摘要:無約束優(yōu)化問題是人們在探討優(yōu)化問題的典型和基礎(chǔ)。為了解決這一問題,這一問題被提出時(shí),牛頓通過研究確定了一種快速收斂的方式,解決了最速下降法存在的收斂性局限問題。但與此同時(shí),牛頓算法不能解決一般非凸函數(shù)求解中迭代點(diǎn)矩陣正定不定的問題。最速下降法和牛頓算法可以分別解決迭代點(diǎn)矩陣負(fù)定或半負(fù)定、正定的問題。在前人研究的修正牛頓算法的基礎(chǔ)上,筆者提出對最速下降法、牛頓算法及修正牛頓算法的優(yōu)勢進(jìn)行結(jié)合,從而獲得一種精細(xì)修正牛頓算法,用以解決迭代點(diǎn)矩陣正定不定的問題,收效良好,可以進(jìn)行全局的收斂分析。
關(guān)鍵詞:無約束優(yōu)化問題;牛頓算法;最速下降法;修正牛頓算法
微分方程是微積分學(xué)科重要的研究內(nèi)容,微積分奠基人Newton和Leibniz分別在其著作中就有關(guān)微分方程的問題進(jìn)行過論證,且廣泛應(yīng)用于多個(gè)學(xué)科的研究當(dāng)中。而無約束優(yōu)化問題正式微積分這一學(xué)科發(fā)展的結(jié)果,并且廣泛適用于計(jì)算機(jī)應(yīng)用的科學(xué)之中。在進(jìn)行無約束有過時(shí),往往為了獲得最優(yōu)解及實(shí)現(xiàn)快速收斂,采取多種算法。但是根據(jù)應(yīng)用算法的不同,其全局性和收斂速度有所區(qū)別。作為微積分的奠基人Newton所提出的牛頓算法已經(jīng)被當(dāng)今科研人員結(jié)合實(shí)際問題進(jìn)行修正和拓展。本文正是在前人研究的基礎(chǔ)之上進(jìn)行結(jié)合和優(yōu)化,從而尋求一種全局收斂效果良好的無約束優(yōu)化問題的求解方法。
1 問題的提出
無約束優(yōu)化被認(rèn)為是最優(yōu)化問題的基礎(chǔ)。在進(jìn)行無約束優(yōu)化問題的求解過程中,通過使用牛頓法、擬牛頓法、共軛梯度法、最速下降法等算法。對于共軛梯度法而言,它對問題初始值的依賴性比較大,很難獲得全局收斂的最小值。對最速下降法而言,它是一種結(jié)構(gòu)簡單實(shí)現(xiàn)容易的算法,能夠較好的實(shí)現(xiàn)全局收斂。而根據(jù)理論驗(yàn)證,這種方法的收斂速度比較慢,通常職能達(dá)到局部收斂速度。牛頓法相比較而言,收斂速度更快,所使用的范圍也更廣。雖然牛頓法擁有二階收斂速度,但是迭代點(diǎn)的問題即Hessian矩陣正定不確定始終對其應(yīng)用有所影響。因此相關(guān)學(xué)者也紛紛提出了牛頓法的優(yōu)化,如修正牛頓法。那么本文試圖在已有的修正牛頓法的基礎(chǔ)上,結(jié)合最速下降法和牛頓法的基本原理,提出對型如函數(shù)
minf(x),x∈Rn(1)
其中f:Rn→R下的二次連續(xù)可微函數(shù)的無約束優(yōu)化問題進(jìn)行求解。其核心就是要將迭代點(diǎn)目標(biāo)函數(shù)的一階、二階信息充分利用,選取合理的搜索方向,從而建立全局收斂性。
2 精細(xì)修正牛頓法的計(jì)算方法分析
本文所提出的精細(xì)修正牛頓算法是綜合了最速下降法、牛頓法以及修正牛頓法的優(yōu)點(diǎn)獲得的。主要就是為了解決迭代點(diǎn)hessian矩陣正定不確定的問題。那么首先要求根據(jù)迭代點(diǎn)處的目標(biāo)函數(shù)的一階、二階信息來確定合理的搜索方向。
現(xiàn)在可以假設(shè)函數(shù)(1)的迭代點(diǎn)為xk,那么此時(shí)可以獲得該迭代點(diǎn)處目標(biāo)函數(shù)的梯度函數(shù)為gk=f(xk)。那么結(jié)合hessian矩陣的函數(shù)關(guān)系Gk=2f(xk).如果gk=f(xk)≠0。那么可以對Gk的矩陣性質(zhì)進(jìn)行研究。如果Gk為正定矩陣,那么目標(biāo)函數(shù)f:Rn→R下的二次連續(xù)可微性可知,迭代點(diǎn)xk附近為嚴(yán)格的凸函數(shù)。那么此時(shí)可以確定搜索方向?yàn)閐k=-G-1kgk。搜索方向確定為牛頓法方向。
