秦緒健
在高中物理學(xué)習(xí)中,物理圖像中斜率的應(yīng)用非常廣泛,有不少同學(xué)對(duì)此缺乏正確的分析,常常混淆斜率的應(yīng)用或者忽略有關(guān)限制條件。如果對(duì)這類(lèi)問(wèn)題模棱兩可,領(lǐng)會(huì)不深刻,會(huì)導(dǎo)致物理學(xué)習(xí)出現(xiàn)較大困難,做題時(shí)有會(huì)而不對(duì),對(duì)而不全的情況,甚至對(duì)有些題目無(wú)從下手。
下面對(duì)斜率的有關(guān)問(wèn)題進(jìn)行討論。
一、割線(xiàn)斜率與切線(xiàn)斜率的比較
從數(shù)學(xué)知識(shí)可知,斜率是表示一條直線(xiàn)對(duì)橫坐標(biāo)軸的傾斜程度,通常是用直線(xiàn)和水平線(xiàn)的夾角的正切來(lái)表示。如圖1所示,Ⅰ線(xiàn)為P點(diǎn)與坐標(biāo)原點(diǎn)相連接的割線(xiàn),其斜率k=,即過(guò)原點(diǎn)的割線(xiàn)斜率為相應(yīng)的y與x瞬時(shí)值的比值;Ⅱ直線(xiàn)為P點(diǎn)的切線(xiàn),其斜率k1=,即切線(xiàn)斜率為相應(yīng)的y與x微小變化量的比值。顯然,在圖線(xiàn)為曲線(xiàn)時(shí),某點(diǎn)的切線(xiàn)斜率與過(guò)該點(diǎn)和原點(diǎn)的割線(xiàn)斜率一般并不相等,只有在圖線(xiàn)為過(guò)原點(diǎn)的直線(xiàn)時(shí),兩者的斜率才一定相等。
因此,在物理圖像中,兩種斜率所反映的問(wèn)題是不同的,用切線(xiàn)的斜率來(lái)表示的是用微小變化量的比值來(lái)反映的物理量,如:
1.速度v=,在x-t圖像中,切線(xiàn)斜率表示速度的瞬時(shí)值。
2.加速度a=,在v-t圖像中,切線(xiàn)斜率表示加速度的瞬時(shí)值。
3.電流強(qiáng)度I=,在q-t圖像中,切線(xiàn)斜率表示電流強(qiáng)度的瞬時(shí)值。
4.電動(dòng)勢(shì)E=n,在Ф-t圖像中,切線(xiàn)斜率表示電動(dòng)勢(shì)的瞬時(shí)值。
用過(guò)原點(diǎn)的割線(xiàn)來(lái)表示的是相應(yīng)瞬時(shí)值的比值來(lái)反映的物理量,如:
1.電阻R=,在U-I圖像中,過(guò)原點(diǎn)的割線(xiàn)斜率表示電阻值。
2.質(zhì)量倒數(shù)=,在a-F圖像中,過(guò)原點(diǎn)的割線(xiàn)斜率表示質(zhì)量的倒數(shù)值。
下面探討運(yùn)用斜率法解題:
例1:列車(chē)在恒定功率機(jī)車(chē)牽引下,從車(chē)站出發(fā)行駛5min,使速度達(dá)到20m/s,那么在這段時(shí)間內(nèi),列車(chē)行駛的路程( )
A.一定小于3km B.一定等于3km
C.一定大于3km D.不能確定
解析 列車(chē)在恒定功率下行駛,牽引力隨速度增加而減小。因此,列車(chē)做初速度為零的加速度不斷減小的加速運(yùn)動(dòng)。由此可做出v-t圖像①曲線(xiàn)(圖2),圖②直線(xiàn)為加速度不變的參考的v-t圖線(xiàn)。比較①②線(xiàn)所圍的“面積”,便可得答案C正確。
中學(xué)里解此題,若不做v-t圖像,不用斜率法幾乎不可能求解的。斜率法解此題形象直觀。
例2:一個(gè)標(biāo)有“220V 60W”的白熾燈泡,加上的電壓U由零逐漸增大到220V,在此過(guò)程中,電壓U與電流I的關(guān)系可用圖線(xiàn)表示題中給出的四個(gè)圖線(xiàn)中,符合實(shí)際的是( )
