999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

胚胎來(lái)源巨噬細(xì)胞的起源及其在肝臟中功能的研究進(jìn)展

2018-01-15 01:25:38王咪咪王艷紅
中國(guó)臨床醫(yī)學(xué) 2018年1期
關(guān)鍵詞:功能

王咪咪, 王艷紅

復(fù)旦大學(xué)附屬中山醫(yī)院肝內(nèi)科,上海 200032

巨噬細(xì)胞是機(jī)體免疫系統(tǒng)的重要組成部分,其表型和功能具有高度異質(zhì)性[1-2]。組織定居巨噬細(xì)胞長(zhǎng)期存在于機(jī)體各組織器官,如肝臟中的枯否細(xì)胞、肺組織中的肺泡巨噬細(xì)胞、表皮中的朗格漢斯細(xì)胞、骨組織中的破骨細(xì)胞等,參與機(jī)體的免疫監(jiān)視、免疫防御、免疫自穩(wěn),具有組織特異性。早期研究認(rèn)為,組織定居巨噬細(xì)胞來(lái)源于成體骨髓單核細(xì)胞;而最新研究發(fā)現(xiàn),大部分組織的定居巨噬細(xì)胞是在胚胎時(shí)期由胚胎前體細(xì)胞分化而來(lái)的,這種胚胎來(lái)源巨噬細(xì)胞(EDMs)可以通過(guò)自我增殖維持?jǐn)?shù)量和功能穩(wěn)定[3]。這一發(fā)現(xiàn)給巨噬細(xì)胞領(lǐng)域提供了新的研究方向。因此,本文將對(duì)肝臟中胚胎來(lái)源的組織定居巨噬細(xì)胞的起源和功能進(jìn)行綜述,并由此思考和討論目前巨噬細(xì)胞靶向治療的不足和發(fā)展方向。

1 組織定居巨噬細(xì)胞的起源

組織定居巨噬細(xì)胞一直被認(rèn)為是由成體骨髓單核細(xì)胞分化而來(lái)的,即骨髓中的造血干細(xì)胞分化為單核細(xì)胞,后者通過(guò)血液循環(huán)按照不同的周期進(jìn)入不同的組織器官,分化為組織定居巨噬細(xì)胞。隨著細(xì)胞發(fā)育制圖技術(shù)[4]等新技術(shù)的研究應(yīng)用,對(duì)組織定居巨噬細(xì)胞的起源有了新的認(rèn)識(shí)。一般認(rèn)為,在出生之前,胚胎前體細(xì)胞就已分化形成組織定居巨噬細(xì)胞,稱(chēng)為EDMs。這種細(xì)胞的發(fā)育途徑主要分為3個(gè)連續(xù)的造血波[5],分別命名為原始造血、暫時(shí)決定性造血和決定性造血,分別起源于中胚層背側(cè)板胚外卵黃囊中的血島、卵黃囊生血內(nèi)皮細(xì)胞和胚胎內(nèi)生血內(nèi)皮細(xì)胞在主動(dòng)脈旁臟壁層區(qū)域產(chǎn)生的未成熟的造血干細(xì)胞,分別產(chǎn)生卵黃囊巨噬細(xì)胞、胎肝單核細(xì)胞來(lái)源的巨噬細(xì)胞和胎肝單核細(xì)胞。它們都可在機(jī)體出生前遷移至器官組織中直接增殖或分化為組織定居巨噬細(xì)胞。

2 EDMs的自我更新與穩(wěn)態(tài)維持

“自我更新”是廣泛應(yīng)用于干細(xì)胞的概念,即在長(zhǎng)期不斷的增殖過(guò)程中,子細(xì)胞仍能保留母細(xì)胞特性[3]。靜息狀態(tài)下,大部分組織器官(腸、皮膚、心臟、胰腺等)中EDMs無(wú)法單獨(dú)通過(guò)局部自我增殖以維持?jǐn)?shù)量,需要骨髓造血干細(xì)胞的分化補(bǔ)充[5]。因此,大部分組織定居巨噬細(xì)胞群由EDMs和骨髓單核細(xì)胞來(lái)源的巨噬細(xì)胞共同構(gòu)成。而肝組織定居巨噬細(xì)胞的來(lái)源中,EDMs占絕大多數(shù),并通過(guò)局部自我更新和增殖維持?jǐn)?shù)量,而不依賴(lài)于骨髓單核細(xì)胞的補(bǔ)充。有研究[6]報(bào)道,肝EDMs的自我更新功能在肝臟微環(huán)境穩(wěn)態(tài)下可以長(zhǎng)期保持,不隨年齡增長(zhǎng)而逐漸消失。但當(dāng)其離開(kāi)肝臟微環(huán)境,就會(huì)喪失自我更新功能[7]。

