999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

DOC與POC耦合柴油機(jī)燃用調(diào)合生物柴油顆粒物的排放特性

2017-12-15 02:47:34杜家益張登攀袁銀男逄大慶
關(guān)鍵詞:顆粒物生物質(zhì)量

杜家益,魏 松,張登攀,袁銀男,逄大慶

?

DOC與POC耦合柴油機(jī)燃用調(diào)合生物柴油顆粒物的排放特性

杜家益1,魏 松1,張登攀1,袁銀男2,逄大慶3

(1. 江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013; 2. 蘇州大學(xué)能源學(xué)院,蘇州 215006; 3. 常柴股份有限公司,常州 213001)

在一臺(tái)高壓共軌柴油機(jī)上進(jìn)行燃用調(diào)合生物柴油(B0、B10和B20)臺(tái)架試驗(yàn),利用MOUDI顆粒分級(jí)采樣系統(tǒng)和氣相色譜-質(zhì)譜聯(lián)用儀(GC-MS)分別研究氧化催化器(diesel oxidation catalyst,DOC)結(jié)合顆粒氧化催化器(particle oxidation catalyst,POC)對(duì)顆粒物的粒徑質(zhì)量濃度分布和可溶性有機(jī)組分(SOF)的影響。結(jié)果表明:隨著生物柴油的摻混比增加,各粒徑范圍的排氣顆粒物質(zhì)量濃度均下降,質(zhì)量濃度峰值均在0.18~0.32m;顆粒物SOF中脂類、酸類質(zhì)量分?jǐn)?shù)增加,烷烴類、芳香烴、酚類物質(zhì)質(zhì)量分?jǐn)?shù)減少;B0和B20的碳原子數(shù)質(zhì)量分?jǐn)?shù)均呈現(xiàn)近似以C16為峰值的正態(tài)分布。加裝DOC+POC后,3種燃料顆粒物的質(zhì)量濃度均降低,聚集態(tài)顆粒的質(zhì)量濃度轉(zhuǎn)化率高于粗顆粒態(tài),其中B20聚集態(tài)轉(zhuǎn)化率最高,為58.36%;隨著生物柴油的摻混比增加,DOC+POC對(duì)SOF的轉(zhuǎn)化率增大,其中B20顆粒中SOF轉(zhuǎn)化率達(dá)65.15%;DOC+POC對(duì)脂類和酸類物質(zhì)凈化作用明顯,加裝DOC+POC后,B20脂類和酸類物質(zhì)的質(zhì)量分?jǐn)?shù)降幅分別為55.45%和43.27%;DOC+POC對(duì)B20顆粒物中SOF的C12~C18氧化作用明顯。

柴油機(jī);生物柴油;顆粒物;排放特性;氧化催化器;顆粒物氧化催化器

0 引 言

生物柴油作為柴油機(jī)比較理想的替代燃料,具有十六烷值高、含氧量高、含硫量低和可再生等優(yōu)點(diǎn)[1-2]。隨著全球石化能源的日益短缺,采用一定比例的生物柴油與石化柴油摻混燃燒的方法,對(duì)解決石油能源短缺具有重要意義[3]。研究表明柴油機(jī)燃燒生物柴油能明顯降低顆粒物排放,同時(shí)還可減少CO、HC的排放[4-10]。

隨著排放法規(guī)日趨嚴(yán)格,采用后處理裝置控制柴油機(jī)顆粒排放已必不可少。目前常見的降低柴油機(jī)顆粒物的后處理裝置有顆粒氧化催化器(particle oxidation catalyst,POC)和顆粒物濾清器(diesel particulate filter,DPF)。POC的結(jié)構(gòu)是一個(gè)多褶皺不堵塞的通道,通常與氧化催化器(diesel oxidation catalyst,DOC)組合應(yīng)用(以下簡稱DOC+POC),對(duì)顆粒物的凈化效率較好,最高質(zhì)量濃度轉(zhuǎn)化率達(dá)89.0%[11-14],與DOC+DPF組合系統(tǒng)相比,DOC+POC具有低排氣背壓、成本低、標(biāo)定過程簡單等優(yōu)點(diǎn)。