如果Gk為負(fù)定或者半負(fù)定矩陣時(shí),則根據(jù)目標(biāo)函數(shù)的連續(xù)可微性質(zhì)得知,迭代點(diǎn)處為凹函數(shù),那么此時(shí)的搜索方向可以確定dk=-gk。也就是最速下降法的搜索方向。
上述兩種都是已知的搜索方向確定。那么如果Gk的矩陣性質(zhì)為不定或者半正定時(shí),我們就需要構(gòu)建新的方式來對當(dāng)前的矩陣性質(zhì)就行修正,從而獲得可以繼續(xù)進(jìn)行研究的正定矩陣。根據(jù)迭代點(diǎn)矩陣Gk的自身性質(zhì),其為實(shí)對稱陣,必然存在可逆矩陣Pk使得P-1kGkPk為對角陣。那么根據(jù)矩陣函數(shù)的特征,確定λki為2f(xk)的非零特征值,同樣該值為對角陣上的非零元素,其中i=1,2,…,n,s≤n。
那么該對角陣如下所示:
Q=(qij)=P-1k▽2f(xk)Pk=
[JB((]λk10…0 0 … 0
0 λk2…0 0 … 0
[KG*2][KG*3]……[KG-1]…[KG*2][KG*3]…[KG-*2]…[KG*2]…
0 0…λk2 0 … 0
0 0…0 0 … 0
[KG*2][KG*3]……[KG-1]…[KG*2][KG*3]…[KG-*2]…[KG*2]…
0 0…0 0…0[JB))]
(2)
(2)如果q-kij=[JB({]max[JB({]1-eλki,δ[JB)}],λki≤0[]λki,λki>0[JB)]
則可以獲得Q-=(q-ijk)那么通過該方法獲得的修正矩陣G-k=P-1kO-Pk(3)就可以成為可處理的正定矩陣。那么此時(shí)的搜索方向確定為dk=-G--1kgk
那么根據(jù)上述迭代點(diǎn)xk的搜索方向可以看出,dk始終為迭代點(diǎn)的下降方向,并且滿足WolfePowell線搜索規(guī)則。那么尋找ak滿足下列條件:
[JB({]f(xk+akdk)≤f(xk)+σ1akgTkdk
gTk+1dk≥σ2gTkdk[JB)]
其中0<σ1<1/2,且1>σ2>σ1,σ1,σ2均為常數(shù)。
基礎(chǔ)上述條件,我們可以得出精細(xì)修正牛頓法的在處理無約束優(yōu)化問題時(shí)的基本步驟。
①設(shè)定初始點(diǎn)x0Rn,精度ε>0,參數(shù)δ>0,并給定常數(shù)0≤σ1<1/2且1>σ2>σ1,此時(shí)k值為0。當(dāng)‖gk‖≤ε時(shí),即終止運(yùn)算,求得無約束優(yōu)化問題(1)的解為xk。
②在未達(dá)到步驟①的要求時(shí),根據(jù)迭代點(diǎn)處矩陣函數(shù)的正定性質(zhì),確定搜索方向。若矩陣為正定,則可以確定為牛頓法方向搜索即dk=-G-1kgk,其中Gk=2f(xk)。若確定為負(fù)定或者半負(fù)定矩陣時(shí),那么此時(shí)的搜索方向可以確定為最速下降法dk=-gk。如果矩陣為不定或者半正定時(shí)就需要對矩陣進(jìn)行修正,利用其實(shí)對稱陣的性質(zhì),構(gòu)造正定矩陣G-k=P-1kQ-Pk
③根據(jù)WolfePowell的線性搜索規(guī)則,確定步長ak,并且令xk+1=xk+akdk,k:=k+1,可以獲得‖gk‖≤ε,終止運(yùn)算并取得最最優(yōu)解。
3 無約束優(yōu)化問題的精細(xì)修正牛頓算法的全局收斂性研究
那么在獲得精細(xì)修正牛頓算法的一般步驟后,我們就需要對其解決無約束優(yōu)化問題的全局收斂性進(jìn)行研究。從牛頓算法來看,其具有局部收斂速度快的特征,那么在進(jìn)行精細(xì)修正后,其能夠獲得較好的全局收斂性。筆者將通過以下假設(shè)、引理進(jìn)行推論和驗(yàn)證。本文所研究的無約束優(yōu)化問題函數(shù)型為:minf(x),x∈Rn