當(dāng)機(jī)體遇到刺激后,EDMs會(huì)發(fā)生不同程度的壞死,嚴(yán)重時(shí)候數(shù)量甚至?xí)抵翞?(消失期)[8-9],再通過(guò)局部自我增殖恢復(fù)數(shù)量。由于刺激因素的種類(lèi)、強(qiáng)度、時(shí)間的不同,其恢復(fù)水平和能力會(huì)有所變化。研究顯示,非基因毒性刺激(如白喉毒素、氯磷酸二鈉脂質(zhì)體或寄生蟲(chóng)感染)下,EDMs可局部自我增殖,并在IL-4的作用下極化為M2型,此時(shí)不需要骨髓單核細(xì)胞的分化補(bǔ)充[10-11];而基因毒性(如致死性放射、骨髓移植[11]),李斯特菌、沙門(mén)桿菌等胞內(nèi)菌感染,病毒感染等刺激下,壞死的巨噬細(xì)胞可通過(guò)分泌CCL2等趨化因子,誘導(dǎo)單核細(xì)胞浸潤(rùn)肝組織,從而代替EDMs,形成新的組織定居巨噬細(xì)胞[8-9,12-13],此后,肝臟定居巨噬細(xì)胞池的構(gòu)成比例發(fā)生變化,維持穩(wěn)態(tài)的能力下降。另外,動(dòng)物實(shí)驗(yàn)[14]表明,如果調(diào)整刺激強(qiáng)度(細(xì)菌載量或放射劑量),肝臟內(nèi)會(huì)出現(xiàn)EDMs與骨髓來(lái)源的巨噬細(xì)胞嵌合的狀態(tài)。以上3種情況顯示,一旦穩(wěn)態(tài)被打破,巨噬細(xì)胞池的構(gòu)成將根據(jù)微環(huán)境的不同而發(fā)生變化,進(jìn)而導(dǎo)致不同表現(xiàn)的炎癥反應(yīng)。

3 EDMs介導(dǎo)炎癥反應(yīng)

在肝臟中,EDMs位于肝血竇內(nèi),黏附于肝血竇內(nèi)皮細(xì)胞上,直接暴露在血液中,是對(duì)損傷或刺激產(chǎn)生反應(yīng)的一線(xiàn)細(xì)胞[15],較骨髓單核系統(tǒng)來(lái)源的巨噬細(xì)胞能夠更快速更有效地吞噬衰老細(xì)胞、細(xì)菌、病毒等。EDMs通過(guò)其強(qiáng)大的吞噬功能,控制有害物質(zhì)播散[16-18],減少過(guò)度炎癥反應(yīng)對(duì)肝臟造成的損傷[16]。

病毒、細(xì)菌和壞死的肝細(xì)胞均能釋放損傷相關(guān)分子模式(DAMPs)、病原體相關(guān)分子模式(PAMPs),后者通過(guò)與清道夫受體(SPs)、toll樣受體(TLRs)、髓細(xì)胞觸發(fā)受體-1(TREM-1)[19]等模式受體結(jié)合激活EDMs,使其極化為M1型巨噬細(xì)胞,并分泌白細(xì)胞介素1(IL-1)、IL-6、腫瘤壞死因子-α(TNF-α)和粒細(xì)胞-巨噬細(xì)胞集落刺激因子(GM-CSF)等促炎因子[20]。此外,一些胞內(nèi)菌(如李斯特菌、沙門(mén)桿菌)、X線(xiàn)照射或N-乙酰對(duì)氨基苯酚[21]等會(huì)導(dǎo)致EDMs大量壞死進(jìn)而激發(fā)單核細(xì)胞、中性粒細(xì)胞的浸潤(rùn)[8,22],介導(dǎo)炎癥反應(yīng)的發(fā)生。