目前,國內(nèi)外研究DOC+POC對(duì)純柴油的排放特性影響較多[15-19],對(duì)生物柴油的排放特性的影響研究較少[20-21],且多集中在對(duì)常規(guī)排放以及顆粒物的凈化效率方面。本文研究重點(diǎn)是排放后處理技術(shù)對(duì)燃燒生物柴油顆粒物中可溶有機(jī)物組分(soluble organic fractions,SOF)的影響,分析DOC+POC對(duì)SOF中各組分的占比變化以及對(duì)碳原子數(shù)的變化規(guī)律。通過柴油機(jī)燃用調(diào)合生物柴油臺(tái)架試驗(yàn),利用微孔均勻沉積沖擊式采樣器(micro-orifice uniform deposition impactor,MOUDI)對(duì)DOC+POC作用前后的顆粒物進(jìn)行采樣,利用微克天平進(jìn)行稱質(zhì)量,獲得顆粒物的質(zhì)量濃度和粒徑分布,借助氣相色譜-質(zhì)譜聯(lián)用儀(gas chromatography-mass spectrometer,GC-MS)對(duì)顆粒物中SOF進(jìn)行分析。研究結(jié)果可為生物柴油排放顆粒物后處理技術(shù)提供基礎(chǔ)性數(shù)據(jù),同時(shí)有助于DOC+POC裝置的改進(jìn)與優(yōu)化。

1 試驗(yàn)發(fā)動(dòng)機(jī)與方案

1.1 發(fā)動(dòng)機(jī)與燃料

試驗(yàn)所用發(fā)動(dòng)機(jī)為某型號(hào)直列四缸高壓共軌柴油機(jī),該機(jī)缸徑和行程分別為84和90 mm,額定功率(轉(zhuǎn)速)為60 kW/(3 200 r/min),最大轉(zhuǎn)矩(轉(zhuǎn)速)為201(N·m)/(2 200 r/min),排量為1.995 L。

試驗(yàn)所用DOC和POC為安徽艾可藍(lán)節(jié)能環(huán)保科技公司提供,表1所列為DOC和POC后處理裝置的主要參數(shù)。

表1 DOC和POC后處理裝置的主要參數(shù)

注:DOC為氧化催化器,POC為顆粒氧化催化器。

Note: DOC is diesel oxidation catalyst; POC is particle oxidation catalyst.

試驗(yàn)所用柴油為市售0#柴油,生物柴油由常州悅達(dá)卡特新能源有限公司提供,生產(chǎn)原料為餐飲廢油。生物柴油是對(duì)餐飲廢油進(jìn)行酯化處理后得到的,酯化后的生物柴油十六烷值提高,著火性能改善[22-24]。按照一定的體積比將生物柴油和柴油摻混制備調(diào)合生物柴油,其中B0、B10和B20分別表示生物柴油的體積比為0、10%和20%,表2所列為柴油和生物柴油的主要理化參數(shù)。

表2 柴油和生物柴油的主要理化參數(shù)

1.2 試驗(yàn)設(shè)備

試驗(yàn)所用的MOUDI采樣器為美國MSP公司生產(chǎn),其采樣粒徑分級(jí)為8級(jí),分別為0.18~0.32、0.32~0.56、0.56~1.0、1.0~1.8、1.8~3.2、3.2~5.6、5.6~10和10~18m,所采用的濾膜為聚四氟乙烯濾膜,該濾膜具有耐高溫、不溶于有機(jī)溶劑的特點(diǎn),便于后期對(duì)顆粒物中SOF組分萃取。

試驗(yàn)所用GC-MS為Thermo Scientific公司生產(chǎn)的ITQ1100型,分析條件設(shè)定為:采用全掃描方式;色譜柱為HP-5MS型;載體為高純度氦氣,流量為1 mL/min;進(jìn)樣方式為不分流進(jìn)樣,進(jìn)樣量為1L。

1.3 試驗(yàn)方案

試驗(yàn)選擇發(fā)動(dòng)機(jī)工況為3 200 r/min,100%負(fù)荷,保持噴油提前角不變,分別燃用B0、B10和B20調(diào)合生物柴油,利用MOUDI對(duì)DOC+POC作用前后的顆粒物進(jìn)行采樣,采樣時(shí)間為1 h,氣體流量為30 L/min。采樣前后對(duì)所用的聚四氟乙烯濾膜需置于干燥箱內(nèi)保持溫濕度平衡6 h,再利用微克天平對(duì)顆粒物進(jìn)行精確稱質(zhì)量。