(1),且目標(biāo)函數(shù)f:Rn→R
下的二次連續(xù)可微函數(shù)。那么由此可以進(jìn)行相關(guān)的假設(shè):首先給出基本假設(shè)1、2。
假設(shè)1 :目標(biāo)函數(shù)f:Rn→R是二次連續(xù)可微函數(shù),那么給定x0∈Rn,水平集F=[JB({]x0∈Rn|f(x)≤f(x0)[JB)}]
假設(shè)2 假設(shè)水平集F的領(lǐng)域?yàn)棣?,那么函?shù)f(x)的梯度函數(shù)g(x)=▽f(x)在領(lǐng)域γ內(nèi)存在常數(shù)m>0使得不等式(4)成立:
對于任意y,z屬于領(lǐng)域γ有‖▽f(y)-▽f(z)‖|≤m‖y-z‖(4)
那么根據(jù)引理1 假設(shè)B∈Rn×n是任意實(shí)對稱矩陣,那么矩陣B的特征值可以表示為λ(B)那么λ作為全體對稱矩陣機(jī)上的函數(shù),該概述的任意算子范數(shù)則關(guān)于矩陣B連續(xù)。由此可以得出推論:
當(dāng)假設(shè)1成立時(shí),可以獲得兩個(gè)推論:
推論1矩陣值函數(shù)g:Rn→Rn×n,aij:Rn→R,
g(x)=2fx=(2f[]xixj)n×n△(aij)n×n存在常數(shù)h1使得所有x∈F(F為有界閉集)使得不等式(5)成立:
|aij(x)|
那么矩陣值函數(shù)g的特征值在水平集F上有界。
推論2 矩陣值函數(shù)g-:Rn→Rn×n,a-ij:Rn→R,g-=P-1kQ-Pk,存在常數(shù)h2使得所有x∈F(F為有界閉集)使得不等式(6)成立:
|a-ij(x)|
那么矩陣值函數(shù)g的特征值在水平集F上有界。
根據(jù)矩陣的非零特征值的形態(tài)結(jié)合假設(shè)1、2和引理1可以獲得下列推論
推論3 矩陣特征值序列{λkimin},{q-kijmin},存在常數(shù)h1,h2且h1,h2∈(0,+∞)使得任意k值都有不等式(7)成立。
λkimin>h1,q-kijmin>h2其中1≤i≤n(7)
引理2 矩陣gk=(akij),g-k=(a-kij)當(dāng)p1=<|akij|,p2=maxi≥1,j≤n[DD)]|a-kij|,那么根據(jù)矩陣序列的特征值λki,q-kij可以獲得不等式|λki|≤np1,|q-kij|≤np2.(8)
引理3 根據(jù)精細(xì)修正牛頓算法產(chǎn)生的搜索方向序列{dk},那么則應(yīng)該存在cos〈dk,-gk〉>η,其中η=min[JB({]1,(m1[]nh1)n,(m2[]mh2)n[JB)}]>0(9)
具體分析如下:
那么當(dāng)矩陣為負(fù)定或半負(fù)定方向時(shí),采用最速下降法,則有cos〈dk,-gk〉=1,當(dāng)矩陣為正定方向時(shí),則依據(jù)牛頓算法,存在不等式:1[]nh1<1[]λki<1[]m1。那么則有極值gTk(2f(xk)-1)Tgk=gTk(PkQ-1P-1k)Tgk≥min1[]λkingTk(PkEP-1k)Tgk=min1[]λk1n‖gk‖2>([SX(]m1[]nh1[SX)])n‖gk‖2
且‖2f(xk)-1‖=‖PkQ-1P-1k‖≤max[JB({]1[]λki[JB)}]n‖PkEP-1k‖=max[JB({]1
[]λki[JB)}]n<(m1[]nh1)n
其中設(shè)定E為n×n階的單位矩陣,那么根據(jù)矩陣性質(zhì)cos〈dk,-gk〉=-dTkgk[]‖gk‖‖dk‖,代入dk=2f(xk)則可以獲得cos〈dk,-gk〉=-dTkgk[]‖gk‖‖dx‖≥min[JB({]1[]λki[JB)}]n‖gk‖2[]‖2f(xk)-1gk‖‖gk‖≥min1[]λkin‖gk‖2[]‖2f(xk)-1‖‖gk‖2>m1[]nh1n[]1[]m1n
