崔遠來,吳 迪,王士武,溫進化,王賀龍
?
基于改進SWAT模型的南方多水源灌區灌溉用水量模擬分析
崔遠來1,吳 迪1,王士武2,溫進化2,王賀龍2
(1. 武漢大學水資源與水電工程科學國家重點實驗室,武漢 430072;2. 浙江省水利河口研究院,杭州 310020)
為提出一種合理有效的南方多水源灌區灌溉用水量模擬統計方法,該文針對南方多水源灌區水循環及灌溉取水特點對SWAT模型進行改進,尤其添加了多水源自動灌溉模塊用于模擬作物不同水源類型的灌水量,并統計推求灌區灌溉用水量。以浙江省浦江縣通濟橋水庫灌區為例,應用改進SWAT構建灌區水循環模型,利用灌區出口實測月徑流數據及4條干渠渠首監測的灌水量數據校正及驗證模型,其中月徑流在驗證期的Nash-Suttclife效率系數為0.89,干渠灌溉用水量模擬值與觀測值相對誤差的絕對值最大不超過20%,表明改進SWAT模型具有良好的模擬效果。利用所建模型模擬分析通濟橋水庫灌區長系列灌溉用水量,結果顯示灌區灌溉用水量呈現豐水年小、干旱年大的變化規律;除監測的骨干水源通濟橋水庫及浦陽江取水以外,灌溉用水量的41.40%來源于灌區內部的河道、塘堰及小型水庫,說明只監測干渠渠首灌水量無法統計整個灌區灌溉用水量;隨著灌區節水改造投入,灌區灌溉水利用系數提高,其灌溉用水量減少?;诟倪MSWAT模型進行多水源灌區灌溉用水量模擬為灌區灌溉用水量統計分析提供了一種有效的方法。
灌溉;模型;水庫;多水源灌區;改進SWAT;不同水源類型
為提升中國水資源公報質量和支撐最嚴格水資源管理制度考核工作,落實最嚴格水資源管理制度,開展水資源監控及用水總量統計十分必要。在中國,農業用水量占總用水量的60%以上,其中,灌溉用水占農業用水量的90%以上,是用水總量統計的重點。農業用水指農田灌溉用水、林果地灌溉用水、草地灌溉用水、漁塘補水和畜禽用水,其中灌溉用水量是指從各類水源取來用于灌區作物灌溉的水量之和。中國南方多水源灌區中存在多種水源,不同水源之間存在不同程度的互聯互通,屬于庫、塘、渠結合的“長藤結瓜”灌溉系統[1-2]。由于水源種類多、分布復雜、取水的隨機性強、且存在重復利用,有時難以有效區分不同水源的灌水量,水量計量工作不僅量大,且存在相當難度,并且只計量灌區渠首的取水量也不能代表整個灌區的灌溉用水量[3]。此外,灌區各個分區之間的土地利用、水源類型等存在差異性,采用典型調查或現行灌溉定額與實際灌溉面積數據進行框算得到的灌溉用水量精度需要進一步提高[4]。因此,尋求一種合理有效的灌溉用水量模擬統計方法十分必要。推求灌溉用水量的基礎是水量平衡原理[5],鑒于多水源灌區的空間異質性,分布式水文模型是獲得水量平衡要素的一個有效工具。其中,SWAT(soil and water assessment tool)模型是一個具有物理基礎的分布式水文模型,具有自動灌溉模塊可用于推求作物灌溉用水量[6-8]。其不僅能夠模擬日、月、年尺度流域水循環過程,還可用于人類活動對水循環影響的分析研究,在灌區水循環等方面已有諸多應用[9-14]。
SWAT模型是適用于自然流域的分布式水文模型[7]。然而,灌區水文循環過程相對于自然流域更加復雜多變,不僅受自然流域水平衡要素的影響,而且受人類活動的影響[15-16]。因此,為更好地將SWAT模型應用于灌區水循環過程的模擬,國內外不少學者對其進行了改進。代俊峰等[17]針對中國南方丘陵水稻灌區的水文特點,改進SWAT模型的灌溉水分運動模塊、稻田水分循環模塊、稻田水量平衡各要素以及產量模擬的計算方法,增加了渠系滲漏模擬模塊及其對地下水的補給作用、塘堰的灌溉模塊等,并將其應用于灌區水管理研究[18];陳強等[19]將PSO算法代替SWAT模型原有的SCE自動率定算法,構建新的SWAT模型參數自動率定模塊,并將水資源配置模型的農業灌溉用水輸入到改進后的SWAT模型中,實現2個模型的松散耦合;Xie等[20]在稻田蒸發蒸騰、控制灌溉排水、塘堰實時灌溉等方面對SWAT模型進行了改進;此外,還有其他學者對SWAT模型也做了相應的改進[21-26]。然而,上述改進中均未涉及作物的多種水源聯合灌溉,同時,由于水源選擇單一,SWAT模型未能模擬作物的多水源灌溉。
