馬興灶,方壯東,李長友
?
馬興灶1,2,方壯東2,李長友2※
(1. 嶺南師范學院機電工程學院,湛江 524048;2. 華南農業大學工程學院,廣州 510642)
為客觀、合理地評價糧食逆流干燥系統的能效,實現糧食高效節能干燥,該文基于?分析法,從氣流狀態變化考察逆流連續式干燥工藝系統的能量利用程度。結果表明:在試驗條件下,干燥機內各干燥段能量利用效果較好。在高溫和低溫干燥段,排氣和干燥室熱損失率最高分別不超過6.68%、11.09%和21.26%、9.37%,熱效率和?效率不低于83.02%、68.1%和69.37%、56.22%;在冷卻段,由于糧溫比風溫高,風對稻谷有明顯的降溫去水作用。而系統的平均熱效率和?效率為80.24%和64.52%,表明系統能量匹配效果較好,稻谷的平均單位熱耗量為2 944.6 kJ/kg,與國標≤7 400 kJ/kg相比,節能達到60.2%,節能效果明顯。研究結果為干燥工藝設計、探索節能的途徑和制定糧食干燥系統能效評價標準提供參考。

中國是世界上最大的糧食生產及消費國,2015年糧食總產量高達6.2億t,糧食干燥機械化需求迫切。然而截止2014年底,全國擁有的糧食干燥機達5.44萬臺,機械干燥糧食數量8 935.72萬t[1],據此計算中國的糧食干燥機械化程度還不足15%,與美、日等發達國家20世紀80年代已達95%的水平相差甚遠,與目前全國農作物耕種收綜合機械化率已達63.8%的水平相比,發展很不平衡[2]。近年,在國家良好的政策導向下,烘干機市場持續走熱,設備數量增長很快,但整體市場比較混亂,新技術應用不足,設備制造質量不高、適應性、通用性、可靠性、安全性差,能耗高、效率低、品質不能保障。導致問題的原因有多方面,其中設備能效評價標準不科學是問題的根源之一。
近年來,國內外學者基于特定干燥試驗,探討干燥工藝參數[3-8],分析了干燥系統能耗[9-13],提出了一些節能措施[14-18]。但迄今,研究人員設計、評價干燥系統的誤區之一是把注意力放在了提高人為提供的熱能消耗和干燥動力上,忽視了客觀?的作用,評價標準不夠科學。充分利用客觀?,增大動力系數是實現綠色、高效節能的關鍵。同一物料在同樣的干燥動力條件下,采用不同的干燥工藝和處理方式,其能量的利用效果有很大差別[19-20]。?概念的引入,解決了利用一個單獨的物理量來揭示系統能量價值問題,改變了人們對能的性質、損失、轉換效率等傳統的看法,提供了用能分析的科學基礎,能夠全面深刻地揭示系統內部損失、能量的價值以及在各環節上損耗的特征。基于干燥?分析法[21-24],揭示糧食逆流干燥工藝系統的熱能結構,對評價干燥系統有效能利用效率具有較高的理論價值和重要的現實意義。
因此,為客觀、合理地評價干燥系統的能效,實現糧食高效節能干燥,本文基于干燥系統熱質衡算和熱效率與?效率分析方法,從逆流干燥系有效能動態變化過程,考察逆流連續式干燥工藝系統的能量利用程度,利用5HNH-15型干燥機考證評價結果的可靠性,為提高糧食干燥效率和探索節能的途徑提供分析方法,為干燥工藝系統設計和制定糧食干燥能效評價標準提供一些參考。
糧食干燥是一個輸入能量、介質和濕糧,排出廢氣、得到干糧的開口系統,干燥過程必然要進行物質和熱量的交換,為準確把握系統內部能量消耗的本質,必須基于物質守恒和能量守恒原則,對系統進行計算。系統干燥過程的計算包括物料衡算和熱量衡算兩部分,圖1所示即為整個干燥過程的物料衡算和熱量衡算過程參數。糧食逆流干燥系統熱質衡算示意圖如圖1所示。