利用GC-MS檢測(cè)顆粒物中SOF組分,需要預(yù)先對(duì)濾膜上顆粒物進(jìn)行萃取,SOF溶液提取采用超聲波震蕩法結(jié)合索氏萃取法,將溶液旋轉(zhuǎn)蒸發(fā)至1 mL后冷凍保存。取樣1L濾液進(jìn)行GC-MS分析,升溫程序設(shè)定為:初始溫度為80 ℃,恒溫2 min,以20 ℃/min的升溫速率升溫至160 ℃,再以8 ℃/min的升溫速率升溫至280 ℃,恒溫14 min。

2 結(jié)果與分析

2.1 顆粒物質(zhì)量濃度與粒徑分布

柴油機(jī)排放的顆粒物主要以核態(tài)(5~50 nm)、聚集態(tài)(100~1 000 nm)和粗顆粒態(tài)(>1 000 nm)3種模態(tài)存在。圖1所示為燃用B0、B10和B20燃油在發(fā)動(dòng)機(jī)轉(zhuǎn)速為3 200 r/min下的顆粒物質(zhì)量濃度分布曲線。由圖可見,B0、B10和B20顆粒物質(zhì)量濃度皆呈單峰分布,且峰值均在0.18~0.32m范圍內(nèi),B10和B20的顆粒物質(zhì)量濃度明顯低于B0。這是因?yàn)樯锊裼秃跆匦浴⑹橹蹈撸纳聘變?nèi)燃燒,減少顆粒物排放。隨著摻混比增加,B20較B10質(zhì)量濃度下降不明顯,這是因?yàn)檩^大的摻混比導(dǎo)致燃油運(yùn)動(dòng)黏度變大,影響了燃油霧化混合及燃燒過程。加裝DOC+POC后,3種燃料的顆粒物質(zhì)量濃度均明顯下降,B0、B10和B20排氣顆粒物的總質(zhì)量濃度分別由18.707、5.071和4.17 mg/m3降低至10.743、2.591和1.991 mg/m3,轉(zhuǎn)化率分別為42.57%、48.91%、52.25%。隨著生物柴油摻混比增加,顆粒物質(zhì)量濃度的轉(zhuǎn)化率逐漸增大。對(duì)比圖1曲線可以看出,DOC+POC對(duì)粒徑0.18~1m的顆粒物凈化效率更高,主要因?yàn)镾OF組分多數(shù)以小顆粒物存在,而DOC主要通過氧化SOF來降低顆粒物排放[25-26],因此對(duì)于小粒徑顆粒物作用明顯。

注:B0,B10,B20分別為生物柴油的體積比為0,10%,20%。

由圖2可知,隨著生物柴油摻比增加,聚集態(tài)和粗顆粒態(tài)的轉(zhuǎn)化率均呈增大趨勢(shì),且對(duì)聚集態(tài)的轉(zhuǎn)化率高于粗顆粒態(tài)。B20聚集態(tài)轉(zhuǎn)化率最高,達(dá)58.36%,主要因?yàn)殡S著生物柴油摻混比增加,燃料黏度變大,霧化效果變差,造成燃料的不充分燃燒,產(chǎn)生較多以SOF為主體的聚集態(tài)顆粒,DOC+POC對(duì)這部分顆粒的凈化效果較好。由圖2b可知,DOC+POC對(duì)B20的粗顆粒態(tài)轉(zhuǎn)化率最高,為38.5%。這是因?yàn)樯锊裼偷暮跆匦裕诟邷馗谎醯沫h(huán)境產(chǎn)生較多的NOx,經(jīng)過DOC將部分NO氧化成強(qiáng)氧化性氣體NO2,提高了POC對(duì)粗顆粒態(tài)中碳煙顆粒的轉(zhuǎn)化率[27-30]。