隨著炎癥反應(yīng)的進(jìn)展,EDMs會(huì)介導(dǎo)抗炎癥反應(yīng)。EDMs可通過(guò)分泌TNF,促進(jìn)中性粒細(xì)胞的凋亡,進(jìn)而吞噬凋亡的中性粒細(xì)胞[23]。對(duì)凋亡中性粒細(xì)胞的吞噬又可促進(jìn)EDMs產(chǎn)生脂質(zhì)介質(zhì)如脂氧素[24]等,抑制中性粒細(xì)胞的進(jìn)一步浸潤(rùn),從而控制過(guò)度炎癥反應(yīng)。此外,壞死的EDMs可通過(guò)產(chǎn)生IL-1β誘導(dǎo)肝細(xì)胞分泌IL-33,進(jìn)而刺激嗜酸性粒細(xì)胞分泌IL-4;而IL-4能誘導(dǎo)單核來(lái)源的巨噬細(xì)胞從M1型轉(zhuǎn)化為M2型[8],同時(shí)可作用于尚存的EDMs,使其局部增殖并分化為M2型巨噬細(xì)胞,后者通過(guò)分泌IL-10,活化精氨酸酶,進(jìn)而刺激單核細(xì)胞來(lái)源的M1型巨噬細(xì)胞的凋亡[25]。M2型巨噬細(xì)胞能通過(guò)分泌大量抗炎因子,如TGF-β、IL-10等,削弱炎癥反應(yīng),介導(dǎo)免疫耐受[26]。

總之,及時(shí)、適度的炎癥有利于清除病原體、凋亡壞死的細(xì)胞以及細(xì)胞碎片等,而過(guò)度的炎癥反應(yīng)或者持續(xù)的慢性炎癥則是惡性病變的重要危險(xiǎn)因素[27-29]。EDMs在平衡炎癥反應(yīng)和免疫恢復(fù)中發(fā)揮舉足輕重的作用,能夠有效避免病變的發(fā)生。

4 EDMs影響HCC和循環(huán)腫瘤細(xì)胞在肝臟中的生長(zhǎng)

炎癥與腫瘤息息相關(guān),巨噬細(xì)胞是炎癥相關(guān)的重要細(xì)胞[30]。其中,位于腫瘤組織內(nèi)或腫瘤周?chē)M織的腫瘤相關(guān)性巨噬細(xì)胞(TAMs)[31-34]是一類(lèi)分化終末期的巨噬細(xì)胞[35]。TAMs顯示與M2型相似的分子功能譜[36-37],在HCC的發(fā)展和轉(zhuǎn)移過(guò)程中起至關(guān)重要的作用[38-40]。有文獻(xiàn)[41-42]認(rèn)為,TAMs是由骨髓單核細(xì)胞分化并在腫瘤微環(huán)境內(nèi)極化為M2型的髓系巨噬細(xì)胞。關(guān)于腫瘤組織中EDMs的功能的相關(guān)報(bào)道不多。有實(shí)驗(yàn)[43]顯示,HCC微環(huán)境中,EDMs的抗原遞呈功能下降、CD86和主要組織相容性復(fù)合體Ⅱ分子(MHC-Ⅱ)表達(dá)下降、細(xì)胞程序死亡配體1(PD-L1)表達(dá)上升。腫瘤中髓系來(lái)源的抑制細(xì)胞(MDSCs)作用于EDMs,抑制其分泌CCL2和IL-18,而促進(jìn)其分泌IL-10和IL-1β,并使其表面正性和負(fù)性共刺激分子失平衡,從而促進(jìn)HCC的發(fā)展。