注:t0為空氣初始溫度,℃;d0為空氣初始含濕量,kg·kg-1;h0為空氣初始熱焓,kJ·kg-1;G為絕干空氣的質量流量,kg·h-1;t1為加熱后空氣溫度,℃;d1為加熱后空氣含濕量,kg·kg-1;h1為加熱后空氣熱焓,kJ·kg-1;t2為排氣溫度,℃;d2為排氣濕含量,kg·kg-1;h2為排氣熱焓,kJ·kg-1;W1、W2分別為干燥前后糧食的質量流量,kg·h-1;M0、M2分別為糧食初始和終了含水率,%;tm1、tm2分別為糧食干燥前后的溫度,℃。
1.1.1 糧食的去水量
在糧食干燥過程中,糧食與干燥介質進行物質與能量交換,在這個干燥過程中一直保持恒定不變的量為介質中的絕干空氣量和進入、輸出干燥室的絕干糧食量,以1,2表示干燥前后糧食的質量流量,kg/h;以W表示干燥過程中絕干糧食的質量流量,kg/h;以表示干燥過程中蒸發的水分的質量流量,kg/h;則有:


化簡得:


式中0,2為干燥前后糧食的濕基含水率,%。
1.1.2 氣耗量
環境空氣先經過加熱器加熱后變為干燥空氣,送入干燥室,與糧食接觸進行熱質交換后,排出干燥室;糧食經輸送裝置進入干燥室,與干燥空氣進行熱質交換后,排出干燥室。在這個過程中,對進出干燥室的干燥空氣的水分進行衡算,則有:

式中為干燥過程中絕干空氣的質量流量,kg/h;1,2為空氣進入和排出干燥室時的含濕量,kg/kg。

式中稱為比空氣用量或單位空氣消耗量,簡稱氣耗量,即從濕物料中蒸發1 kg水分所需的干空氣量,kg/kg。由式(6)可見,比空氣用量只與空氣的最初和最終濕度有關,而與干燥過程所經歷的途徑無關。
糧食干燥過程的熱量衡算包括介質的降溫增濕過程的熱量、糧食升溫去濕過程的熱量和系統損耗,其整個干燥過程中介質和糧食組成的干燥系統的熱量衡算,如式(7)所示:


環境空氣進入空氣加熱器(換熱器)升溫過程,可用式(8)表示:

式中1為加熱后干燥空氣的熱焓,kJ/kg。
僅考察干燥室的熱量衡算表達式,根據能量守恒定律,則有:

濕空氣中包含的水蒸氣質量與其中的干空氣質量之比為空氣的濕含量,在一定的大氣壓力下,濕空氣的含濕量可由式(10)計算[25]:

其中

式中為濕空氣含濕量,kg/kg;為空氣的相對濕度,%;P為環境溫度t下的濕空氣飽和蒸汽壓力,Pa;P為環境溫度t下的環境大氣壓力,Pa;t為濕空氣的溫度,℃。
濕空氣的熱焓是指包含1 kg干空氣的濕空氣具有的熱焓量,即1 kg干空氣及與其混合的水蒸氣的焓之和,在濕空氣溫度t下,濕空氣的熱焓可由式(12)計算:
=1.005t+(2 501+1.86t) (12)
式中為濕空氣的熱焓,kJ/kg。
干燥系統的狀態變化和能量結構如圖2所示。在干燥系統內部,糧食的去水量等于介質的增濕量,當糧食水分蒸發消耗的汽化潛熱和谷物升溫、蒸發出的水分升溫、介質流動功損以及干燥室散熱熱損失完全來自進入系統中介質的顯熱時,那么,在定壓狀態下,干燥介質從加熱器中獲取的熱量則全部體現在自身焓的變化上。由圖2可以看出,介質初始狀態為狀態點0,從狀態點0經過人為供給熱量等濕加熱到狀態點1;假設介質在干燥室內與糧食自發地進行熱質交換后,從狀態點2排出干燥室,在此過程中,干燥介質經歷的是一個增濕降溫的過程,糧食經歷的是一個去濕的過程,糧食本身溫度變化可以是升溫、等溫或者降溫,干燥過程中,糧食從初始狀態點4到達了狀態點3。

