文 科,林哲絢,韓 溟
創(chuàng)傷是引起人類死亡的第二大原因[1],其中約有40%的創(chuàng)傷患者死于傷后難治性出血[1],而引起難治性出血的原因是內源性凝血功能障礙即急性創(chuàng)傷性凝血病(acute coagulopathy of trauma,ACoT)。ACoT是指嚴重創(chuàng)傷打擊后機體出現(xiàn)急性凝血功能紊亂,表現(xiàn)為凝血功能異常引起的難控性、病理性出血,出血從創(chuàng)傷局部迅速進展為彌漫性出血,患者最終死于大量失血。其發(fā)生與失血性組織低灌注和嚴重組織損傷有關,并與患者愈后密切相關。雖然限制性液體復蘇和損害控制理論已經廣泛應用,但難治性出血仍是創(chuàng)傷患者死亡的主要原因。目前,歐洲嚴重創(chuàng)傷出血及凝血病處理指南自2007年發(fā)布后,已連續(xù)多次更新,且我國創(chuàng)傷急救領域專家就創(chuàng)傷性凝血病的診斷及應急處理已達成共識,提高了創(chuàng)傷外科醫(yī)師對ACoT的認識和救治水平[2-3]。然而創(chuàng)傷性凝血病的發(fā)病機制仍不清楚。嚴重創(chuàng)傷后可能發(fā)生血小板功能異常、內皮細胞激活、內源性抗凝、纖維蛋白原重塑和纖溶亢進。本文就ACoT最新的研究進展做一綜述。
目前認為,創(chuàng)傷性凝血病是涉及多個系統(tǒng)的病理生理過程。在凝血病動物模型及創(chuàng)傷患者中,失血性組織低灌注和嚴重組織損傷被認為是發(fā)病的關鍵因素[4-5]。創(chuàng)傷性凝血病早在20世紀50年代朝鮮戰(zhàn)爭時已被報道[6],研究發(fā)現(xiàn)嚴重創(chuàng)傷患者凝血酶原時間(prothrombin,PT)和活化的部分凝血酶原時間(activated partial thromboplastin times,APTT)延長,且凝血障礙程度與輸血量呈正相關。這一現(xiàn)象被解釋為創(chuàng)傷后凝血因子和血小板消耗,而液體復蘇和輸血的稀釋作用導致凝血障礙進一步惡化。創(chuàng)傷性凝血病被Brohi等[7]定義為嚴重創(chuàng)傷患者送達急診室時PT、APTT較正常升高1.5倍。
隨著基礎研究的進展,創(chuàng)傷性凝血病機制的核心已由最初的大量出血及液體復蘇引起的血漿稀釋模型轉變?yōu)樯婕皟绕p傷、蛋白質C系統(tǒng)、血小板微泡及纖溶系統(tǒng)的細胞分子模型。內皮細胞損傷、血小板功能紊亂及內源性小分子(如蛋白質C、多配體聚糖-1、纖溶酶原激活物抑制物-1、纖維蛋白溶解抑制物等)共同參與了凝血病的發(fā)生與發(fā)展[8-11]。目前認為,6個關鍵發(fā)病環(huán)節(jié)在創(chuàng)傷性凝血病發(fā)生發(fā)展過程中起重要作用:組織及內皮損傷、休克、血小板功能紊亂、纖溶亢進、低體溫、酸中毒(圖1)。

圖1 創(chuàng)傷性凝血病的病理生理過程
創(chuàng)傷導致的失血性休克及組織損傷可共同激活神經-體液軸,同時誘發(fā)蛋白質C系統(tǒng)激活,致內源性抗凝,纖溶亢進,血小板功能紊亂和纖維蛋白損耗。休克后液體復蘇可能引起血液稀釋、低體溫及酸中毒。這些病理生理過程共同誘發(fā)創(chuàng)傷性凝血病。
1.1內皮損傷 血管內皮不僅是血流屏障,更是一個具有代謝、分泌及免疫功能的散布的動力學器官,完整的血管內皮抑制血小板沉積,分泌多種血管活性物質,參與血管舒縮、血液凝固及纖溶、炎癥反應[12-14]。機體遭受嚴重創(chuàng)傷時,產生應激性“格斗或逃跑反應”,神經-體液軸被激活導致兒茶酚胺大量釋放[15],同時炎癥系統(tǒng)也被激活。這兩種通路均可激活內皮細胞[16],導致多糖蛋白質復合物降解[11],使抗凝及促纖溶的蛋白質表達增加。血管內皮細胞膜上的多糖蛋白質復合物在微脈管完整性及與血流相互作用中起著重要作用[17]。