雖然EDMs在腫瘤發(fā)展后期呈現(xiàn)促進(jìn)腫瘤生長(zhǎng)和轉(zhuǎn)移的作用。但作為一線(xiàn)免疫細(xì)胞又具有抵抗循環(huán)腫瘤細(xì)胞進(jìn)入肝臟的作用[44-48]。其機(jī)制主要有:直接吞噬作用[44-50],降低腫瘤細(xì)胞對(duì)肝竇的黏附[45];通過(guò)釋放一氧化氮和活性氧來(lái)上調(diào)死亡因子配體(FASL),誘導(dǎo)腫瘤細(xì)胞的凋亡[51];通過(guò)分泌細(xì)胞因子如IL-1、IL-6、IL-8、TNF-α、γ-干擾素(IFN-γ),或趨化因子MIP-2、IP-10、KC/GRO、MIP-1α、MCP-1等,激活自然殺傷細(xì)胞(NK)[52]和中性粒細(xì)胞[51],進(jìn)而殺死循環(huán)腫瘤細(xì)胞。

然而,轉(zhuǎn)移灶或預(yù)轉(zhuǎn)移龕的微環(huán)境可以抑制EDMs吞噬殺傷循環(huán)腫瘤細(xì)胞的功能。研究[53-54]報(bào)道,在結(jié)直腸腫瘤肝轉(zhuǎn)移中,當(dāng)骨髓髓系細(xì)胞被募集到轉(zhuǎn)移灶時(shí),此時(shí)預(yù)轉(zhuǎn)移龕、腫瘤微環(huán)境已經(jīng)開(kāi)始建立,大部分單核細(xì)胞不能分化為巨噬細(xì)胞,滯留為MDSCs,后者通過(guò)上調(diào)EDMs表面的負(fù)性T細(xì)胞共刺激分子PD-L1[53-54],抑制其吞噬效能[46]。

5 EDMs靶向治療的挑戰(zhàn)

目前靶向巨噬細(xì)胞的多種抗腫瘤藥物[55-57]已被逐漸研發(fā),有些已經(jīng)進(jìn)入臨床試驗(yàn)階段,表現(xiàn)出良好的臨床效果。這些藥物的作用靶點(diǎn)及機(jī)制有減少單核細(xì)胞浸潤(rùn)、抑制單核來(lái)源巨噬細(xì)胞的增殖、控制單核細(xì)胞的分化成熟、消融巨噬細(xì)胞、增強(qiáng)巨噬細(xì)胞吞噬功能、調(diào)控巨噬細(xì)胞的極化方向、對(duì)促進(jìn)腫瘤發(fā)展的巨噬細(xì)胞進(jìn)行再教育。

上述策略大多針對(duì)單核細(xì)胞及其來(lái)源的巨噬細(xì)胞,不適用于EDMs。EDMs表面不表達(dá)CXCR3和CCR2[58],阻斷CCL2-CCR2并不影響EDMs的局部增殖。兩種來(lái)源的巨噬細(xì)胞有相互補(bǔ)充的現(xiàn)象。當(dāng)阻斷CCL2/CCR2[59]或CSF1/CSF1R信號(hào)通路后,循環(huán)系統(tǒng)無(wú)法及時(shí)供給足夠的巨噬細(xì)胞,肝臟定居的EDMs可通過(guò)自我增殖補(bǔ)充巨噬細(xì)胞池,從而構(gòu)造免疫抑制的腫瘤微環(huán)境,削弱這條機(jī)制靶向的抗腫瘤作用。因此,對(duì)兩種來(lái)源的巨噬細(xì)胞同時(shí)進(jìn)行消融、極化和再教育將是巨噬細(xì)胞靶向藥的研究方向。

此外,多種治療性單克隆抗體通過(guò)抗體依賴(lài)細(xì)胞介導(dǎo)的細(xì)胞毒作用(ADCC)介導(dǎo)巨噬細(xì)胞吞噬,可以有效地殺傷腫瘤細(xì)胞[60-61]。提高巨噬細(xì)胞吞噬功能的抗腫瘤藥物也在動(dòng)物研究中取得了顯著效果,如抗CD47抗體[62-64]。