注:0為初始狀態和環境態,1和2為干燥室進氣和排氣狀態點,2′為介質升溫熱損失狀態點,3為干糧狀態,4為濕糧狀態;h0為空氣初始熱焓,kJ·kg-1;h1為加熱后空氣熱焓,kJ·kg-1;h2為實際進氣熱焓,kJ·kg-1;h′2為排氣熱焓,kJ·kg-1;he0為零?點熱焓,kJ·kg-1;t0為空氣初始溫度,℃;t1為加熱后空氣溫度,℃;tg0、tg2分別為糧食初始溫度和終了溫度,℃;t2為排氣溫度,℃;t′為零?點溫度,℃;φ1、φ2分別是進氣和排氣相對濕度,%;M0、M2分別為糧食初始和終了含水率,%;d0、d2分別為進氣和排氣含濕量,kg·kg-1;t12表示介質進入干燥室實際溫度,℃。
2.2.1 干燥室的熱效率

如果糧食水分蒸發完全看作是換熱器提供給介質的熱能產生的結果,則干燥室的熱效率可被表示為式(13)

2.2.2 干燥室的?效率


試驗樣機為5HNH-15型多段逆流干燥緩蘇連續式干燥機,機內靜容積169 m3,標準機內容量93 t稻谷,其結構圖如圖3所示,各干燥段參數見文獻[29];糧食為湘早秈45號,進入干燥機前的平均濕基含水率為24.06%,試驗地點為湖南省寧鄉縣衛紅米業有限公司,試驗時間為2015年7月25日,試驗當天天氣晴朗,試驗時平均溫度為32.4 ℃,相對濕度平均值為55.74%,高溫風機、低溫風機和冷風機的風量分別為56 800、37 864和11 000 m3/h;干燥機平均排糧量約為12.5 t/h。試驗主要測試儀器如表1所示。

圖3 干燥機結構圖
試驗過程中,自主開發了實時跟蹤記錄從換熱器進入風道的高溫干燥段(HDS,High drying segment)、低溫干燥段(LDS,Low drying segment)與冷卻段(CS,Cooling segment)的進風溫度、各干燥段排氣溫濕度和環境溫濕度的數據采集系統,系統界面如圖4所示,系統每隔5 min保存數據一次。待工作穩定后,連續采集干燥機的氣流狀態變化數據,同時分時段對各干燥段和排糧口的糧食采樣進行含水率和糧溫測定,采樣點位置如圖4所示。

表1 試驗測試儀器

圖4 數據采集系統界面
由于連續式干燥機內糧食經歷所有干燥過程的時長約為5~10 h,為準確、客觀地分析干燥系統能效,需連續記錄足夠的過程參數求平均。因此,待干燥機達到穩定工作狀態后,連續3 d跟蹤記錄干燥現場數據,記錄數據按每小時求平均,隨機選取2015年7月25日10:00-20:00連續10 h干燥現場數據進行分析,試驗結果如表2和表3所示。