綜上,本文以SWAT模型為基礎工具,針對南方多水源灌區水文循環及作物灌溉特點,整合代俊峰等[17]及Xie等[20]對SWAT模型稻田水循環模塊的改進,同時提出一種多水源自動灌溉模塊并將其添加到SWAT模型,從而得到適用于南方多水源灌區的改進SWAT模型。以浙江省浦江縣通濟橋水庫灌區為例對改進SWAT模型進行率定及驗證,利用改進SWAT模型模擬分析灌區不同水源的灌溉用水量及其變化規律,以期為灌區灌溉用水量模擬統計提供有效方法。
通濟橋水庫灌區位于浙江省浦江縣南部浦陽江盆地。灌區的灌溉水源以通濟橋水庫、浦陽江為骨干水源,灌區內小型水庫(金獅嶺水庫、里塢水庫、岳塘水庫)、塘堰及河流為輔,骨干水源以4條干渠貫穿整個灌區,構成典型的南方多水源“長藤結瓜”灌溉系統,如圖1a所示。
由圖1a所示,從北至南依次為北干渠、中干渠、南干渠72線、南干渠80線,其中南干渠72線的水源為浦陽江,其余3條水源為通濟橋水庫。由于通濟橋水庫灌區并非閉合流域,因此選擇的建模區域較灌區范圍稍大,所選區域的土地利用類型主要為林地、城鎮、水稻田、葡萄地、水域及旱地,如圖1b所示。灌區屬亞熱帶季風氣候,多年平均氣溫16.6 ℃,多年平均降雨量1 466 mm,年內降水分布不均,多年平均水面蒸發量907 mm。灌區主要種植水稻、小麥等糧食作物及葡萄、草莓等經濟作物,其中水稻與葡萄為主要灌溉作物,水稻種植面積為1 693.33 hm2,葡萄種植面積為1 893.33 hm2,且每年的6-9月為灌溉季節。
SWAT模型將研究區劃分為多個子流域,進而將子流域劃分為多個水文響應單元(HRU),以HRU為最小水文響應單元進行模擬。針對南方多水源灌區作物灌溉特點提出的多水源自動灌溉模塊的結構如圖2所示。

注:HRU為最小水文響應單元。
結合圖2對多水源自動灌溉模塊的說明如下:
1)原SWAT中灌溉用水量一般預先確定作為輸入條件或利用單一水源的自動灌溉模擬[7],改進SWAT可以根據作物適宜田間土壤含水率或稻田水層深度控制標準,自動觸發灌溉并確定每次田間凈灌水量,同時從不同水源取水灌溉,從而在水循環模型中同步實現不同水源類型灌溉用水量的自動模擬。

3)圖2中水源1、水源2等為HRU的灌溉水源及順序,即在模型運行之前需要為HRU指定灌溉水源及順序。以子流域為對象進行指定,同一子流域內HRU的灌溉水源及順序一致。對于南方多水源灌區,每一個子流域可能存在的水源有子流域內部河道、塘堰、中小型水庫、子流域外部河道及大型水庫。通常設定第一水源為子流域內部河道,第二水源為子流域內部塘堰,并在SWAT模型軟件界面上指定,而后面的中小型水庫、子流域外部河道及大型水庫則利用新增的輸入文件進行指定。
4)水源灌溉可用水量是指可從水源取用的最大毛水量考慮灌溉水利用系數后折算成田間的凈水量。對于不同類型的水源,由于水源之間存在差異其計算有所不同,具體如下:
對于河道

對于塘堰

對于水庫

5)模擬多水源灌溉時,從第一個水源開始,取第一水源實際凈灌水量為該水源灌溉可用水量與本次灌溉需水量的較小值,當第一水源實際凈灌水量小于灌溉需水量則計算缺水量,如圖2所示,繼而下一個水源取水灌溉,直至灌溉滿足要求或到最后一個水源。每個水源的實際凈灌水量除以灌溉水利用系數得到該水源毛灌溉用水量(簡稱灌溉用水量)。
除多水源自動灌溉模塊的添加外,針對“長藤結瓜”灌溉系統,對改進SWAT模型增加了骨干水源對灌區內部塘堰的補水功能,即灌溉季節若出現塘堰干涸情況,骨干水源將通過渠道對其進行補水,以此來反映農民干預調水的情況。此外,改進還包括稻田水平衡要素計算的改進及渠系水滲漏計算的添加等,具體內容見參考文獻[17]和[20]。對于改進SWAT模型的使用,模型框架的搭建在SWAT軟件界面上進行,與原模型基本一致,此外僅需創建文本文件輸入水稻控制水深、灌溉水源及順序等參數即可。
1.3.1 研究區模型構建

1.3.2 模型校正及驗證