然而,這些研究忽略了巨噬細(xì)胞的來(lái)源,而不同來(lái)源的巨噬細(xì)胞的吞噬功能不同。研究[48]指出,EDMs具有獨(dú)特的Dectin-2依賴(lài)的吞噬活性。淋巴細(xì)胞脈絡(luò)叢腦膜炎病毒(LCMV)感染的動(dòng)物模型的研究[65]結(jié)果顯示,EDMs的吞噬水平保持穩(wěn)態(tài),而單核細(xì)胞的吞噬功能則顯著受損。EDMs能更有效地吞噬乙酰化的低密度脂蛋白,而對(duì)細(xì)菌的吞噬能力則不如單核細(xì)胞來(lái)源巨噬細(xì)胞[14]。最新研究[66]發(fā)現(xiàn),免疫檢查點(diǎn)抑制劑通過(guò)拮抗TAMs表面的PD-1,加強(qiáng)其對(duì)腫瘤細(xì)胞的吞噬,而這些TAMs經(jīng)實(shí)驗(yàn)證實(shí)屬于單核細(xì)胞來(lái)源,而非胚胎來(lái)源。因而,對(duì)不同來(lái)源巨噬細(xì)胞吞噬功能的深入探索可為抗體治療和免疫治療提供更廣闊的視野。

6 小 結(jié)

肝臟定居巨噬細(xì)胞占非實(shí)質(zhì)細(xì)胞的35%,占全身組織定居巨噬細(xì)胞的80%~90%[23]。因此,巨噬細(xì)胞是肝臟維持穩(wěn)態(tài)、參與炎癥反應(yīng)、調(diào)控生理和病理變化的重要成員。近年來(lái),對(duì)于肝臟EDMs的起源、維持穩(wěn)態(tài)以及介導(dǎo)炎癥反應(yīng)等生理或病理功能的研究有了一定的進(jìn)展,但對(duì)于其在HCC微環(huán)境中的表型和功能仍有待進(jìn)一步的探索。闡明EDMs在各種不同的生理或病理狀態(tài)下的反應(yīng)和功能,不僅可以為靶向巨噬細(xì)胞治療提供新的思路,也有利于臨床對(duì)肝臟相關(guān)疾病病因認(rèn)識(shí)的提高和治療方法的改進(jìn)。

[ 1 ] AVADANEI E R, WIERZBICKI P M, GIUSCA S E, et al. Macrophage profile in primary versus secondary liver tumors[J]. Folia Histochem Cytobiol, 2014,52(2):112-123.

[ 2 ] KITAMURA T, QIAN B Z, POLLARD J W. Immune cell promotion of metastasis[J]. Nat Rev Immunol, 2015,15(2):73-86.

[ 3 ] SIEWEKE M H, ALLEN J E. Beyond stem cells: self-renewal of differentiated macrophages[J]. Science, 2013,342(6161):1242974.

[ 4 ] JUNG S, ALIBERTI J, GRAEMMEL P, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion[J]. Mol Cell Biol, 2000,20(11):4106-4114.

[ 5 ] GINHOUX F, GUILLIAMS M. Tissue-resident macrophage ontogeny and homeostasis[J]. Immunity, 2016,44(3):439-449.

[ 6 ] LAVINE K J, EPELMAN S, UCHIDA K, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart[J]. Proc Natl Acad Sci U S A, 2014,111(45):16029-16034.

[ 7 ] VAN DE LAAR L, SAELENS W, DE PRIJCK S, et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages[J]. Immunity, 2016,44(4):755-768.

[ 8 ] BLERIOT C, DUPUIS T, JOUVION G, et al. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection[J]. Immunity, 2015,42(1):145-158.

[ 9 ] MOLAWI K, SIEWEKE M H. Monocytes compensate Kupffer cell loss during bacterial infection[J]. Immunity, 2015,42(1):10-12.

[10] JENKINS S J, RUCKERL D, COOK P C, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation[J]. Science, 2011,332(6035):1284-1288.

[11] HASHIMOTO D, CHOW A, NOIZAT C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes[J]. Immunity, 2013,38(4):792-804.

[12] DAVIES L C, ROSAS M, JENKINS S J, et al. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation[J]. Nat Commun, 2013,4:1886.

[13] MURRAY P J, WYNN T A. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol, 2011,11(11):723-737.