多糖蛋白質復合物脫落可誘導凝血酶產生,蛋白質C活化和纖溶亢進,具有內源性肝素化的潛在抗凝效應[18- 19]。多配體聚糖-1(Syn-1)是內皮細胞多糖蛋白復合物降解脫落的可溶性產物,被認為是內皮細胞糖衣完整性的標記物[20]。最近研究發(fā)現(xiàn),創(chuàng)傷患者入院時血漿Syn-1維持在較高水平,并且與交感腎上腺系統(tǒng)亢進、炎癥反應、低蛋白質C水平、纖溶亢進和APTT延長有關[11],說明創(chuàng)傷患者存在血管內皮損傷,而損傷釋放的Syn-1可能與炎癥、凝血功能改變有關。基于目前研究,有學者提出創(chuàng)傷后"血管內皮細胞病"假說,但需進一步研究體內微血管系統(tǒng)的變化。盡管如此,在失血性休克及創(chuàng)傷性凝血病動物模型中,已發(fā)現(xiàn)兒茶酚胺剩余與內皮多糖蛋白質復合物脫落降解有關,且Syn-1與凝血病發(fā)生有關[21-22]。因此,保護內皮細胞完整性已被認為可能是未來治療ACoT的潛在靶點[23]。
1.2蛋白質C系統(tǒng) 蛋白質C(PC)是一種維生素K依賴的糖蛋白,當凝血酶與其受體結合,PC可被激活,PC可進一步與跨膜糖蛋白結合形成凝血酶-血栓調節(jié)蛋白復合物(Thrombin-thrombomodulin,T-TM)[24],該復合物可正反饋促進PC活化[9]。現(xiàn)多認為,凝血酶-血栓調節(jié)蛋白-蛋白質C抗凝系統(tǒng)是最基本的抗凝機制[25]。Brohi等[25]發(fā)現(xiàn)創(chuàng)傷患者血中血栓調節(jié)蛋白升高與血漿蛋白質C水平降低有關,認為蛋白質C降低的原因是凝血酶結合血栓調節(jié)蛋白后使蛋白質C成為活化態(tài)。后續(xù)研究證實活化蛋白質C(activated protein C,aPC)濃度在嚴重創(chuàng)傷患者中確有升高[26]。aPC可致APTT/PT延長,降低血凝塊硬度。Floccard等[27]發(fā)現(xiàn),多糖蛋白質復合物的降解及組織低灌注也可引起PC的早期消耗、血栓調節(jié)蛋白的升高及V因子減少。內皮缺血缺氧損傷的同時,多糖蛋白質復合物降解及PC途徑被激活[24- 25,28-29]。aPC可通過以下機制導致ACoT的發(fā)生:(1)aPC通過其蛋白酶活性水解結合再激活態(tài)凝血因子Ⅴ及Ⅷ上的短肽,從而使Ⅴa及Ⅷa失活,抑制外源性凝血途徑[26];(2)aPC可抑制纖溶酶原激活物抑制物-1(plasminogen activatorinhibitor-1,PAI-1),對纖溶系統(tǒng)去抑制,促進纖維蛋白溶解[25,30]。
總之,低蛋白質C和高血栓調節(jié)蛋白復合物水平與重癥創(chuàng)傷患者愈后密切相關。重度創(chuàng)傷更易發(fā)生組織低灌注,同時低PC與PT、APTT延長及纖溶亢進有關。因此,蛋白質C假說,似乎是ACoT的一種潛在的機制,也符合目前的新觀點,認為APTT和INR升高與液體復蘇所致血液稀釋關系不大,即使未接受液體復蘇的創(chuàng)傷患者仍可發(fā)生創(chuàng)傷性凝血病[27]。
1.3纖維蛋白原和纖溶亢進 纖維蛋白原作為凝血酶的底物,由兩組(α、β、γ)多肽鏈通過二硫鍵連接組成。凝血酶可分別切斷纖維蛋白原α鏈與β鏈氨基末端的血纖維蛋白肽A和B(fibrinopeptide A, B),生成纖維蛋白單體[31]。在活化的凝血因子XIII輔助下,纖維蛋白單體間以共價鍵相連,形成穩(wěn)定牢固的不溶性纖維蛋白,完成凝血過程[32]。研究表明纖維蛋白原水平降低與ACoT患者及動物模型高死亡率和愈后有密切關系[33-34]。創(chuàng)傷嚴重度評分(ISS)>15的嚴重創(chuàng)傷患者中纖溶亢進的發(fā)生率>80%[35],而ACoT患者補充纖維蛋白原可改善愈后[34]。