表2 5HNH-15型連續式干燥機熱風干燥試驗測試數據

表3 5HNH-15型連續式干燥機能效評價
由表2和表3可以看出:
1)在試驗條件下,干燥機內各干燥段能量利用效果較好。在高溫干燥段,排氣熱損失率和干燥室熱損失率最高不超過6.68%和11.09%,干燥室熱效率和?效率不低于83.02%和68.10%;在低溫干燥段,排氣熱損失率和干燥室熱損失率最高不超過21.26%和9.37%,干燥室熱效率和?效率不低于69.37%和56.22%;而在冷卻段,由于糧溫比風溫高,風對稻谷有明顯的降溫去水作用。從表2和表3可以看出,干燥室的平均熱效率和?效率分別為80.24%和64.52%,說明干燥過程的能量匹配比較理想,但仍有一定的提升空間。
2)從最初干燥室的熱損失率為1.86%,而在干燥后期為21.26%,對應的干燥室的熱效率由最初的89.09%降低到了69.37%,干燥室的?效率由最初的72.55%降低到56.22%,證實了糧食熱風干燥消耗的能量中不僅有主觀?,也包含有客觀?,評價干燥能效不能忽視客觀干燥?的作用。
3)整個干燥過程,稻谷的平均單位熱耗量為 2 944.6 kJ/kg,與國標≤7 400 kJ/kg相比,節能達到60.2%,系統節能效果明顯。
4)稻谷在干燥機內經歷的是先升溫再降溫的過程,在冷卻段,經過常溫空氣的冷卻,稻谷得到了很好降溫。在整個干燥過程中,糧溫隨含水率的降低而緩慢升高,最高不超過38.0 ℃,溫度基本接近或者低于稻谷玻璃態轉化溫度[30],較好的保證了稻谷干燥品質。
1)在試驗條件下,干燥機內各干燥段能量利用效果較好。在高溫和低溫干燥段,排氣和干燥室熱損失率最高分別不超過6.68%、11.09%和21.26%、9.37%,熱效率和?效率不低于83.02%、68.1%和69.37%、56.22%;在冷卻段,由于糧溫比風溫高,風對稻谷有明顯的降溫去水作用。
2)稻谷的平均單位熱耗量為2 944.6 kJ/kg,與國標≤7 400 kJ/kg相比,節能達到60.2%,系統節能效果明顯。
3)合理設計稻谷干燥工藝過程,可使稻谷溫度基本接近或者低于稻谷玻璃態轉化溫度,較好的保證了稻谷干燥品質。
[1] 孫超,耿楷敏. 糧食干燥技術裝備發展現狀及建議[J]. 農機質量與監督,2015(12):18-19.
[2] 李長友. 廣東省糧食干燥機械化裝備技術發展研討[J]. 現代農業裝備,2014(1):41-48.
[3] 陳坤杰,李娟玲,楊明毅,等. 稻谷固定床式深層干燥試驗研究[J]. 農業機械學報,2001,32(2):58-61.
Chen Kunjie, Li Juanling, Yang Mingyi, et al. Drying experiments of paddy in a deep fixed-bed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(2): 58-61. (in Chinese with English abstract)
[4] 胡萬里,李長友,徐鳳英. 稻谷薄層快速干燥工藝的試驗[J]. 農業機械學報,2007,38(4):103-106.
Hu Wanli, Li Changyou, Xu Fengying. Experimental study on fast dry craft of rough rice thin layer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(4): 103-106. (in Chinese with English abstract)
[5] 殷麗春,毛志懷. 玉米薄層干燥的試驗研究[J]. 農機化研究,2005(1):197-198.
Yin Lichun, Mao Zhihuai. Research on thin-layer maize drying[J]. Journal of Agricultural Mechanization Research, 2005(1): 197-198.(in Chinese with English abstract)
[6] 馬興灶,李長友,張曉立,等. 溫度勢差驅動玉米去水試驗研究[J]. 農產品加工:學刊,2010(10):8-10.
Ma Xingzao, Li Changyou, Zhang Xiaoli, et al. Dehydration of maize by temperature difference [J]. Academic Periodical of Farm Products Processing, 2010(10): 8-10. (in Chinese with English abstract)
[7] 劉啟覺. 高水分稻谷干燥工藝試驗研究[J]. 農業工程學報,2005,21(2):135-139.
Liu Qijue. Experimental research on drying technology for high moisture content paddy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(2): 135-139. (in Chinese with English abstract)
[8] 鄭先哲,夏吉慶,楊悅乾. 增濕加熱稻谷干燥工藝的試驗研究[J]. 農業工程學報,2000,16(3):81-83.
Zheng Xianzhe, Xia Jiqing, Yang Yueqian. Experimental study on paddy drying technology by using humidified and heated air[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(3): 81-83. (in Chinese with English abstract)
[9] 王潤發,方壯東,王鵬程,等. 稻谷多場協同干燥系統設計與試驗[J]. 農機化研究,2017,39(6):96-100.
Wang Runfa, Fang Zhuangdong, Wang Pengcheng, et al. Design and experiment of multi-field synergy drying system for paddy[J]. Journal of Agricultural Mechanization Research, 2017, 39(6): 96-100. (in Chinese with English abstract)
[10] 王丹陽,李成華,佟玲,等. 深床干燥工藝參數對稻谷干燥比能耗的影響[J]. 沈陽農業大學學報,2008,39(5):593-597.
Wang Danyang, Li Chenghua, Tong Ling, et al. Influence of drying parameters on efficiency rate of rice in a deep fixed-bed [J]. Journal of Shenyang Agricultural University, 2008, 39(5): 593-597. (in Chinese with English abstract)
[11] Motevali Ali, Minaei Saeid, Khoshtagaza Mohammad Hadi. Evaluation of energy consumption in different drying methods [J]. Energy Conversion & Management, 2011, 52(2): 1192-1199.
[12] Syahrul S, Hamdullahpur F, Dincer I. Exergy analysis of fluidized bed drying of moist particles[J]. Exergy An International Journal, 2002, 2(2): 87-98.
[13] Sarker Md Sazzat Hossain, Ibrahim Mohd Nordin, Aziz Norashikin Abdul, et al. Energy and exergy analysis of industrial fluidized bed drying of paddy[J]. Energy, 2015, 84: 131-138.