[14] BEATTIE L, SAWTELL A, MANN J, et al. Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions[J]. J Hepatol, 2016,65(4):758-768.

[15] MAYORAL M R, JOHNSON A M, OSBORN O, et al. Distinct hepatic macrophage populations in lean and obese mice[J]. Front Endocrinol (Lausanne), 2016,7:152.

[16] LANG P A, RECHER M, HONKE N, et al. Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice[J]. Hepatology, 2010,52(1):25-32.

[17] XU L, YIN W, SUN R, et al. Kupffer cell-derived IL-10 plays a key role in maintaining humoral immune tolerance in hepatitis B virus-persistent mice[J]. Hepatology, 2014,59(2):443-452.

[18] BOLTJES A, MOVITA D, BOONSTRA A, et al. The role of Kupffer cells in hepatitis B and hepatitis C virus infections[J]. J Hepatol, 2014,61(3):660-671.

[19] WU J, LI J, SALCEDO R, et al. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma[J]. Cancer Res, 2012,72(16):3977-3986.

[20] SICA A, INVERNIZZI P, MANTOVANI A. Macrophage plasticity and polarization in liver homeostasis and pathology[J]. Hepatology, 2014,59(5):2034-2042.

[21] ZIGMOND E, SAMIA-GRINBERG S, PASMANIK-CHOR M, et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury[J]. J Immunol, 2014,193(1):344-353.

[22] TOSELLO-TRAMPONT A C, LANDES S G, NGUYEN V, et al. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production[J]. J Biol Chem, 2012,287(48):40161-40172.

[23] JENNE C N, KUBES P. Immune surveillance by the liver[J]. Nat Immunol, 2013,14(10):996-1006.

[24] SOEHNLEIN O, LINDBOM L. Phagocyte partnership during the onset and resolution of inflammation[J]. Nat Rev Immunol, 2010,10(6):427-439.

[25] WAN J, BENKDANE M, TEIXEIRA-CLERC F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease[J]. Hepatology, 2014,59(1):130-142.

[26] ZHANG M, XU S, HAN Y, et al. Apoptotic cells attenuate fulminant hepatitis by priming Kupffer cells to produce interleukin-10 through membrane-bound TGF-beta[J]. Hepatology, 2011,53(1):306-316.

[27] BRENNER C, GALLUZZI L, KEPP O, et al. Decoding cell death signals in liver inflammation[J]. J Hepatol, 2013,59(3):583-594.

[28] TOSELLO-TRAMPONT A C, LANDES S G, NGUYEN V, et al. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production[J]. J Biol Chem, 2012,287(48):40161-40172.

[29] SERHAN C N. Pro-resolving lipid mediators are leads for resolution physiology[J]. Nature, 2014,510(7503):92-101.

[30] GONDA T A, TU S, WANG T C. Chronic inflammation, the tumor microenvironment and carcinogenesis[J]. Cell Cycle, 2009,8(13):2005-2013.

[31] DONG P, MA L, LIU L, et al. CD86+/CD206+, diametrically polarized tumor-associated macrophages, predict hepatocellular carcinoma patient prognosis[J]. Int J Mol Sci, 2016,17(3):320.

[32] CAPECE D, FISCHIETTI M, VERZELLA D, et al. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages[J]. Biomed Res Int, 2013,2013:187204.

[33] WAN S, ZHAO E, KRYCZEK I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014,147(6):1393-1404.

[34] FAN Q M, JING Y Y, YU G F, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Cancer Lett, 2014,352(2):160-168.

[35] POLLARD J W. Trophic macrophages in development and disease[J]. Nat Rev Immunol, 2009,9(4):259-270.

[36] BISWAS S K, GANGI L, PAUL S, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation)[J]. Blood, 2006,107(5):2112-2122.

[37] MANTOVANI A, SICA A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity[J]. Curr Opin Immunol, 2010,22(2):231-237.

[38] RUFFELL B, AFFARA N I, COUSSENS L M. Differential macrophage programming in the tumor microenvironment[J]. Trends Immunol, 2012,33(3):119-126.