圖2 DOC+POC對(duì)聚集態(tài)與粗顆粒態(tài)的顆粒轉(zhuǎn)化率

2.2 顆粒物中SOF的研究

2.2.1 SOF的質(zhì)量濃度

圖3所示為DOC+POC對(duì)顆粒物中SOF的轉(zhuǎn)化率。加裝DOC+POC后,3種燃料的排氣顆粒中的SOF質(zhì)量濃度均降低,對(duì)B0,B10和B20排氣顆粒物中SOF的轉(zhuǎn)化率分別為53.27%,60.02%和65.15%。隨著生物柴油摻混比增加,DOC+POC對(duì)SOF的轉(zhuǎn)化率呈增大趨勢(shì),B20的轉(zhuǎn)化率最高。雖然生物柴油的十六烷值高,在相同工況下滯燃期縮短,排氣溫度較柴油略有下降[31],但本文試驗(yàn)工況為額定轉(zhuǎn)速3 200 r/min,100%負(fù)荷,燃用B0,B10和B20排氣溫度仍均較高,后處理裝置中催化劑活性均較強(qiáng),同時(shí)生物柴油中含氧,氣缸內(nèi)消耗的氧氣量減少,排氣中的氧濃度增加,DOC+POC對(duì)SOF的轉(zhuǎn)化率提高[30]。

圖3 DOC+POC對(duì)顆粒物中SOF的轉(zhuǎn)化率

2.2.2 SOF的組分分析

通過對(duì)不同燃料顆粒物中SOF溶液試樣進(jìn)行GC-MS分析,得到SOF總離子流色譜,結(jié)合總離子流圖檢索NIST譜圖,對(duì)SOF組分進(jìn)行定量分析。表3所示為顆粒物中SOF經(jīng)GC-MS檢測(cè),得到的各組分的質(zhì)量分?jǐn)?shù),由表3可知,無論是原機(jī)還是加裝DOC+POC后,3種燃料的排放顆粒物中SOF組分皆以烷烴類、芳香烴、酚類、脂類和酸類為主。表中的其他組分為少量的醇類、醛類和醚類等,因組分占比較少,本文不列入研究。未加裝DOC+POC時(shí),隨著生物柴油摻混比增加,SOF組分中脂類、酸類物質(zhì)質(zhì)量分?jǐn)?shù)增加,烷烴類、芳香烴和酚類物質(zhì)質(zhì)量分?jǐn)?shù)減少,這是因?yàn)樯锊裼偷闹饕煞质侵舅峒字S著摻混比增大,生物柴油的不完全燃燒造成脂類和酸類物質(zhì)增加;生物柴油不含苯環(huán),因此隨著生物柴油摻混比增加,含有苯環(huán)結(jié)構(gòu)的芳香烴和酚類物質(zhì)質(zhì)量分?jǐn)?shù)略有降低。加裝DOC+POC后,燃用B0,B10和B20排氣顆粒中SOF組分中烷烴類、脂類和酸類物質(zhì)質(zhì)量分?jǐn)?shù)呈減少趨勢(shì),且在燃用B20時(shí)脂類和酸類物質(zhì)質(zhì)量分?jǐn)?shù)降幅最大,分別為55.45%和43.27%,可以看出DOC+POC對(duì)燃用生物柴油排氣顆粒中SOF組分中脂類和酸類物質(zhì)凈化作用明顯。而芳香烴類和酚類物質(zhì)質(zhì)量分?jǐn)?shù)呈上升趨勢(shì),主要因?yàn)榉枷銦N和酚類物質(zhì)分子結(jié)構(gòu)中含有難以氧化的苯環(huán),相對(duì)于其他物質(zhì),芳香烴和酚類物質(zhì)氧化速率低,導(dǎo)致質(zhì)量分?jǐn)?shù)的增加。

表3 柴油機(jī)排氣顆粒中SOF各組分質(zhì)量分?jǐn)?shù)

