999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

淺談高中數學中的導數

2018-07-08 09:39:58焦淑寧
試題與研究·教學論壇 2018年3期
關鍵詞:數學

焦淑寧

摘 要:隨著新課改的深入,高考對導數的考查逐漸加強,而三次函數問題是中學教材研究導數的重要載體,所以三次函數成為命題中的新亮點。由于三次函數的導數為二次函數,因此,以三次函數為載體,背景新穎獨特,利用導數解決的問題在考試中屢見不鮮。下面通過對考題進行分析,以提高學生對三次函數的導數問題的認識。

關鍵詞:數學;三次函數;導數

一、三次函數的單調性問題

例1.已知函數f(x)=4x3+3tx2-6tx+t-1,其中t∈R。

(1)當t=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;

(2)當t≠0時,求f(x)的單調區間。

解析:第一問考查導數的幾何意義,解決關鍵是求出切線的斜率;第二問通過三次函數求導后得到二次函數,由于二次函數對應的方程根含字母,需要對兩個根進行討論。

(1)當t=1時,f(x)=4x3+3x2-6x,f(0)=0,f′(x)=12x2+6x-6,f′(0)=-6。所以曲線y=f(x)在點(0,f(0))處的切線方程為y=-6x。

(2)f′(x)=12x2+6tx-6t2,令f′(x)=0,解得x=-t或x=■,因為t≠0,以下分兩種情況討論:

①若t<0,f′(x)<0的解集是■-t;

所以,f(x)的單調遞增區間是-∞,■,(-t,+∞);

f(x)的單調遞減區間是■,-t。

②若t>0,f′(x)>0的解集為(-∞,-t)∪■,+∞;

所以,f(x)的單調遞增區間是(-∞,-t),■,+∞;

f(x)的單調遞減區間是-t,■。

點評:本題是直接考查導數的應用,需要對根進行討論,增加了問題的難度,此外利用導數判斷函數單調性及函數區間應注意:在利用導數討論函數的單調區間時,首先要確定函數的定義域,解決問題的過程中,只能在定義域內,通過討論導數的符號,來判斷函數的單調區間。

二、三次函數的最值問題

例2.設f(x)=-■x3+■x2+2ax

(1)若f(x)在■,+∞上存在單調遞增區間,求a的取值范圍;

(2)當0

解析:若對于三次函數f(x)在區間[a,b]存在單調遞增區間,則只需f(x)的導函數在區間[a,b]上的最大值大于0即可。第二問顯然考查導數的逆向應用,根據最小值利用待定系數法求得參數a,再求最大值。

(1)由f′(x)=-x2+x+2a=-x-■2+■+2a

當x∈■,+∞時,f′(x)的最大值為f′■=■+2a;

令■+2a>0,得a>-■,所以,當a>-■時,f(x)在■,+∞上存在單調遞增區間。

(2)令f′(x)=0,得兩根x1=■,x2=■。

所以f(x)在(-∞,x1),(x2,+∞)上單調遞減,在(x1,x2)上單調遞增。

當0

又f(4)-f(1)=-■+6a<0,即f(4)

所以f(x)在[1,4]上的最小值f(4)=8a-■=-■

得a=1,x2=2,從而f(x)在[1,4]上的最大值為f(2)=■。

點評:通過已知函數的最值確定參數的值或取值范圍,是導數的逆向應用,也是導數應用的一大亮點,充分展現了導數應用的活力。最值一般在極值點或端點處取,利用這一特征可以快速解決最值問題。

三、三次函數的極值問題

例3 已知函數f(x)=x3+3ax2+(3-6a)x-12a-4{a∈R}

(Ⅰ)證明:曲線y=f(x)在x=0處的切線過點

(2,2);