[14] 李長友,麥智煒,方壯東,等. 種子循環干燥系統設計與試驗[J]. 農業機械學報,2014,45(6):242-248.
Li Changyou, Mai Zhiwei, Fang Zhuangdong, et al. Development of seed circulation drying system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 242-248. (in Chinese with English abstract)
[15] 邸坤,李杰,馬云霞,等. 我國糧食干燥節能途徑[J]. 干燥技術與設備,2005,3(4):207-210.
Di Kun, Li Jie, Ma Yunxia, et al. Approaches to energy saving in grain drying process[J]. Drying Technology & Equipment,2005, 3(4): 207-210. (in Chinese with English abstract)
[16] 王德華,董殿文,汪喜波,等. 干燥系統節能減排技術研究與實施[J]. 糧食加工,2009,34(3):63-77.
[17] 尹曉慧,尹思萬. 順流連續式糧食干燥機節能工藝探討[J]. 現代化農業,2009(4):42.
[18] 李長友,張燁,麥智煒. 高濕糧食貯藏干燥機設計與試驗[J]. 農業機械學報,2014,45(4):231-235.
Li Changyou, Zhang Ye, Mai Zhiwei. Design and experiment of dryer for high moisture grain storage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 231-235. (in Chinese with English abstract)
[19] 李長友,馬興灶,麥智煒. 糧食熱風干燥含水率在線模型解析[J]. 農業工程學報,2014,30(11):10-20.
Li Changyou, Ma Xingzao, Mai Zhiwei. Analytical study on on-line model of moisture in hot air drying process of grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 10-20. (in Chinese with English abstract)
[20] 李長友,方壯東. 高濕稻谷多段逆流干燥緩蘇解析模型研究[J]. 農業機械學報,2014,45(5):179-184.
Li Changyou, Fang Zhuangdong. Analytical models of multistage counter flow drying and tempering process of grain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 179-184. (in Chinese with English abstract)
[21] 李長友,麥智煒,方壯東. 糧食水分結合能與熱風干燥動力解析法[J]. 農業工程學報,2014,30(7):236-242.
Li Changyou, Mai Zhiwei, Fang Zhuangdong. Analytical study of grain moisture binding energy and hot air drying dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 236-242. (in Chinese with English abstract)
[22] 李長友,馬興灶,方壯東,等. 糧食熱風干燥熱能結構與解析法[J]. 農業工程學報,2014,30(9):220-228.
Li Changyou, Ma Xingzao, Fang Zhuangdong, et al. Thermal energy structure of grain hot air drying and analytical method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 220-228. (in Chinese with English abstract)
[23] 李長友. 糧食熱風干燥系統?評價理論研究[J]. 農業工程學報,2012,28(12):1-6.
Li Changyou. Exergy evaluation theory of hot air drying system for grains[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 1-6. (in Chinese with English abstract)
[24] 馬興灶. 糧食干燥水分在線解析與能效評價研究[D]. 廣州:華南農業大學,2016.
Ma Xingzao. Moisture Online Analysis and Energy Efficiency Evaluation of Grain Drying[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract)
[25] 李長友. 熱工基礎[M]. 北京:中國農業大學出版社,2011.
[26] Midilli A, Kucuk H. Energy and exergy analyses of solar drying process of pistachio[J]. Energy, 2003(28): 539-556.
[27] Syahrul S, Hamdullahpur F, Dincer I. Exergy analysis of fluidized bed drying of moist particles[J]. Exergy 2002(2): 87-98.
[28] 張燁. 高濕糧食集中干燥裝備工藝系統設計與試驗[D]. 廣州:華南農業大學, 2015.
Zhang Ye. Designing and Testing on Concentrated Drying Equipment Process System of High Moisture Grain[D]. Guangzhou: South China Agricultural University, 2015. (in Chinese with English abstract)
[29] 李長友,麥智煒,方壯東,等. 高濕稻谷節能干燥工藝系統設計與試驗[J]. 農業工程學報,2014,30(10):1-9.
Li Changyou, Mai Zhiwei, Fang Zhuangdong, et al. Design and test on energy-saving drying system for paddy with high moisture content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 1-9. (in Chinese with English abstract)
[30] 劉木華. 水稻干燥品質的模擬和控制機理研究[D]. 北京:中國農業大學,2000.
Liu Muhua. Study on Simulation and Control Mechanism of Rice Drying Quality[D]. Beijing: China Agricultural University, 2000. (in Chinese with English abstract)
Ma Xingzao, Fang Zhuangdong, Li Changyou. Energy efficiency evaluation and experiment on grain counter-flow drying system based on exergy analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 285-291. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.037 http://www.tcsae.org