創(chuàng)傷患者死亡的一個重要原因是纖溶亢進[36- 37]。凝血酶可激活凝血酶活化的纖維蛋白溶解抑制物(thrombin-activated fibrinolysis inhibitor,TAFI)和PAI-1,從而會抑制纖溶酶激活。當出現(xiàn)內皮細胞損傷時,凝血酶可結合跨膜糖蛋白血栓調節(jié)蛋白,后者可激活蛋白質C,aPC將會消耗PAI-1,產生對纖溶活性的脫抑制(de-repression)效應[38]。有研究表明,纖溶亢進在嚴重創(chuàng)傷患者中發(fā)病率約8.25%,并且這些患者都表現(xiàn)出惡性纖溶亢進、100%病死率及無法測得纖維蛋白原濃度。在嚴重創(chuàng)傷患者中,纖溶亢進多發(fā)生在傷后1h,可能發(fā)生凝血病及失血性休克相關性死亡[36]。近年來,TAFI的意義被逐漸重視,當纖維蛋白的賴氨酸殘基羰基末端被凝血酶移除,同時抑制纖維蛋白溶解,凝血酶激活的纖溶抑制物將會被激活[39]。Lustenberger 等[39]最近發(fā)現(xiàn)ACoT患者入院時血中TAFI活性明顯低于非ACoT患者,且這種情況持續(xù)約8d。此外,患者入院時TAFI活性與24h輸血量呈負相關,說明創(chuàng)傷后急性期TAFI含量及活性與傷后凝血功能異常密切相關。
1.4血小板功能紊亂 血小板是止血系統(tǒng)細胞模型的核心[40]。Kutcher等[41]發(fā)現(xiàn),在101名創(chuàng)傷患者中,即使有內源性血小板激動劑(如ADP)的刺激,其中約有45.5%的患者也會出現(xiàn)血小板聚集障礙。而血小板功能障礙在系統(tǒng)性纖溶亢進病理生理過程中起著重要作用[42],比如嚴重外傷患者出現(xiàn)ADP通路受損時,機體對tPA的敏感性會上調[43]。近年研究發(fā)現(xiàn),在血小板靜息及激活態(tài)均可形成釋放大量的血小板微泡(platelet-derived microparticles,PMPs),并且血小板微泡可能在機體止血及血栓形成過程中發(fā)揮著重要的作用。Ponomareva等[10]通過透射電鏡觀察到,PMPs可能通過血小板質膜內陷出芽及開放的微管系統(tǒng)釋放到細胞外。PMPs表面存在大量促凝的磷脂酰絲氨酸(phosphatidylserine,PS),后者可結合凝血因子形成高度活化的凝血復合物,PS(+)PMPs刺激凝血酶生成的效力比活化的血小板強50到100倍[44- 45]。臨床研究發(fā)現(xiàn),PMPs在機體含量豐富且有較強的促凝活性,創(chuàng)傷患者入院時其含量降低可致血凝塊強度降低,并且其含量與創(chuàng)傷患者入院后輸血量及病死率有關[46]。因此,PMPs水平降低可能是血小板功能紊亂的一個獨立危險因素。有報道,PMPs可能參與促炎反應,誘發(fā)多器官功能衰竭和急性呼吸窘迫綜合征[47-48]。由此可見,PMPs可能是凝血和炎癥的中間調節(jié)點,低PMPs水平與創(chuàng)傷患者入院時血凝塊形成受損有關,參與了早期ACoT的發(fā)生發(fā)展[46]。然而,目前基于PMPs在ACoT中作用的研究較少,有學者推測,輸入富PS(+)PMPs血漿可能在創(chuàng)傷救治中發(fā)揮積極作用[46]。
1.5惡性循環(huán):低體溫、酸中毒、血液稀釋 低體溫、凝血障礙及酸中毒是經典的“死亡三角”。研究表明,中度創(chuàng)傷患者凝血異常發(fā)生率僅為1%,而重度創(chuàng)傷(ISS >25分)患者合并組織低灌注時,凝血異常的發(fā)病率可升至39%。當患者ISS>25分且合并酸中毒(pH<7.1)、低灌注(收縮壓<70mmHg)、低體溫(T<34℃)時,發(fā)病率甚至可達到58%~98%[49]。低體溫及酸中毒均可降低血漿凝血因子的反應速率,體溫下降1℃反應速率將下降5%左右,從而導致凝血異常。低體溫還可抑制凝血酶產生及纖維蛋白原合成,但不會影響纖維蛋白原的降解。而酸中毒對凝血因子復合物影響顯著,當pH為6.8時凝血因子復合物的活力可低至20%[50]。此外,酸中毒可干擾活化的血小板表面帶負電荷的磷脂對凝血因子活化的促進作用,并影響凝血因子間的相互作用[51]。