解析 因金屬導(dǎo)體的電阻率隨溫度的升高而增大,故加到白熾燈泡上的電壓由零逐漸增大到220V的過(guò)程中,鎢絲的電阻值逐漸增大。因此,過(guò)U-I 曲線(xiàn)上的點(diǎn)和原點(diǎn)的割線(xiàn)的斜率,隨U(或I)的增大而增大,從而可判定圖線(xiàn)B是符合實(shí)際情況的。
此題存在著用切線(xiàn)斜率來(lái)判斷的錯(cuò)誤,需引起注意。
二、用斜率表達(dá)物理量的限制條件
應(yīng)用斜率解決物理問(wèn)題時(shí),在應(yīng)用k=tanа時(shí),若忽視限制條件,不考慮物理意義,容易出現(xiàn)數(shù)學(xué)與物理知識(shí)的矛盾,很多同學(xué)卻往往忽略這一點(diǎn)。
對(duì)于斜率,數(shù)學(xué)上是這樣定義的:
“直線(xiàn)傾角為а時(shí),斜率k=tanа,0≤а≤∏”。它是在橫縱坐標(biāo)軸標(biāo)度相同時(shí)方能成立的。
例1:感應(yīng)電動(dòng)勢(shì)E=ΔФ/Δt=tanа=斜率,依據(jù)原文中給定的已知條件,我們可以通過(guò)兩條途徑計(jì)算電動(dòng)勢(shì)的數(shù)值。
解法一:由圖可見(jiàn),如果以縱橫坐標(biāo)增量的比值計(jì)算電動(dòng)勢(shì):
E= tanа=ΔФ/Δt=(20-5)/(4-1)=5(V)
解法二:若用E=tan45°=1V
上述計(jì)算,在角度相同(同是а)的情況下卻得到了不同的正切值,亦即兩種方法得到電動(dòng)勢(shì)的數(shù)值是不同的。
我們知道,在三角函數(shù)中,正切值tanа是隨著角度а(自變量)而變化的。角度а相同時(shí)就應(yīng)該有相同的正切值,以上由于計(jì)算方法的不同而得到不同的結(jié)果,很顯然解法二是不正確的。
由此可見(jiàn),直線(xiàn)傾角а的大小與它所在的坐標(biāo)系的橫縱坐標(biāo)單位長(zhǎng)度(標(biāo)度)的取值有關(guān),標(biāo)度不同就會(huì)有不同的а和tanа值。因此,用E= tan45°計(jì)算電動(dòng)勢(shì)時(shí),橫坐標(biāo)t與縱坐標(biāo)Ф單位長(zhǎng)度必須取值相同時(shí),才能有唯一的角度а和正切值tanа。原題所給圖形的橫縱坐標(biāo)標(biāo)度不一致,所以在這種情況下,就不能用斜率計(jì)算電動(dòng)勢(shì)的數(shù)值。
在物理學(xué)中,用斜率tanа表達(dá)有關(guān)物理量往往比較簡(jiǎn)潔明了,因此在物理量的表述上應(yīng)用頗多。但我們一定要注意限制條件:只有橫縱坐標(biāo)標(biāo)度相同時(shí),才能用斜率tanа計(jì)算有關(guān)物理量,否則只能用縱橫坐標(biāo)增量比值的計(jì)算方法。總之,我們?cè)谖锢韺W(xué)習(xí)中,要把單純的數(shù)學(xué)知識(shí)運(yùn)用同物理意義有機(jī)結(jié)合起來(lái),而不是單純的套用公式而忽視物理意義,以免出現(xiàn)錯(cuò)誤的多值結(jié)果。
總之,研究物理圖像問(wèn)題時(shí),首先注意分析斜率的物理意義,搞清割線(xiàn)斜率和切線(xiàn)斜率的意義,不能混淆;其次,注意斜率表達(dá)物理量的限制條件,搞清標(biāo)度和直線(xiàn)夾角的關(guān)系,通過(guò)分析做出正確的判斷。