同理當(dāng)矩陣為不定或半正定時(shí),根據(jù)修正結(jié)果獲得的搜索方向dk=-G--1kgk按照上述方法進(jìn)行論證可知,
cos〈dk,-gk〉=-dTkgk[]‖gk‖‖dk‖>min[JB({]1[]λki[JB)}]n‖gk‖2[]‖2f(xk)-1gk‖‖gk‖>(m2[]nh2)n。綜合可知,
η=min[JB({]1,m1[]nh1n,m2[]nh2n[JB)}]>0
引理4根據(jù)精細(xì)修正牛頓算法產(chǎn)生的步長序列{ak},那么當(dāng)假設(shè)2成立時(shí),結(jié)合矩陣特征,則有不等式ak≥1-2[]L‖dk‖‖gk‖cos〈dk,-gk〉
引理5根據(jù)精細(xì)修正牛頓算法產(chǎn)生的迭代點(diǎn)的序列{xk},且有xk∈水平集F,其中對于任意k均屬于N集合。
引理6 當(dāng)假設(shè)f為水平集F上的二次連續(xù)可微函數(shù),那么搜索方向序列{dk}可得到以下兩個(gè)結(jié)論,第一,序列{‖gk‖}是水平集F上的有界序列;第二,序列{‖dk‖}是水平集F上的有界序列。
根據(jù)上述推論、引理可獲得定理:
根據(jù)精細(xì)修正牛頓算法可獲得迭代點(diǎn)xk序列{xk},根據(jù)梯度函數(shù)可以獲得對應(yīng)的梯度函數(shù)序列{gk},那么目標(biāo)函數(shù)f:Rn→R是二次連續(xù)可微函數(shù),那么給
定x0∈Rn,水平集F=[JB({]x0∈Rn|f(x)≤f(x0)[JB)}]
當(dāng)水平集F的領(lǐng)域?yàn)棣茫敲春瘮?shù)f(x)的梯度函數(shù)g(x)=f(x)在領(lǐng)域γ內(nèi)存在常數(shù)m>0使得不等式成立:
對于任意y,z屬于領(lǐng)域γ有‖▽f(y)-▽f(z)‖≤m‖y-z‖進(jìn)而根據(jù)極限函數(shù)可知limk→+∞ inf‖gk‖=0
對這一定理進(jìn)行驗(yàn)證,現(xiàn)在已知‖dk‖有界,根據(jù)wolfePowell的序列條件,可以獲得下列式子:
f(xk+akdk)≤f(xk)+σ1akgTkdk=f(xk)-σ1ak‖gk‖‖dk‖cos〈dk,-gk〉(10)
對式(10)進(jìn)行整理可以獲得不等式(11)
σ1ak‖gk‖‖dk‖cos〈dk,-gk〉≤f(xk)-f(xk+akdk)(11)
那么就σ1ak‖gk‖‖dk‖cos〈dk,-gk〉進(jìn)行如下求和運(yùn)算:
∑∞k=0σ1ak‖gk‖‖dk‖cos〈dk,-gk〉=limp→∞∑pk=0σ1ak‖gk‖‖dk‖cos〈dk,-gk〉=limp→∞ f(x0)-f(xp+1)<∞,
代入引理3,可獲得limk→+∞ inf‖gk‖=0
如果limk→+∞ inf‖gk‖>0則應(yīng)存在ε,ε對任意k>0,有‖gk‖≥ε使得limk→+∞ ak‖dk‖=0,而結(jié)合引理5、6,在該假設(shè)條件下limk→+∞ inf‖gk‖=0,與假設(shè)結(jié)果相反。因此可以證明在假設(shè)1、2成立的條件下,存在limk→+∞ inf‖gk‖=0
根據(jù)本文所獲得的定理,通過反設(shè)和推論,結(jié)合相關(guān)的引理,證明本文所得定理具有良好的收斂性。因此根據(jù)cute中提出的十三個(gè)標(biāo)準(zhǔn)測試函數(shù)進(jìn)行述職驗(yàn)證可知,其在解決無約束優(yōu)化問題函數(shù)上的效果明顯,能夠解決最速下降法全局收斂速度慢的問題。
4 結(jié)論及展望