[39] YEUNG O W, LO C M, LING C C, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma[J]. J Hepatol, 2015,62(3):607-616.

[40] AMBADE A, SATISHCHANDRAN A, SAHA B, et al. Hepatocellular carcinoma is accelerated by NASH involving M2 macrophage polarization mediated by hif-1alphainduced IL-10[J]. Oncoimmunology, 2016,5(10):e1221557.

[41] KANG T W, YEVSA T, WOLLER N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development[J]. Nature, 2011,479(7374):547-551.

[42] LI X, YAO W, YUAN Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017,66(1):157-167.

[43] LACOTTE S, SLITS F, ORCI L A, et al. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma[J]. Oncoimmunology, 2016,5(11):e1234565.

[44] TANAKA K, MORIMOTO Y, TOIYAMA Y, et al. Intravital dual-colored visualization of colorectal liver metastasis in living mice using two photon laser scanning microscopy[J]. Microsc Res Tech, 2012,75(3):307-315.

[45] MATSUMURA H, KONDO T, OGAWA K, et al. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage[J]. Int J Oncol, 2014,45(6):2303-2310.

[46] GUL N, BABES L, SIEGMUND K, et al. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy[J]. J Clin Invest, 2014,124(2):812-823.

[47] PASCHOS K A, MAJEED A W, BIRD N C. Role of Kupffer cells in the outgrowth of colorectal cancer liver metastases[J]. Hepatol Res, 2010,40(1):83-94.

[48] KIMURA Y, INOUE A, HANGAI S, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis[J]. Proc Natl Acad Sci U S A, 2016,113(49):14097-14102.

[49] TIMMERS M, VEKEMANS K, VERMIJLEN D, et al. Interactions between rat colon carcinoma cells and Kupffer cells during the onset of hepatic metastasis[J]. Int J Cancer, 2004,112(5):793-802.

[50] GRANDJEAN C L, MONTALVAO F, CELLI S, et al. Intravital imaging reveals improved Kupffer cell-mediated phagocytosis as a mode of action of glycoengineered anti-CD20 antibodies[J]. Sci Rep, 2016,6:34382.

[51] VAN DEN EYNDEN G G, MAJEED A W, ILLEMANN M, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications[J]. Cancer Res, 2013,73(7):2031-2043.

[52] TIMMERS M, VEKEMANS K, VERMIJLEN D, et al. Interactions between rat colon carcinoma cells and Kupffer cells during the onset of hepatic metastasis[J]. Int J Cancer, 2004,112(5):793-802.

[53] HAM B, WANG N, D′COSTA Z, et al. TNF receptor-2 facilitates an immunosuppressive microenvironment in the liver to promote the colonization and growth of hepatic metastases[J]. Cancer Res, 2015,75(24):5235-5247.

[54] KRUGER A. Premetastatic niche formation in the liver: emerging mechanisms and mouse models[J]. J Mol Med (Berl), 2015,93(11):1193-1201.

[55] DONG P, MA L, LIU L, et al. CD86+/CD206+, diametrically polarized tumor-associated macrophages, predict hepatocellular carcinoma patient prognosis[J]. Int J Mol Sci, 2016,17(3):320.

[56] ZHANG Q, ZHU B, LI Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy[J]. Front Immunol, 2017, 8:71.

[57] DIAKOS C I, CHARLES K A, MCMILLAN D C, et al. Cancer-related inflammation and treatment effectiveness[J]. Lancet Oncol, 2014,15(11):e493-e503.

[58] GEISSMANN F, JUNG S, LITTMAN D R. Blood monocytes consist of two principal subsets with distinct migratory properties[J]. Immunity, 2003,19(1):71-82.

[59] TENG K Y, HAN J, ZHANG X, et al. Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model[J]. Mol Cancer Ther, 2017,16(2):312-322.

[60] FURNESS A J, VARGAS F A, PEGGS K S, et al. Impact of tumour microenvironment and Fc receptors on the activity of immunomodulatory antibodies[J]. Trends Immunol, 2014,35(7):290-298.

[61] PARK S, JIANG Z, MORTENSON E D, et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity[J]. Cancer Cell, 2010,18(2):160-170.