2.2.3 SOF的碳原子數(shù)

圖4所示為B0和B20顆粒中SOF組分的碳原子數(shù)分布圖。未加裝DOC+POC時(shí),B0和B20的SOF碳原子數(shù)質(zhì)量分?jǐn)?shù)均呈現(xiàn)近似以C16為峰值的正態(tài)分布,分布區(qū)間為C3~C33。其中B0顆粒物中C15和C16占比最高,質(zhì)量分?jǐn)?shù)分別為18.62%和20.78%;B20顆粒物 C16占比最高,質(zhì)量分?jǐn)?shù)為28.29%。對(duì)比2種燃料排放顆粒物中SOF碳原子數(shù)可以發(fā)現(xiàn),燃用B0和B20燃料的SOF碳原子數(shù)在C25~C33之間的質(zhì)量分?jǐn)?shù)分別為14.9%和7.72%,隨著生物柴油的添加,C25~C33的質(zhì)量分?jǐn)?shù)減少,這是因?yàn)樯锊裼偷难鹾扛撸龠M(jìn)高碳原子分子氧化成中低碳原子分子。加裝DOC+POC后,B0和B20顆粒中SOF的峰值碳原子數(shù)均下降,B20顆粒中SOF的峰值碳原子數(shù)C16下降明顯,由28.29%下降至14.03%,降幅為50.41%。與B0相比,B20顆粒中SOF碳原子數(shù)向C25~C33聚集,C12~C18質(zhì)量分?jǐn)?shù)降低。B20排氣顆粒物中SOF中C12~C18質(zhì)量分?jǐn)?shù)降幅由B0的9.89%增大為35.15%,C25~C33由B0降幅31.54%變?yōu)樵龇?12.69%。由此可知,DOC+POC對(duì)燃用B20顆粒物中SOF的C12~C18氧化作用明顯,對(duì)C25~C33轉(zhuǎn)化效率較差。一方面因?yàn)槿加肂20排放出較多的脂類物質(zhì),且脂類物質(zhì)較多以低碳原子數(shù)存在,如鄰苯二甲酸二丁酯等,DOC+POC對(duì)脂類物質(zhì)氧化作用明顯;另一方面燃用B20排放出較多的NOx,經(jīng)DOC后氧化成強(qiáng)氧化性氣體NO2,在后處理裝置中進(jìn)一步對(duì)SOF組分氧化,由于高碳原子分子氧化需要更多的活化能,相對(duì)于中低碳原子分子氧化速率較慢。

圖4 顆粒物中SOF碳原子數(shù)分布圖

3 結(jié) 論

1)隨著生物柴油的摻混比增加,DOC+POC對(duì)顆粒物的轉(zhuǎn)化率提高,B0,B10和B20總質(zhì)量濃度轉(zhuǎn)化率分別為42.57%、48.91%和52.25%。

2)DOC+POC對(duì)聚集態(tài)顆粒物轉(zhuǎn)化率優(yōu)于粗顆粒態(tài),對(duì)B20聚集態(tài)的轉(zhuǎn)化率達(dá)58.36%。

3)隨著生物柴油摻混比增加,SOF組分中脂類、酸類物質(zhì)質(zhì)量分?jǐn)?shù)增加,烷烴類、芳香烴、酚類物質(zhì)質(zhì)量分?jǐn)?shù)減少。加裝DOC+POC后,DOC+POC對(duì)B0、B10和B20顆粒物中SOF的轉(zhuǎn)化率呈增大趨勢(shì),其中對(duì)B20顆粒物中SOF轉(zhuǎn)化率達(dá)到65.15%;DOC+POC對(duì)脂類和酸類物質(zhì)凈化作用明顯,在燃用B20時(shí)脂類和酸類物質(zhì)質(zhì)量分?jǐn)?shù)降幅分別為55.45%和43.27%。

4)燃用B20可以明顯減少SOF中C25~C33的質(zhì)量分?jǐn)?shù),DOC+POC對(duì)B20排氣顆粒中SOF的C12~C18氧化作用明顯,對(duì)C25~C33氧化速率較慢。

[1] 王常文,崔方方,宋宇. 生物柴油的研究現(xiàn)狀及發(fā)展前景[J]. 中國油脂,2014(5):44-48.

Wang Changwen, Cui Fangfang, Song Yu. Research situation and development prospect of biodiesel[J]. China Oils and Fats, 2014(5): 44-48. (in Chinese with English abstract)

[2] Basha S A, Gopal K R, Jebaraj S. A review on biodiesel production, combustion, emissions and performance[J]. Renewable & Sustainable Energy Reviews, 2009, 13(6/7):1628-1634.

[3] Milazzo M F, Spina F, Primerano P, et al. Soy biodiesel pathways: Global prospects[J]. Renewable & Sustainable Energy Reviews, 2013, 26(10): 579-624.

[4] Fattah I M R, Masjuki H H, Liaquat A M, et al. Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions[J]. Renewable & Sustainable Energy Reviews, 2013, 18(2): 552-567.

[5] Mofijur M, Atabani A E, Masjuki H H, et al. A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation[J]. Renewable & Sustainable Energy Reviews, 2013, 23(11): 391-404.