模型構建之后需進一步對其進行校正及驗證。參考前人研究中選擇的徑流敏感參數[27-29],結合研究區的特點選取參數,采用SWATCUP(SWAT Calibration and Uncertainty Programs)軟件中的SUFI_2算法進行參數敏感性分析[30],從而選擇10個參數作為徑流的敏感參數。利用研究區出口(見圖1a)1995-2007年的實測月徑流數據對敏感參數進行率定從而校正徑流模擬過程,經率定確定敏感參數的取值后,利用研究區出口2008-2015年的實測月徑流數據對徑流模擬過程進行驗證,并選取相對誤差(RE)、決定系數(2)和Nash-Suttclife效率系數(NS)來評估模型效率[31]。

經過反復調整后確定徑流敏感參數取值,計算得到率定期徑流的評價指標RE為11.83%、2為0.88以及NS為0.85,由此可知,通過參數率定,研究區出口徑流量模擬結果與實測值吻合性較好。驗證期徑流的評價指標RE為9.05%、2為0.90以及NS為0.89,表明率定后的模型性能較為穩定。研究區出口徑流模擬值與實測值的月際動態如圖3所示,圖3顯示模型模擬的月徑流過程與實測結果總體變化一致,說明模型適用于通濟橋水庫灌區的水量平衡模擬及分析。


表1 監測點灌溉用水量模擬值與觀測值對比
利用改進SWAT模型模擬通濟橋水庫灌區1995—2017年的水循環過程,特別是其中的多水源自動灌溉模塊模擬灌區水稻及葡萄的灌溉用水,基于灌區范圍內子流域輸出的灌溉模擬結果統計得到通濟橋水庫灌區不同水源類型的灌溉用水量,匯總得到整個灌區的灌溉用水量,其中不同水源類型包括子流域內部河道、塘堰、小型水庫、浦陽江以及通濟橋水庫。將1995-2017年灌溉季節(6-9月)的降雨量進行排頻,豐水年(25%)、平水年(50%)、干旱年(75%)以及特旱年(95%)的灌溉用水量模擬結果如圖4所示。圖4表明,灌區灌溉用水量基本呈現豐水年小、干旱年大的變化規律,分析其原因是豐水年降水較多,使得稻田和旱地出現缺水的情況較少,從而整個生育期內的灌溉需水量就較小,因此灌區豐水年的灌溉用水量較小,而干旱年則相反。但圖中顯示干旱年的灌溉用水量卻大于特旱年,其主要原因是特旱年降雨量過少,導致河道及塘堰中蓄積的水量較少,也即無水可取,使子流域內部河道、塘堰以及浦陽江的灌水量偏少,因此其整體灌溉用水量會少于干旱年。從另一個角度分析,表明特旱年產生了水源缺水。

圖4 不同水平年灌溉用水量模擬值
不同水源類型的灌溉供水比例是指各類水源用于作物灌溉的水量占總的灌溉用水量的百分比。利用模型模擬得到1995-2017年灌區不同水源類型的灌溉用水量及供水比例的多年平均值如表2所示。

表2 不同水源類型灌溉用水量模擬值及供水比例的多年平均值
表2表明,通濟橋水庫灌區的作物灌溉主要由通濟橋水庫供水,其次是子流域內部塘堰、河道以及浦陽江,小型水庫供水最少。除骨干水源通濟橋水庫及浦陽江以外,灌區灌溉用水有41.40%來源于灌區內部的河道、塘堰及小型水庫,因此若采用渠首計量的措施統計灌區灌溉用水量,則會產生較大的誤差,而其他水源供水由于點多量大且具有隨機性,又不便于計量,給灌溉用水量統計帶來困難。利用本文的改進SWAT模型則能模擬統計出灌區每一年不同水源類型的灌溉用水量,從而較為合理的推求出灌區總灌溉用水量。
對于灌區節水改造,其最終的表現形式體現為對灌溉水利用系數的影響,改進SWAT模型將灌溉水利用系數作為輸入的變量,因此,通過變動灌溉水利用系數則可模擬節水改造對灌溉用水量的影響。通濟橋水庫灌區現狀條件下的灌溉水利用系數為0.54,在此基礎上增加0.05來模擬節水改造后的灌溉用水量,見表3。

表3 多年平均情況下節水改造前后的灌溉用水量模擬值
表3表明,灌溉水利用系數增加0.05,通濟橋水庫灌區不同水源類型的灌溉用水量均減少,且主要體現在骨干水源通濟橋水庫的灌溉用水量減少,其主要原因是灌溉水利用系數提高后,骨干水源的輸配水損失減少更多,其他水源由于輸水線路短,減少幅度較少。
此外,對于水稻種植面積較多的灌區,除采取變動灌溉水利用系數的方法模擬不同節水情景的影響之外,改進SWAT模型還可輸入水稻不同灌溉模式的3個控制水深[5],從而模擬采用水稻不同節水灌溉模式的影響,因此該模型可用于分析節水改造對灌溉用水量及灌區水循環的影響。
1)針對南方多水源灌區水循環及灌溉取水特點對SWAT模型進行改進,尤其添加了多水源自動灌溉模塊用于模擬作物不同水源類型的灌水量?;诟倪MSWAT模型進行多水源灌區灌溉用水量模擬為灌區灌溉用水量統計分析提供了一種有效的方法。
