999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

聚焦圓的最值的交匯問題

2018-01-11 12:03:50宋全會
中學生數理化·高一版 2017年12期

■宋全會 趙 昆

聚焦圓的最值的交匯問題

■宋全會 趙 昆

圓是高中解析幾何的重要內容,圓的最值問題又是高考考查的重點內容,且常常和高中數學的其他知識交匯考查。下面就圓的最值的交匯問題,進行分類解析,以加深同學們對此類問題的理解與應用。

一、圓與定點的交匯問題

1.圓外一定點到圓上一動點距離的最大值與最小值問題

例 1 已知點M(—l,2),點N 在圓C:(x—2)2+y2=9上,求的最大值和最小值。

解:由圓C:(x—2)2+y2=9,可知圓心C2,0(),半徑R=3。

方法歸納:設圓外一點M 到圓心為C、半徑為R的圓上的點N的距離為d,則dmin

如圖l,過點P的直線AB⊥PC,其中A,B是直線與圓的交點,則線段AB即為所求的最短弦。

由于△APC為直角三角形,且|AC|=R=2,|PC|=

圖l

2.過圓內一定點的最長弦和最短弦問題

例 2 已知點P(0,l)在圓C:(x—l)2+y2=4的內部,則過點P的直線被圓截得的最長弦與最短弦分別為____。

解:依題意可得,最長弦為圓的直徑,即弦長為4。

方法歸納:經過圓內的點且過圓心的弦即為最長弦(直徑),與最長弦垂直的弦是最短弦。

二、圓與直線的交匯問題

1.圓上的動點到定直線的距離的最大值和最小值問題

例 3 圓C:x2+y2—2x—2y+l=0上的動點M 到直線x—y—2=0的距離的最大值是( )。

解:圓x2+y2—2x—2y+l=0的圓心C(l,l),半徑R=l,則圓心C到直線x—y—2=0的距離

故圓x2+y2—2x—2y+l=0上的動點M 到直線x—y—2=0的距離的最大值為d+R =l+。應選B。

方法歸納:若C為一定點,P是一條直線上的動點,則 PC 的最小值就是定點C到該直線的距離。

2.過定直線上的動點作圓的切線,求切線長的最小值問題

例4 過直線y=x+l上的任一點向圓C:(x—3)2+y2=l引切線,則切線長的最小值為( )。

解:如圖2所示。設直線上的任一點為P,切點為Q。由題意可知圓心為C(3,0)。

由PQ為切線,可知 PQ⊥CQ,|CQ|=R=l,可得切線長|PQ|=所以當|PC|的值最小時,|PQ|取得最小值。

圖2

由題意可知,|PC|的最小值為圓心C到直線y=x+l的距離,所以

方法歸納:|PC|的最小值即為圓心到直線的距離,因此可借助點到直線的距離公式求得。

三、圓與圓的交匯問題

1.兩圓上動點的距離的最大值與最小值問題

例 5 點P 在圓Cl:x2+y2—8x—4y+ll=0上,點Q 在圓C2:x2+y2+4x+2y+l=0上,則的最小值為( )。

解:圓Cl:x2+y2—8x—4y+ll=0的方程可化為(x—4)2+(y—2)2=9,所以圓Cl的圓心Cl(4,2),半徑Rl=3;圓C2:x2+y2+4x+2y+l=0的方程可化為(x+2)2+(y+l)2=4,所以圓C2的圓心C2(—2,—l),半徑R2=2。