[6] 李小昱,韓鶴友,王為,等. 柴油機(jī)應(yīng)用不同配比生物柴油的經(jīng)濟(jì)性和排放特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(5):177-182.

Li Xiaoyu, Han Heyou, Wang Wei, et al. Economy and emission characteristic of different proportions of biodiesel from diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 177-182. (in Chinese with English abstract)

[7] 梅德清,王忠,袁銀南,等. 生物柴油發(fā)動(dòng)機(jī)尾氣中的顆粒物特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(12):113-116.

Mei Deqing, Wang Zhong, Yuan Yinnan, et al. Analysis of the features of the particulate matters generated from diesel engine fueled with biodiesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(12): 113-116. (in Chinese with English abstract)

[8] 樓狄明,石健,趙杰,等. 共軌柴油機(jī)燃用不同配比生物柴油的性能與排放特性[J]. 內(nèi)燃機(jī)工程,2009,30(6):21-25.

Lou Diming, Shi Jian, Zhao Jie, et al. Performance and emission characteristics of a common rail diesel engine fuelled with different proportion bio-diesel blends[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(6): 21-25. (in Chinese with English abstract)

[9] Kousoulidou M, Fontaras G, Ntziachristos L, et al. Biodiesel blend effects on common-rail diesel combustion and emissions[J]. Fuel, 2010, 89(11): 3442-3449.

[10] 樓狄明,孔德立,強(qiáng)薔,等. 國V柴油機(jī)燃用柴油/生物柴油排放性能試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(9):25-30.

Lou Diming, Kong Deli, Qiang Qiang, et al. Emission experiment on a chinese V diesel engine fueled with diesel /biodiesel[J]. Transactions of The Chinese Society for Agricultural Machine, 2014, 45(9): 25-30. (in Chinese with English abstract)

[11] Murtonen T, Aakko-Saksa P, Kuronen M, et al. Emissions with heavy-duty diesel engines and vehicles using FAME, HVO and GTL fuels with and without DOC+POC after treatment[J]. Environmental Science & Technology, 2009, 2(2). DOI: 10.4271/2009-01-2693

[12] Kinnunen T, Matilainen P, Scheder D, et al. Particle oxidation catalyst (POC?)-From diesel to GDI-studies on particulate number and mass efficiency[J]. Sae Technical Papers, 2012: 2012-01-4271.

[13] 馬志豪,任源,李磊,等. POC、DOC對(duì)柴油機(jī)氣體排放的影響[J]. 小型內(nèi)燃機(jī)與摩托車,2013,42(2):59-63.

Ma Zhihao, Ren Yuan, Li Lei, et al. The effects of POC and DOC on the gas emissions of diesel engine[J]. Small Internal Combustion Engine and Motorcycle, 2013, 42(2): 59-63. (in Chinese with English abstract)

[14] 馮向字,葛蘊(yùn)珊,馬朝臣,等. 顆粒物氧化催化轉(zhuǎn)化器對(duì)柴油機(jī)排放的影響研究[J]. 內(nèi)燃機(jī)工程,2015,36(5):63-68. Feng Xiangyu, Ge Yunshan, Ma Chaochen, et al. Effects of particulate oxidation catalyst on emissions characteristic of diesel engines[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(5): 63-68. (in Chinese with English abstract)

[15] Lehtoranta K, Matilainen P, ?senbrygg J M, et al. Particle oxidation catalyst in light duty and heavy duty diesel applications[C]// International Conference on Engines for Automobiles, 2007: 67-74.

[16] 李樹會(huì). POC-輕型柴油車國Ⅲ/國Ⅳ后處理方案[J]. 內(nèi)燃機(jī),2008(6):40-42.

Li Shuhui. POC—an aftertreatment plan for light-duty diesel vehicle GBⅢ/GBⅣ[J]. Internal Combustion Engines, 2008(6): 40-42. (in Chinese with English abstract)

[17] Lehtoranta K, Matilainen P, Kinnunen T J J, et al. Diesel particle emission reduction by a particle oxidation catalyst[C]// SAE 2009 Powertrains Fuels and Lubricants Meeting. 2009.

[18] 樓狄明,林浩強(qiáng),譚丕強(qiáng),等. 氧化催化轉(zhuǎn)化器對(duì)柴油機(jī)顆粒物排放特性的影響[J]. 同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2015,43(6):888-893.