2)改進SWAT模型構建的通濟橋水庫灌區水循環模型模擬的月徑流與實測值比較,率定期及驗證期的相對誤差均低于12%、決定系數均≥0.88、納什效率系數均≥0.85;4條干渠灌水量模擬值與觀測值相對誤差的絕對值最大不超過20%,校正時間段灌水量占全年灌水量比例模擬值與觀測值的相對誤差為7.64%,表明改進SWAT模型具有良好的模擬效果且可用于模擬灌區不同水源類型的灌水量。
3)模擬分析表明,通濟橋水庫灌區的灌溉用水量呈現豐水年小、干旱年大的變化規律;除監測的骨干水源通濟橋水庫及浦陽江以外,灌溉用水量41.40%來源于灌區內部的河道、塘堰及小型水庫,說明只監測干渠渠首灌水量無法統計整個灌區灌溉用水量;此外,隨著灌區節水改造投入,灌區灌溉水利用系數提高,其灌溉用水量減少。
相對于采用典型監測或現行灌溉定額與實際灌溉面積數據進行框算的方法,針對存在多種水源的灌區,利用分布式水文模型模擬統計灌溉用水量的方法更為準確有效。灌區分布式水文模型的研究處于起步階段,如何將灌區自然特征與人類活動有效結合并使得模型更加適應于灌區特點需要進一步研究。本文所述改進SWAT模型中的多水源自動灌溉模塊中僅考慮到多個地表水源的灌溉,故若用于地表水與地下水聯合應用灌區,則需要進一步改進;并且在設定河道灌溉水可利用系數與塘堰死庫容占比時,整個研究區采用相同的值,沒有考慮灌區空間異質性對該值的影響。
[1] 郭元裕. 南方丘陵地區庫、塘、渠網系統渠道設計流量的計算方法[J]. 水利學報,1965(4):62-66. Guo Yuanyu. Calculation method of channel design flow in reservoirs, ponds and canal network in hilly area in southern China[J]. Journal of Hydraulic Engineering, 1965(4): 62-66. (in Chinese with English abstract)
[2] 王士武,鄭世宗. 南方多水源型灌區灌溉水利用系數確定方法研究[J]. 中國農村水利水電,2016(8):109-112. Wang Shiwu, Zheng Shizong. Study on determining method of irrigation water use efficiency in multiple water source irrigation area in South China[J]. China Rural Water and Hydropower, 2016(8): 109-112. (in Chinese with English abstract)
[3] 沈瑩瑩,吉曄,張紹強. 我國農業用水量統計工作面臨的問題及建議[J]. 中國水利,2016(7):50-52. Shen Yingying, Ji Ye, Zhang Shaoqiang. Challenges faced by statistics of agricultural water use in China and advices[J]. China Water Resource, 2016(7): 50-52. (in Chinese with English abstract)
[4] 沈瑩瑩,張紹強,吉曄. 我國農業灌溉用水量統計方法的確定及工作開展情況[J]. 中國農村水利水電,2016(11):133-134. Shen Yingying, Zhang Shaoqiang, Ji Ye. The determination of the statistical methods for agricultural water use in China and its progressive situation[J]. China Rural Water and Hydropower, 2016(11): 133-134. (in Chinese with English abstract)
[5] 郭元裕. 農田水利學[M]. 第三版. 北京:中國水利水電出版社,2007.