近幾年,血液稀釋也被加入危險因素之中,成為"死亡四部曲",它是指在失血性休克治療過程中,無指征的過度進行液體復蘇,導致凝血因子被進一步稀釋。血液稀釋的原因主要有兩方面,即生理性和醫(yī)源性。組織間隙液進入血管導致凝血因子稀釋。同時盲目的臨床補液可使血液稀釋進一步惡化。在體內外研究中證實,這種稀釋性凝血異常與補液量呈正相關[52]。
目前的研究認為,創(chuàng)傷狀態(tài)下凝血系統(tǒng)、炎癥系統(tǒng)及細胞系統(tǒng)(血小板及內皮細胞)功能紊亂,相互作用,誘發(fā)創(chuàng)傷性凝血病。創(chuàng)傷引起的組織損傷、組織因子暴露、炎癥因子瀑布式釋放,最終將導致休克、低氧血癥及ACoT。因此,需要快速診斷并及早干預。目前診斷ACoT主要有兩種方式:凝血功能檢查和血栓彈力圖TEG(thromboelastography)。
凝血功能檢查包括PT、APTT和INR和凝血因子。目前ACoT的實驗室診斷標準(其中一項):(1)PT>18s;(2)APTT>60s;(3)凝血酶時間(thrombin time,TT)>15s;(4)凝血酶原時間比值(prothrombin time ratio,PTr)>1.6 ;(5)有活動性出血或潛在出血,需要血液制品或者替代治療[53]。凝血功能檢測簡便,但不能反應血小板功能、凝血酶及整個凝血系統(tǒng)的功能。
TEG 和旋轉式血栓彈力圖(rotational thromboelastometry,ROTEM)則可測量凝血塊強度及血凝塊形成時間,其優(yōu)勢在于獲取結果迅速,反應系統(tǒng)凝血功能,因此可及時診斷創(chuàng)傷性出血,同時指導臨床補液。大量研究表明,TEG和ROTEM在診斷ACoT方面優(yōu)于傳統(tǒng)的止凝血功能檢測,因為其診斷敏感性更高[54]。通過TEG測定能夠更早期診斷ACoT。理解ACoT的機制有助于指導糾正急性凝血功能紊亂。近年來損傷限制性液體復蘇已經得到廣泛應用,這一治療措施可縮短休克持續(xù)時間,降低血液稀釋和低體溫發(fā)生的風險[55]。臨床研究發(fā)現(xiàn),新鮮冰凍血漿、重組FⅦa、抗纖溶及維生素B6聯(lián)用豐諾安等治療對糾正ACoT患者凝血功能紊亂可能有積極的作用[56-57]。歐洲的治療指南提出,快速創(chuàng)傷評估、院前急救、院內管理及凝血對癥處理應作為指導臨床醫(yī)師救治ACoT的一般程序,并建議將其納入臨床路徑管理,有助于指南的實施[2]。
從本文看出,蛋白質C系統(tǒng)、內皮系統(tǒng)損傷及PMPs可能在ACoT的發(fā)病中起著重要的作用。因此,需要進一步研究其發(fā)病的分子機制,希望能尋找新的治療靶點,以提供直接有效的治療措施,改善患者預后。
[1] Collaborators USBoD.The state of Us health,1990-2010: burden of diseases,injuries,and risk factors[J].JAMA,2013,310(6):591-606.
[2] Rossaint R,Bouillon B,Cerny V,et al.The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition[J].Crit Care,2016,20:100.
[3] 中國研究型醫(yī)院學會衛(wèi)生應急學專業(yè)委員會,中國中西醫(yī)結合學會災害醫(yī)學專業(yè)委員會.急性創(chuàng)傷性凝血功能障礙與凝血病診斷和衛(wèi)生應急處理專家共識(2016)[J].中華衛(wèi)生應急電子雜志,2016,2(4):197-203.