綜上所述,本文所提出的針對無約束優(yōu)化問題函數(shù)minf(x),x∈Rn(1)其中f:Rn→R下的二次連續(xù)可微函數(shù)的無約束優(yōu)化問題進(jìn)行求解。其核心就是要將迭代點(diǎn)目標(biāo)函數(shù)的一階、二階信息充分利用,選取合理的搜索方向,從而建立全局收斂性。在假設(shè)目標(biāo)函數(shù)f:Rn→R是二次連續(xù)可微函數(shù),那么給定xo∈Rn,水平集F=[JB({]x0∈Rn|f(x)≤f(x0)[JB)]且當(dāng)水平集F的領(lǐng)域?yàn)棣?,那么函?shù)f(x)的梯度函數(shù)g(x)=f(x)在領(lǐng)域γ內(nèi)存在常數(shù)m>0使得不等式成立:對于任意y,z屬于領(lǐng)域γ有‖f(y)-f(z)‖≤m‖y-z‖進(jìn)而根據(jù)極限函數(shù)可知limk→+∞ inf‖gk‖=0。根據(jù)cute中提出的十三個(gè)標(biāo)準(zhǔn)測試函數(shù)進(jìn)行述職驗(yàn)證可知,其在解決無約束優(yōu)化問題函數(shù)上的效果明顯,能夠解決最速下降法全局收斂速度慢的問題。根據(jù)無約束優(yōu)化問題的具體推廣,該種方法適用于生活、生產(chǎn)的多個(gè)領(lǐng)域。當(dāng)然如果將這一算法進(jìn)行推廣和深度優(yōu)化,還需要進(jìn)行更多的研究、試驗(yàn)加以論證。
參考文獻(xiàn):
[1]郭小蘭.牛頓法求解無約束優(yōu)化問題[J].數(shù)字化用戶,2017,23(30):2629.
[2楊海麗.非線性最優(yōu)化算法比較研究[J].科學(xué)導(dǎo)報(bào),2016(4):223.
[3]丁小星,劉偉,韓加坤.淺談對修正牛頓法的一點(diǎn)改進(jìn)[J].價(jià)值工程, 2016,35(34):1314.
[4]林海嬋.無約束優(yōu)化問題的非單調(diào)PerryShanno方法[J].海南大學(xué)學(xué)報(bào)(自然科學(xué)版)自然科學(xué)版, 2015,33(4):318326.
[5]汪丹戎.非線性共軛梯度法及全局收斂性分析[D].長江大學(xué),2016:1112.
[6]胡夢英.一種改進(jìn)的自適應(yīng)信賴域算法[J].中國科技信息, 2016(17):8082.
[7]劉金魁.無約束最優(yōu)化問題與非線性方程組的若干解法研究[D].重慶大學(xué), 2016:69.
[8]段瓊,戴璟,喬慧.一種改進(jìn)的牛頓法及其在歐式距離選址模型中的應(yīng)用[J].物流技術(shù),2017,36(8):139142.
[9]王玨鈺.基于子空間技術(shù)的(無)約束優(yōu)化問題的不精確(高斯)牛頓法的理論與應(yīng)用[D].上海師范大學(xué),2016:1214.
[10]趙禮翔,劉國慶.基于Givens矩陣和聯(lián)合非線性不相關(guān)的盲源分離新算法[J].計(jì)算機(jī)科學(xué),2015,42(5):149152.
[11]鄭新宇,劉停戰(zhàn).無約束最優(yōu)化中行列修正擬牛頓法的計(jì)算效能和最佳換元周期[J].中國傳媒大學(xué)學(xué)報(bào)(自然科學(xué)版)自然科學(xué)版,2015(6):3539.
[12]于慧慧,王永麗,陳勇勇,等.求解無約束一致性優(yōu)化問題的分布式擬牛頓算法[J].山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,35(3):112118.
[13]張新華.等式約束非凸優(yōu)化問題的修正牛頓算法[J].數(shù)學(xué)雜志, 2015(1):111.
作者簡介:李明偉(1978),男,漢族,云南昆明人,云南大學(xué)數(shù)學(xué)系師范專業(yè)(已畢業(yè)),重慶師范大學(xué)計(jì)算機(jī)應(yīng)用技術(shù)專業(yè)工程碩士(在讀),云南開放大學(xué),講師,研究方向:數(shù)學(xué)教學(xué),計(jì)算機(jī)應(yīng)用技術(shù)。