[6] Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrological modeling and assessment part I: Model development[J]. Journal of the American Water Resources Association, 1998, 34(1): 91-101.
[7] Neitsch S, Arnold J, Kiniry J, et al. Soil and water assessment tool theoretical documentation, version 2009[R]. Texas: Texas Water Resources Institute, 2011.
[8] 王中根,劉昌明,黃友波. SWAT模型的原理、結構及應用研究[J]. 地理科學進展,2003,22(1):79-86. Wang Zhonggen, Liu Changming, Huang Youbo. The theory of SWAT model and its application in Haihe Basin[J]. Progress in Geography, 2003, 22(1): 79-86. (in Chinese with English abstract)
[9] Ahmad K, Gassman P W, Kanwar R. Evaluation of the tile flow component of the SWAT model under different management systems[R]. Iowa: Center for Agricultural and Rural Development, 2002.
[10] Gosain A K, Rao S, Srinivasan R, et al. Return‐flow assessment for irrigation command in the Palleru river basin using SWAT model[J]. Hydrological Processes, 2005, 19(3): 673-682.
[11] 鄭捷,李光永,韓振中,等. SWAT模型在水資源管理中研究進展與灌區應用展望[J]. 土壤,2009,41(5):689-695. Zheng Jie, Li Guangyong, Han Zhenzhong, et al. Advance of SWAT in regional water resource management and application prospect in irrigation district[J]. Soils, 2009, 41(5): 689-695. (in Chinese with English abstract)
[12] 李穎,王康,周祖昊. 基于SWAT模型的東北水稻灌區水文及面源污染過程模擬[J]. 農業工程學報,2014,30(7):42-53. Li Ying, Wang Kang, Zhou Zuhao. Simulation of drainage and agricultural non-point source pollutions transport processes in paddy irrigation district in North-East China using SWAT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 42-53. (in Chinese with English abstract)
[13] 樊慶鋅,孟婷婷,李金夢,等. 江川灌區旱田改水田加劇水體氮磷污染[J]. 農業工程學報,2014,30(12):79-86. Fan Qingxin, Meng Tingting, Li Jinmeng, et al. Changing from dry field to paddy field intensifying water pollution by nitrogen and phosphorus loads in Jiangchuan irrigation area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 79-86. (in Chinese with English abstract)
[14] Ahmadzadeh H, Morid S, Delavar M, et al. Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment[J]. Agricultural Water Management, 2015, 175: 15-28.