[62] LO J, LAU E Y, SO F T, et al. Anti-CD47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma[J]. Liver Int, 2016,36(5):737-745.

[63] LO J, LAU E Y, CHING R H, et al. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice[J]. Hepatology, 2015,62(2):534-545.

[64] XIAO Z, CHUNG H, BANAN B, et al. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma[J]. Cancer Lett, 2015,360(2):302-309.

[65] MOVITA D, VAN DE GARDE M D, BIESTA P, et al. Inflammatory monocytes recruited to the liver within 24 hours after virus-induced inflammation resemble Kupffer cells but are functionally distinct[J]. J Virol, 2015,89(9):4809-4817.

[66] GORDON S R, MAUTE R L, DULKEN B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017,545(7655):495-499.

猜你喜歡
功能
拆解復(fù)雜功能
鐘表(2023年5期)2023-10-27 04:20:44
也談詩(shī)的“功能”
基層弄虛作假的“新功能取向”
深刻理解功能關(guān)系
鉗把功能創(chuàng)新實(shí)踐應(yīng)用
關(guān)于非首都功能疏解的幾點(diǎn)思考
基于PMC窗口功能實(shí)現(xiàn)設(shè)備同步刷刀功能
懷孕了,凝血功能怎么變?
媽媽寶寶(2017年2期)2017-02-21 01:21:24
“簡(jiǎn)直”和“幾乎”的表達(dá)功能
中西醫(yī)結(jié)合治療甲狀腺功能亢進(jìn)癥31例
主站蜘蛛池模板: 天天干天天色综合网| 亚洲视频欧美不卡| 久久久久久久久久国产精品| 亚洲91在线精品| 日韩欧美国产中文| 久99久热只有精品国产15| 亚洲国产系列| 青青草原国产av福利网站| 99中文字幕亚洲一区二区| 国产99精品久久| 国产1区2区在线观看| 国产成人精品视频一区视频二区| 国产网站免费看| 亚洲va在线观看| 为你提供最新久久精品久久综合| 欧美色图久久| 国产女人综合久久精品视| 国产超薄肉色丝袜网站| 九九视频在线免费观看| 国产在线91在线电影| 欧美成人h精品网站| 欧美成人国产| 欧美日韩中文字幕在线| 国产无码性爱一区二区三区| 国产欧美日韩视频怡春院| 黄片在线永久| 亚洲高清国产拍精品26u| 91视频青青草| 欧美日韩导航| 亚洲国产精品VA在线看黑人| 丁香亚洲综合五月天婷婷| 在线观看国产精美视频| 精品午夜国产福利观看| 久久婷婷人人澡人人爱91| 天天色综网| 国产福利小视频在线播放观看| 日韩一区精品视频一区二区| 日韩av在线直播| a毛片免费在线观看| 黄色不卡视频| 国产精品视频a| 中国毛片网| 全午夜免费一级毛片| 青草娱乐极品免费视频| 久久伊人操| 99国产精品免费观看视频| 在线观看国产黄色| 欧美一级黄色影院| 国产成人a毛片在线| 在线视频一区二区三区不卡| 亚洲欧美天堂网| 亚洲欧美日韩动漫| 国产精鲁鲁网在线视频| 国产高清在线观看91精品| 无码中文字幕乱码免费2| 免费国产一级 片内射老| 国产福利小视频高清在线观看| 538国产视频| 国产丝袜91| 国产二级毛片| 日本免费a视频| 国产成人高清精品免费| 免费播放毛片| 亚洲无码电影| 久久国产精品娇妻素人| 国产嫖妓91东北老熟女久久一| 亚洲区视频在线观看| 婷婷六月激情综合一区| 亚洲电影天堂在线国语对白| 好紧太爽了视频免费无码| 五月六月伊人狠狠丁香网| 国产屁屁影院| 四虎国产永久在线观看| 亚洲一道AV无码午夜福利| 国产95在线 | 国产欧美高清| 亚洲欧洲天堂色AV| 黄色网站不卡无码| 亚洲国产成人精品一二区| 亚洲男人的天堂久久香蕉网| 国产成人精品无码一区二| 免费毛片在线|