)2022-04-02 03:14:56
重慶人為什么愛吃花
數說:重慶70年“賬本”展示
當代黨員(2019年19期)2019-11-13 01:43:29
“逗樂坊”:徜徉相聲里的重慶味
視覺重慶
城市地理(2016年6期)2017-10-31 03:42:32
重慶非遺
在這里看重慶
今日重慶(2017年5期)2017-07-05 12:52:25
主站蜘蛛池模板: av天堂最新版在线| 亚洲男人的天堂网| 亚洲成人黄色在线观看| 久久综合婷婷| 成人国产精品一级毛片天堂| 天堂久久久久久中文字幕| 国产99视频免费精品是看6| a毛片在线播放| 国产成人永久免费视频| 欧美怡红院视频一区二区三区| 国产精品欧美亚洲韩国日本不卡| 亚洲欧美极品| 韩日免费小视频| 日韩无码视频播放| 国产爽妇精品| 欧美亚洲激情| 国产综合色在线视频播放线视 | 久久福利片| 日韩高清成人| 91九色国产在线| 欧美精品成人一区二区在线观看| 香蕉eeww99国产在线观看| 试看120秒男女啪啪免费| 中文字幕资源站| 四虎成人在线视频| 欧美成人影院亚洲综合图| 一级毛片免费高清视频| 亚洲国产成人精品一二区 | 91po国产在线精品免费观看| 亚洲午夜天堂| 亚洲黄色网站视频| 国产专区综合另类日韩一区| 色综合天天视频在线观看| 色男人的天堂久久综合| 夜夜操国产| 午夜电影在线观看国产1区| 欧美日韩亚洲国产| 国产手机在线观看| 性激烈欧美三级在线播放| 午夜精品区| 老司国产精品视频91| 在线免费看片a| 欧美午夜小视频| 久久国产亚洲偷自| 亚洲区欧美区| 69av在线| 97超碰精品成人国产| 亚洲色无码专线精品观看| 亚洲国产av无码综合原创国产| 国产精品自在在线午夜区app| 国产精品流白浆在线观看| 黄色片中文字幕| 亚洲IV视频免费在线光看| 97se亚洲综合在线天天| 色九九视频| 老司国产精品视频| 国模粉嫩小泬视频在线观看| 爱做久久久久久| 国产午夜精品一区二区三| 在线免费观看AV| 亚洲男女在线| 欧美在线一级片| 亚洲AV无码不卡无码| 国产成人无码综合亚洲日韩不卡| 成人无码一区二区三区视频在线观看 | 国产久草视频| 在线日本国产成人免费的| 看av免费毛片手机播放| 国产福利免费视频| 亚洲国产日韩欧美在线| 久久精品人妻中文系列| 欧美国产日韩另类| 午夜国产理论| 国产成人av一区二区三区| 国产精品欧美激情| 久热精品免费| 久久99这里精品8国产| 黄片在线永久| 亚洲天堂网站在线| 欧美精品亚洲二区| 国产精品视屏| 国产丝袜91|