(Ⅱ)若f(x)在x=x0處取得極小值,x0∈(1,3),求a的取值范圍。

解析:利用可導函數求函數極值的基本方法:設函數y=f(x)在點x0處連續不斷且f′(x)=0,若在點x0附近左側f′(x)>0,右側f′(x)<0,則f(x0)為函數的極大值;若在點x0附近左側f′(x)<0,右側f′(x)>0,則f(x0)為函數的極小值。

【解析】(Ⅰ)f′(x)=3x2+6ax+(3-6a),f′(0)=3-6a,又f(0)=12a-4

曲線y=f(x)在x=0的切線方程是:y-(12a-4)=(3-6a)x,在上式中令x=2,得y=2,所以曲線y=f(x)在x=0的切線過點(2,2);

(Ⅱ)由f′(x)=0得x2+2ax+1-2a=0。

(i)當-■-1≤a≤■-1時,f(x)沒有極小值;

(ii)當a>■-1或a<-■-1時,由f′(x)=0得

x1=-a-■,x2=-a+■,

故x0=x2。由題設知1<-a+■<3。

當a>■-1時,不等式1<-a+■<3無解。

當a<-■-1時,解不等式1<-a+■<3得-■

綜合(i)(ii)得a的取值范圍是-■,-■-1。

點評:解決本題的關鍵是求出導函數利用判別式確定參數a在哪個范圍存在極值,具體確定極小值點,再轉化為關于a的不等式求解。

(作者單位:河南省洛陽市第一高級中學)

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 欧美日本在线| 91 九色视频丝袜| 亚洲天堂久久| 午夜国产不卡在线观看视频| 免费啪啪网址| 成人毛片在线播放| 色综合激情网| 久久青草热| 国产精品蜜臀| 日韩经典精品无码一区二区| 欧美成人综合在线| 国产成人精品午夜视频'| 最近最新中文字幕免费的一页| 国产精品第| 欧美精品二区| 婷婷中文在线| 国产精品粉嫩| 97色伦色在线综合视频| 国产精品无码AⅤ在线观看播放| 欧美综合中文字幕久久| 欧美午夜小视频| 性色在线视频精品| 婷婷六月色| 人与鲁专区| 一本色道久久88| 日韩黄色大片免费看| 亚洲毛片网站| 日韩午夜片| 国产国产人成免费视频77777| 亚洲国产亚综合在线区| 88av在线| 亚洲高清资源| 国产美女91呻吟求| 亚洲综合一区国产精品| 色一情一乱一伦一区二区三区小说 | 婷婷99视频精品全部在线观看| 狠狠操夜夜爽| 日韩区欧美区| 粉嫩国产白浆在线观看| 亚洲一级毛片| 中文字幕人妻av一区二区| 日本午夜视频在线观看| 成年人久久黄色网站| 色悠久久综合| 日韩精品专区免费无码aⅴ| 亚洲乱码视频| 久久人人妻人人爽人人卡片av| 99re在线免费视频| 99久久精品免费看国产电影| 99精品国产自在现线观看| 91久久国产成人免费观看| 19国产精品麻豆免费观看| 国产女人在线视频| 青青草国产免费国产| 国产浮力第一页永久地址| 不卡午夜视频| 国产不卡在线看| 亚洲国产精品日韩专区AV| 亚洲日本韩在线观看| 国产在线自揄拍揄视频网站| 久久婷婷综合色一区二区| 亚洲欧洲自拍拍偷午夜色| 青青青亚洲精品国产| 香蕉精品在线| 毛片国产精品完整版| 99re免费视频| 国产精品久久精品| 国产在线八区| 国产精品永久在线| 99手机在线视频| 亚洲成肉网| 国产又色又刺激高潮免费看| 精品無碼一區在線觀看 | 亚洲日韩久久综合中文字幕| 国产日韩欧美一区二区三区在线| 中文字幕va| 日韩无码黄色| 国产高清在线丝袜精品一区| 国内精品自在自线视频香蕉| 丝袜高跟美脚国产1区| 不卡视频国产| 亚洲看片网|