[4] Davenport R.Pathogenesis of acute traumatic coagulopathy[J].Transfusion,2013,53(S1):S23-27.
[5] Ganter MT,Pittet JF.New insights into acute coagulopathy in trauma patients[J].Best Pract Res Clin Anaesthesiol,2010,24(1):15-25.
[6] Scott R,Crosby WH.Changes in the coagulation mechanism following wounding and resuscitation with stored blood; a study of battle casualties in Korea[J].Blood,1954,9(6):609-621.
[7] Brohi K,Singh J,Heron M,et al.Acute traumatic coagulopathy[J].J Trauma Acute Care Surg,2003,54(6):1127-130.
[8] Simmons RL,Collins JA,Heisterkamp CA,et al.Coagulation disorders in combat casualties.I.Acute changes after wounding.II.Effects of massive transfusion.3.Post-resuscitative changes[J].Ann Surg,1969,169(4):455.
[9] Esmon CT.The protein C pathway[J].Chest,2003,124(3S):S26-32.
[10] Ponomareva AA,Nevzorova TA,Mordakhanova ER,et al.Structural characterization of platelets and platelet microvesicles[J].Tsitologiia,2016,58(2):105-114.
[11] Johansson PI,Stensballe J,Rasmussen LS,et al.A high admission syndecan-1 level,a marker of endothelial glycocalyx degradation,is associated with inflammation,protein C depletion,fibrinolysis,and increased mortality in trauma patients[J].Ann Surg,2011,254(2):194-200.
[12] Kleinegris MC,Ten Cate-Hoek AJ,Ten Cate H.Coagulation and the vessel wall in thrombosis and atherosclerosis[J].Pol Arch Med Wewn,2012,122(11):557-566.
[13] Popovic M,Smiljanic K,Dobutovic B,et al.Thrombin and vascular inflammation[J].Mol Cell Biochem,2012,359(1-2):301-313.
[14] Winn RK,Harlan JM.The role of endothelial cell apoptosis in inflammatory and immune diseases[J].J Thromb Haemost,2005,3(8):1815-1824.