Energy efficiency evaluation and experiment on grain counter-flow drying system based on exergy analysis
Ma Xingzao1,2, Fang Zhuangdong2, Li Changyou2※
(1.524048,; 2.510642,)
Grain drying is not only restrained by human operation behavior, but also influenced by a lot of objective factors, such as environmental factors, grain physical properties, and grain flow characteristics, as well as the processing technology and geometry of the dryer. In order to objectively and rationally evaluate the energy efficiency of the drying system, and realize the high efficiency and energy saving of grain drying, based on the heat and mass balance calculation of drying system, as well as the evaluation method of thermal efficiency and exergy efficiency, the energy utilization degree of counter-flow continuous drying process system was investigated under the change of airflow condition. The test results showed that the energy utilization effect of each drying segment in the dryer was better under the experimental condition. In high temperature drying segment, the exhaust gas heat loss and heat loss of drying chamber were not higher than 6.68% and 11.09%, respectively, and the thermal efficiency and exergy efficiency were not less than 83.02% and 68.1%, respectively. In low temperature drying segment, the exhaust gas heat loss and heat loss of drying chamber were not higher than 21.26% and 9.37%, respectively, and the thermal efficiency and exergy efficiency were not less than 69.37% and 56.22%, respectively. In cooling segment, due to that the grain temperature was higher than air temperature, which meant that the air had obvious cooling and dehydration effect on the grain. The average thermal efficiency and exergy efficiency of drying system were 80.24% and 64.52% respectively, which showed that the energy matching effect during grain drying process was good. The heat loss of drying chamber initially was 1.86% while 21.26% in later stage. The corresponding thermal efficiency of drying chamber reduced from 89.09% to 69.37%. The exergy efficiency of drying chamber reduced from 72.55% to 56.22%, which indicated that the energy consumption of grain drying not only had subjective exergy, but also contained objective exergy, and the evaluation of drying process and dryer energy utilization efficiency could not just stay on the subjective thermal efficiency, and should consider the effect of objective energy. Test showed that the average unit heat consumption of grain was 2 944.6 kJ/kg, and compared with the national standard, which was less than 7 400 kJ/kg, the highest energy saving could reached 60.2%. At the same time, the grain temperature was raised slowly with the moisture content decreasing during grain drying, and the highest temperature did not exceed 38.0 ℃, close to or below the glass transition temperature of grain, which showed that with the reasonable design of the grain drying process, the drying quality of grain could be better ensured. The results provide an analytical reference to improve grain drying efficiency and explore the ways of energy saving drying, as well as provide reference to design the grain drying process system and establish energy efficiency evaluation standard for grain drying.
energy conservation; drying; system analysis; grain; energy efficiency evaluation; exergy analysis
10.11975/j.issn.1002-6819.2017.22.037
S226.6
A
1002-6819(2017)-22-0285-07
2017-08-18
2017-11-09
國家自然科學基金(31371871;31671783),廣東省科技計劃項目(2014B020207001),湛江市非資助科技攻關計劃項目(2017B01095)。
馬興灶,廣東汕頭人,講師,博士,主要從事農產品干燥和智能裝備技術研究。Email:mxz2004350118@163.com。
李長友,陜西蒲城人,教授,博士,博士生導師,主要從事農業裝備技術研究。Email:lichyx@scau.edu.cn。
中國農業工程學會會員(B041100045S)