[15] 王建鵬,崔遠來. 水稻灌區水量轉化模型及其模擬效率分析[J]. 農業工程學報,2011,27(1):22-28. Wang Jianpeng, Cui Yuanlai. Modified SWAT for rice-based irrigation system and its assessment [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 22-28. (in Chinese with English abstract)
[16] 于穎多,焦平金,許迪,等. 排水循環灌溉驅動的稻區水循環模型與評價[J]. 農業工程學報,2016,32(11):138-143. Yu Yingduo, Jiao Pingjin, Xu Di, et al. Water cycle model and its assessment under cyclic irrigation of drainage water in paddy district[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 138-143. (in Chinese with English abstract)
[17] 代俊峰,崔遠來. 基于SWAT的灌區分布式水文模型:Ⅰ.模型構建的原理與方法[J]. 水利學報,2009,40(2):145-152. Dai Junfeng, Cui Yuanlai. Distributed hydrological model for irrigation area based on SWAT Ⅰ. Principle and method[J]. Journal of Hydraulic Engineering, 2009, 40(2): 145-152. (in Chinese with English abstract)
[18] 代俊峰,崔遠來. 基于SWAT的灌區分布式水文模型:Ⅱ.模型應用[J]. 水利學報,2009,40(3):311-318. Dai Junfeng, Cui Yuanlai. Distributed hydrological model for irrigation area based on SWAT II. Model application[J]. Journal of Hydraulic Engineering, 2009, 40(3): 311-318. (in Chinese with English abstract)
[19] 陳強,秦大庸,茍思,等. SWAT模型與水資源配置模型的耦合研究[J]. 灌溉排水學報,2010,29(1):19-22. Chen Qiang, Qin Dayong, Gou Si, et al. Research of the coupling of SWAT model and water allocation model[J]. Journal of Irrigation and Drainage, 2010, 29(1): 19-22. (in Chinese with English abstract)
[20] Xie Xianhong, Cui Yuanlai. Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice[J]. Journal of Hydrology, 2011, 396(1): 61-71.
[21] Kang M S, Park S W, Lee J J, et al. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields[J]. Agricultural Water Management, 2006, 79(1): 72-92.
[22] 仕玉治,張弛,周惠成,等. SWAT模型在水稻灌區的改進及應用研究[J]. 水電能源科學,2010,28(7):24-28. Shi Yuzhi, Zhang Chi, Zhou Huicheng, et al. Development and application of SWAT model to paddy district in watershed scale[J]. Water Resources & Power, 2010, 28(7): 24-28. (in Chinese with English abstract)
[23] 鄭捷,李光永,韓振中,等. 改進的SWAT模型在平原灌區的應用[J]. 水利學報,2011,42(1):88-97. Zheng Jie, Li Guangyong, Han Zhenzhong, et al. Application of modified SWAT model in plain irrigation district[J]. Journal of Hydraulic Engineering, 2011, 42(1): 88-97. (in Chinese with English abstract)
[24] Dechmi F, Burguete J, Skhiri A. SWAT application in intensive irrigation systems: Model modification, calibration and validation[J]. Journal of Hydrology, 2012, 470(14): 227-238.
[25] Sakaguchi A, Eguchi S, Kato T, et al. Development and evaluation of a paddy module for improving hydrological simulation in SWAT[J]. Agricultural Water Management, 2014, 137(5): 116-122.
[26] Chen Y, Marek G W, Marek T H, et al. Improving SWAT auto-irrigation functions for simulating agricultural irrigation management using long-term lysimeter field data[J]. Environmental Modelling & Software, 2018, 99: 25-38.
[27] 李碩,賴正清,王橋,等. 基于SWAT模型的平原河網區水文過程分布式模擬[J]. 農業工程學報,2013,29(6):106-112. Li Shuo, Lai Zhengqing, Wang Qiao, et al. Distributed simulation for hydrological process in Plain River network region using SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 106-112. (in Chinese with English abstract)
[28] 孫麗,陳曦煒,裴志遠. 基于SWAT模型的清江流域中上游旱災監測[J]. 農業工程學報,2014,30(21):129-137. Sun Li, Chen Xiwei, Pei Zhiyuan. Drought monitoring of upper and middle reaches of Qingjiang Basin based on SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 129-137. (in Chinese with English abstract)
[29] 程艷,敖天其,黎小東,等. 基于參數移植法的SWAT模型模擬嘉陵江無資料地區徑流[J]. 農業工程學報,2016,32(13):81-86. Cheng Yan, Ao Tianqi, Li Xiaodong, et al. Runoff simulation by SWAT model based on parameters transfer method in ungauged catchments of middle reaches of Jialing River [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 81-86. (in Chinese with English abstract)
[30] Abbaspour K C, Vejdani M, Haghighat S. SWAT-CUP calibration and uncertainty programs for SWAT[J]. Modsim International Congress on Modelling & Simulation Land Water & Environmental Management Integrated Systems for Sustainability, 2007, 364(3): 1603-1609.
[31] Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.