[15] Johansson PI,Stensballe J,Rasmussen LS,et al.High circulating adrenaline levels at admission predict increased mortality after trauma[J].J Trauma Acute Care Surg,2012,72(2):428-436.
[16] Hunt BJ,Jurd KM.Endothelial cell activation.A central pathophysiological process[J].BMJ,1998,316(7141):1328-1329.
[17] van den Berg BM,Nieuwdorp M,Stroes ES,et al.Glycocalyx and endothelial (dys) function: from mice to men[J].Pharmacol Rep,2006,58(S):75-80.
[18] Senzolo M,Coppell J,Cholongitas E,et al.The effects of glycosaminoglycans on coagulation: a thromboelastographic study[J].Blood Coagul Fibrinolysis,2007,18(3):227-236.
[19] Ostrowski SR,Johansson PI.Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy[J].J Trauma Acute Care Surg,2012,73(1):60-66.
[20] American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis[J].Crit Care Med,1992,20(6):864-874.
[21] Xu L,Yu WK,Lin ZL,et al.Chemical sympathectomy attenuates inflammation,glycocalyx shedding and coagulation disorders in rats with acute traumatic coagulopathy[J].Blood Coagul Fibrinolysis,2015,26(2):152-160.
[22] Xu L,Yu WK,Lin ZL,et al.Impact of beta-adrenoceptor blockade on systemic inflammation and coagulation disturbances in rats with acute traumatic coagulopathy[J].Med Sci Monit,2015,21:468-476.
[23] Kozar RA,Peng Z,Zhang R,et al.Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock[J].Anesth Analg,2011,112(6):1289-1295.
[24] Stansbury LG,Hess AS,Thompson K,et al.The clinical significance of platelet counts in the first 24 hours after severe injury[J].Transfusion,2013,53(4):783-789.
[25] Brohi K,Cohen MJ,Ganter MT,et al.Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis[J].J Trauma,2008,64(5):1211-1217.
[26] Cohen MJ,Call M,Nelson M,et al.Critical role of activated protein C in early coagulopathy and later organ failure,infection and death in trauma patients[J].Ann Surg,2012,255(2):379-385.
[27] Floccard B,Rugeri L,F(xiàn)aure A,et al.Early coagulopathy in trauma patients: an on-scene and hospital admission study[J].Injury,2012,43(1):26-32.
[28] Chesebro BB,Rahn P,Carles M,et al.Increase in activated protein C mediates acute traumatic coagulopathy in mice[J].Shock,2009,32(6):659-665.
[29] Rezaie AR.Regulation of the protein C anticoagulant and antiinflammatory pathways[J].Curr Med Chem,2010,17(19):2059-2069.
[30] Esmon CT.Protein C pathway in sepsis[J].Ann Med,2002,34(7-8):598-605.
[31] Hermans J,McDonagh J.Fibrin: structure and interactions[J].Semin Thromb Hemost,1982,8(1):11-24.
[32] Blomback B,Hessel B,Hogg D,et al.A two-step fibrinogen--fibrin transition in blood coagulation[J].Nature,1978,275(5680):501-505.
[33] Schochl H,Nienaber U,Hofer G,et al.Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate[J].Crit Care,2010,14(2):R55.
[34] Rourke C,Curry N,Khan S,et al.Fibrinogen levels during trauma hemorrhage,response to replacement therapy,and association with patient outcomes[J].J Thromb Haemost,2012,10(7):1342-1351.
[35] Raza I,Davenport R,Rourke C,et al.The incidence and magnitude of fibrinolytic activation in trauma patients[J].J Thromb Haemost,2013,11(2):307-314.
[36] Schochl H,F(xiàn)rietsch T,Pavelka M,et al.Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry[J].J Trauma,2009,67(1):125-131.
[37] Kashuk JL,Moore EE,Sawyer M,et al.Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma[J].Ann Surg,2010,252(3):434-444.