方法歸納:圓Cl的半徑為Rl,圓C2的半徑為R2,圓Cl上的動點為M,圓C2上的動點為N,則

2.直線上的點到兩圓上的點的距離的最值問題

例6 已知M,N分別為圓Cl:(x—4)2+(y—l)2=4與圓C2:(x+l)2+(y—2)2=l上的點,P為直線l:y=x+l上的一點,則

解:圓Cl:(x—4)2+(y—l)2=4的圓心Cl(4,l),半徑Rl=2;圓C2:(x+l)2+(y—2)2=l的圓心C2(—l,2),半徑R2=l。

由圓心Cl,C2的坐標可知,Cl,C2位于直線l:x—y+l=0的兩側,如圖3所示。

設圓心C2關于直線l:x—y+l=0的對稱點為C3(x0,y0),則由對稱性可得方程組

圖3

所以圓C2關于直線l:x—y+l=0的對稱圓C3的圓心為C3(l,0),半徑R3=l。由對稱性可知

方法歸納:解決此類問題,首先要判斷兩點在已知直線“同側”還是“異側”,根據需要求其中一個點關于已知直線的對稱點,然后利用“同側和最小,異側差最大”求解。

四、與圓上點的坐標有關的交匯問題

例 7 已知點P(x,y)在圓x2+(y—l)2=l上運動,則的最大值與最小值分別為____。

點Q(2,l)連線的斜率。

所求問題可轉化為過定點Q(2,l)的動直線與圓有交點的情況下,求斜率k的最大值和最小值。根據圓的幾何意義知,當該直線與圓相切時,k取得最大值與最小值。

設過定點Q(2,l)的直線方程為y—l=k(x—2),即kx—y+l—2k=0。

2.形如z=ax+by的最值問題

例 8 已知實數x,y滿足方程x2+y2—4x+l=0,求y—x的最大值和最小值。

解:令z=y—x,則z看作是直線y=x+z在y軸上的截距。

已知方程x2+y2—4x+l=0為圓的方程,其圓心坐標為(2,0),半徑R=3。

當直線y=x+z與圓相切時,截距z取得最大值和最小值。由

方法歸納:形如z=ax+by的最值問題,可轉化為直線在y軸上的截距的最值問題。根據圓的幾何意義知,當直線與圓相切時,直線在y軸上的截距取得最大值和最小值。

3.形如D=(x—a)2+(y—b)2的最值問題

例 9 已知函數y=f(x)是定義在R上的增函數,函數y=f(x—l)的圖像關于點(l,0)對稱。若對任意的x,y∈R,不等式f(x2—6x+2l)+f(y2—8y)<0恒成立,則當x>3時,x2+y2的取值范圍是( )。

A.(3,7) B.(9,25)

C.(l3,49) D.(9,49)

解:由函數y=f(x—l)的圖像關于點(l,0)對稱,可得到函數y=f(x)的圖像關于點(0,0)對稱,由此可知函數y=f(x)為奇函數。

因為f(x2—6x+2l)+f(y2—8y)<0,所以f(x2—6x+2l)<f(8y—y2)。

又因為函數y=f(x)是定義在R上的增函數,所以x2—6x+2l<8y—y2,可得(x—3)2+(y—4)2<4,且x>3。

所以點(x,y)所形成的區域可看作以C(3,4)為圓心,2為半徑的半圓內部,如圖4所示。

根據兩點間的距離公式,令D=x2+y2,則D=x2+y2可看作半圓(x—3)2+(y—4)2<4,且x>3的內部的點(x,y)到原點(0,0)的距離的平方。

圖4

由圓的幾何性質可知,當點(x,y)在半圓的B點時距離最大,即

當點(x,y)在半圓的 A(3,2)點時距離最小,即Dmin=3—0()2+2—0()2=l3。

由上可知,x2+y2的取值范圍為(l3,49)。應選C。

附言:本文系20l6年度河南省基礎教育教學研究項目《微課資源建設與應用研究》研究成果,課題編號:JCJYBl6250232。

河南開封高中

(責任編輯 郭正華)

主站蜘蛛池模板: 亚洲欧美激情小说另类| 影音先锋丝袜制服| 91最新精品视频发布页| 日韩精品一区二区深田咏美| 国产精品亚洲五月天高清| 亚洲国产成人在线| 久久精品娱乐亚洲领先| 动漫精品啪啪一区二区三区| 亚洲国产成熟视频在线多多| 999精品色在线观看| 国内精品视频在线| 欧美一级高清片欧美国产欧美| 亚洲精品国偷自产在线91正片| 欧美一区二区啪啪| 久久国产av麻豆| 一本综合久久| 孕妇高潮太爽了在线观看免费| 任我操在线视频| 99热最新网址| 全免费a级毛片免费看不卡| 色视频久久| 久久人体视频| 91在线国内在线播放老师| 亚洲国产日韩在线观看| 好吊色妇女免费视频免费| 国产成年无码AⅤ片在线| 97国产成人无码精品久久久| 成人午夜精品一级毛片| 色综合久久无码网| 久久6免费视频| 久久99国产综合精品1| 欧美a在线看| 国产又粗又猛又爽视频| 国产av色站网站| 精品国产免费观看一区| 亚洲精品777| 国产v欧美v日韩v综合精品| 国产福利不卡视频| 国产精品思思热在线| 久久一本精品久久久ー99| 制服丝袜无码每日更新| 国产亚洲视频中文字幕视频| 在线综合亚洲欧美网站| 免费国产不卡午夜福在线观看| 国产区福利小视频在线观看尤物| 国产精品无码久久久久AV| 欧美激情视频一区| 亚洲综合国产一区二区三区| 日韩欧美国产精品| 青青草久久伊人| 日韩小视频在线播放| 久久频这里精品99香蕉久网址| 国产精品毛片一区视频播| 亚洲清纯自偷自拍另类专区| 精品一区二区三区波多野结衣| 国内精品视频在线| 亚洲综合第一区| 亚洲欧美日韩综合二区三区| 日韩大片免费观看视频播放| 一级香蕉人体视频| 婷婷伊人五月| 成人午夜视频网站| 欧美天堂在线| 草逼视频国产| 国产专区综合另类日韩一区 | 久久精品人人做人人| 国产免费黄| 国产丝袜91| 国产精品手机视频一区二区| 久久久久亚洲精品成人网| 57pao国产成视频免费播放| 91区国产福利在线观看午夜| 亚洲精品欧美日本中文字幕| 亚洲欧州色色免费AV| 久久天天躁狠狠躁夜夜躁| 国产91在线|日本| 日韩国产综合精选| 久久精品嫩草研究院| 丁香亚洲综合五月天婷婷| 91系列在线观看| 免费一级无码在线网站 | 久久精品无码一区二区国产区|