Simulation and analysis of irrigation water consumption in multi-source water irrigation districts in Southern China based on modified SWAT model
Cui Yuanlai1, Wu Di1, Wang Shiwu2, Wen Jinhua2, Wang Helong2
(1.430072,; 2.310020,)
The statistics of irrigation water consumption in irrigation districts are of great significance to implement the most stringent water resources management system. On account of the impossibility of complete measurement, it is quite difficult to accurately calculate the irrigation water consumption in multi-source water irrigation districts in the south of China. Therefore, a precise and effective way is needed to estimate irrigation water consumption in multi-source water irrigation districts. In this study, the Soil and Water Assessment Tool (SWAT) was modified according to the characteristics of hydrologic cycle and irrigation operation in the multi-source water irrigation district in the south of China for accurately estimating irrigation water consumption. The water balance modules of paddy field were modified in SWAT model, in addition, a canal seepage loss calculation was added to SWAT model. Specifically, a multi-source water auto-irrigation module was added as one of the components of SWAT model to estimate the irrigation water consumptions from different types of water sources. Furthermore, the modified SWAT model with a digital elevation model (DEM), a soil map, a land cover map and multi-year meteorological data, was applied to build a distributed hydrological model of Tongjiqiao Reservoir Irrigation District (TID) in Zhejiang Province. Moreover, the observed monthly runoff was used to calibrate (1995-2007) and validate (2008-2015) the simulated runoff via SWAT Calibration and Uncertainty Programs (SWATCUP), and the observed irrigation water consumptions of 4 main irrigation canals in 2017 were used to calibrate the simulated irrigation water consumptions. The results showed that the simulated monthly runoff matched well with the observed values in calibration and validation periods, the absolute relative errors (RE) were less than 12%, the coefficients of determination (2) were greater than or equal to 0.88, and the Nash–Sutcliffe efficiencycoefficients (NS) were greater than or equal to 0.85 in both periods; in addition, the maximum of the absolute relative errors between simulated irrigation water consumptions and the observed values of 4 main irrigation canals was less than 20%, indicated that the modified SWAT model has a good performance in the multi-source water irrigation districts. Additionally, the irrigation water consumptions in different hydrological years in TID, multi-year averages of simulated irrigation water consumptions and water supply proportions of different types of water source were simulated and calculated based on the modified SWAT model, in addition, the effect of water saving reform on irrigation water consumption was also analyzed. And the results indicated that the irrigation water consumption is small in wet year and large in dry year. Moreover, in addition to the key water sources (namely the Tongjiqiao Reservoir and the Puyang River), 41.40% of the irrigation water consumption came from the rivers inside sub-basins, ponds and small-sized reservoirs, indicating that the amounts of water monitored at the head of canals fetching water from the key water sources did not represent the irrigation water consumption in irrigation districts. Beyond that, with the development of water saving reform in irrigation district, the irrigation water use efficiency increased so that the irrigation water consumption decreased. Consequently, the modified SWAT model can be used to simulate and analyze the irrigation water consumption in multi-source water irrigation districts accurately and reasonably, and the simulation of irrigation water consumption in multi-source water irrigation districts based on the modified SWAT model is an effective and rational method for calculation and analysis of irrigation water consumption in irrigation districts in the south of China, which satisfied the requirements of the total amount of water statistics and the most stringent water resources management system.
irrigation; models; reservoirs; multi-source water irrigation district; modified SWAT; different types of water sources
崔遠來,吳 迪,王士武,溫進化,王賀龍. 基于改進SWAT模型的南方多水源灌區灌溉用水量模擬分析[J]. 農業工程學報,2018,34(14):94-100. doi:10.11975/j.issn.1002-6819.2018.14.012 http://www.tcsae.org
Cui Yuanlai, Wu Di, Wang Shiwu, Wen Jinhua, Wang Helong. Simulation and analysis of irrigation water consumption in multi-source water irrigation districts in Southern China based on modified SWAT model [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 94-100. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.14.012 http://www.tcsae.org
2018-01-31
2018-05-10
國家自然科學基金(51579184);浙江省水利科技計劃項目(RC1712)
崔遠來,江西武寧人,教授,主要從事節水灌溉理論與技術研究。Email:YLCui@whu.edu.cn
10.11975/j.issn.1002-6819.2018.14.012
S274.2
A
1002-6819(2018)-14-0094-07