[38] van Hinsbergh VW,Bertina RM,van Wijngaarden A,et al.Activated protein C decreases plasminogen activator-inhibitor activity in endothelial cell-conditioned medium[J].Blood,1985,65(2):444-451.
[39] Lustenberger T,Relja B,Puttkammer B,et al.Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) levels are decreased in patients with trauma-induced coagulopathy[J].Thromb Res,2013,131(1):e26-30.
[40] Kornblith LZ,Kutcher ME,Redick BJ,et al.Fibrinogen and platelet contributions to clot formation: implications for trauma resuscitation and thromboprophylaxis[J].J Trauma Acute Care Surg,2014,76(2):255-263.
[41] Kutcher ME,Redick BJ,McCreery RC,et al.Characterization of platelet dysfunction after trauma[J].J Trauma Acute Care Surg,2012,73(1):13-19.
[42] Moore HB,Moore EE,Lawson PJ,et al.Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock[J].Surgery,2015,158(2):386-392.
[43] Moore HB,Moore EE,Chapman MP,et al.Viscoelastic measurements of platelet function,not fibrinogen function,predicts sensitivity to tissue-type plasminogen activator in trauma patients[J].J Thromb Haemost,2015,13(10):1878-1887.
[44] Sinauridze EI,Kireev DA,Popenko NY,et al.Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets[J].Thromb Haemost,2007,97(3):425-434.
[45] Suades R,Padro T,Vilahur G,et al.Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques[J].Thromb Haemost,2012,108(6):1208-1219.
[46] Windelov NA,Johansson PI,Sorensen AM,et al.Low level of procoagulant platelet microparticles is associated with impaired coagulation and transfusion requirements in trauma patients[J].J Trauma Acute Care Surg,2014,77(5):692-700.
[47] Chironi GN,Boulanger CM,Simon A,et al.Endothelial microparticles in diseases[J].Cell Tissue Res,2008,335(1):143.
[48] Curry N,Raja A,Beavis J,et al.Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality[J].J Extracell Vesicles,2014,3:25625.
[49] Cosgriff N,Moore EE,Sauaia A,et al.Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited[J].J Trauma,1997,42(5):857-862.
[50] Jansen JO,Scarpelini S,Pinto R,et al.Hypoperfusion in severely injured trauma patients is associated with reduced coagulation factor activity[J].J Trauma,2011,71(5S1):S435-440.
[51] Dirkmann D,Radu-Berlemann J,Gorlinger K,et al.Recombinant tissue-type plasminogen activator-evoked hyperfibrinolysis is enhanced by acidosis and inhibited by hypothermia but still can be blocked by tranexamic acid[J].J Trauma Acute Care Surg,2013,74(2):482-488.
[52] Bolliger D,Szlam F,Molinaro RJ,et al.Finding the optimal concentration range for fibrinogen replacement after severe haemodilution: an in vitro model[J].Br J Anaesthesia,2009,102(6):793-799.
[53] 岳茂興,黃琴梅,梁華平,等.嚴重創(chuàng)傷后凝血病的早期診斷與新療法治療[C].2015第十一屆全國中西醫(yī)結合災害醫(yī)學大會暨江蘇省中西醫(yī)結合學會第二屆災害醫(yī)學學術會議論文集,2015:42-45.
[54] Carroll RC,Craft RM,Langdon RJ,et al.Early evaluation of acute traumatic coagulopathy by thrombelastography[J].Transl Res,2009,154(1):34-39.
[55] Mohan D,Milbrandt EB,Alarcon LH.Black Hawk down: the evolution of resuscitation strategies in massive traumatic hemorrhage[J].Crit Care,2008,12(4):305.
[56] Borgman MA,Spinella PC,Perkins JG,et al.The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital[J].J Trauma,2007,63(4):805-813.
[57] 岳茂興,周培根,梁華平,等.創(chuàng)傷性凝血功能障礙的早期診斷和20AA復方氨基酸聯(lián)用大劑量維生素B6新療法應用[J].中華衛(wèi)生應急電子雜志,2015,(1):4-7.