


摘 要:通過對乘積空間復(fù)凸性的研究,在Musielak-Orlicz空間復(fù)凸性有關(guān)結(jié)論基礎(chǔ)上,給出賦Luxemburg 范數(shù)的Musielak-Orlicz-Sobolev空間具有復(fù)凸性的條件, 一定程度上推廣了Musielak-Orlicz空間中復(fù)凸性的研究.
關(guān)鍵詞:Musielak-Orlicz-Sobolev空間; Luxemburg范數(shù);復(fù)凸性
[中圖分類號]O177.2 [文獻(xiàn)標(biāo)志碼]A
Abstract:Through the study complex rotundities on product spaces,based on the conclusion of the complex rotundities in Musielak-Orlicz spaces,Given the Musielak-Orlicz-Sobolev spaces has the conditions of complex rotundities.The results of complex rotundities are generalized in Musielak-Orlicz spaces to a certain extent.
Key words:Musielak-Orlicz-Sobolev spaces;luxemburg norm;complex rotundities
參考文獻(xiàn)
[1]陳國旺. 索伯列夫空間導(dǎo)論[M].北京: 科學(xué)出版社,2013.135-151.
[2]陳述濤. Orlicz空間幾何理論[M].華沙: 波蘭科學(xué)院數(shù)學(xué)研究所,1996.175-187.
[3]Hudzik H,Liu X B,Wang T F.Points of monotonicity in Musielak-Orlicz function spaces endowed with the Luxemburg norm[M].Arch.Math,2004,82.534-545.
[4]Chen S T,He X.Monotonicity and best approximation in Orlicz-Sobolev spaces with the Luxemburg norm[J].Journal of Mathematical analysis and applications,2008,344(2):687-698.
[5]季丹丹.賦Luxemburg范數(shù)的Musielak-Orlicz-Sobolev空間中的凸性[J].山東理工大學(xué)自然科學(xué)學(xué)報,2017,31(1):39-42.
[6]季丹丹,葛禮霞,刁瑞.關(guān)于Musielak-Orlicz-Sobolev空間的注記[J].牡丹江師范學(xué)院學(xué)報:自然科學(xué)版.2013(2):3-4.
編輯:吳楠