Lou Diming, Lin Haoqiang, Tan Piqiang, et al. Effects of diesel oxidation catalyst technoloy on characteristics of particle from a diesel engine[J]. Journal of Tongji University: Natural Science, 2015, 43(6): 888-893. (in Chinese with English abstract)

[19] 霍少峰. 柴油機(jī)氧化催化器及顆粒物氧化催化器對(duì)排放特性的影響[D].天津:天津大學(xué),2010.

Huo Shaofeng. Effects of DOC and/or POC on the Exhaust Emissions from Diesel Engine[D]. Tianjin: Tianjin University, 2010. (in Chinese with English abstract)

[20] 姚笛,樓狄明,譚丕強(qiáng),等. 基于生物柴油發(fā)動(dòng)機(jī)的不同后處理裝置顆粒物數(shù)量排放特性[J]. 內(nèi)燃機(jī)工程,2014,35(1):8-12.

Yao Di, Lou Diming, Tan Piqian, et al. Particle number emission characteristics of biodiesel engine equipped with different after-treatments[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(1): 8-12. (in Chinese with English abstract)

[21] 樓狄明,高帆,姚笛,等. 不同后處理裝置生物柴油發(fā)動(dòng)機(jī)顆粒多環(huán)芳烴排放[J]. 內(nèi)燃機(jī)工程,2014,35(4):31-35.

Lou Diming, Gao Fan, Yao Di, et al. Particle PAHs emissions of biodiesel engine equipped with different after-treatments[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(4): 31-35. (in Chinese with English abstract)

[22] 吳培振. 調(diào)合生物柴油對(duì)柴油機(jī)燃燒及顆粒物組分的影響研究[D]. 鎮(zhèn)江:江蘇大學(xué),2016.

Wu Peizhen. Study on Combustion and Particulate Matter Components for a Diesel Engine Fueled with Blending Bbiodiesel[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)

[23] 李瑞娜,王忠,李銘迪,等. 酯類燃料十六烷值估算方法的改進(jìn)[J]. 石油學(xué)報(bào):石油加工,2013,29(5):899-904.

Li Ruina,Wang Zhong, Li Mingdi, et al. The improved estimation method of esters fuel cetane number[J]. Acta Petrolei Sinica, 2013, 29(5): 899-904. (in Chinese with English abstract)

[24] 孔德芳,沈穎剛,彭益源,等. 生物柴油的理化特性對(duì)柴油機(jī)性能的影響研究[J].內(nèi)燃機(jī),2009(1):25-28.

KongDefang,Shen Yinggang,Peng Yiyuan, et al. Research on the influences of characteristics of biodiesel exserted on diesel engine performance[J]. Internal Combustion Engines, 2009(1): 25-28. (in Chinese with English abstract)

[25] Lehtoranta K, Matilainen P, Kinnunen T J J, et al. Diesel particle emission reduction by a particle oxidation catalyst[C]// SAE Paper, 2009(1): 2705-2711.

[26] 鄒建國,鐘秦. 柴油機(jī)排放顆粒物凈化技術(shù)研究進(jìn)展[J]. 環(huán)境工程學(xué)報(bào),2005,6(9):7-11.

Zou Jianguo, Zhong Qin. Review of purification method of diesel engine part iculatematter[J]. Chinese Journal of Environmental Engineering, 2005, 6(9): 7-11. (in Chinese with English abstract)

[27] 李博,樓狄明,譚丕強(qiáng),等. 發(fā)動(dòng)機(jī)燃用生物柴油的常規(guī)和非常規(guī)排放特性[J].內(nèi)燃機(jī)工程,2009,30(5):22-26.

Li Bo, Lou Diming, Tan Piqian, et al. Regulated and non-regulated emission characteristics of an engine fuelled with bio-diesel[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(5): 22-26. (in Chinese with English abstract)

[28] Mulla S S, Chen N, Delgass W N, et al. NO inhibits the catalytic reaction of NO and O over Pt[J]. Catalysis Letters, 2005, 100(3/4): 267-270.

[29] Min J S, Lee C Q, Kim S H, et al. Development and performance of catalytic diesel particulate filter systems for heavy-duty diesel vehicles[J]. International Migration, 2005, 25(4): 325-334.

[30] 管偉,孫付勝,王肇胤. 商用車柴油機(jī)DOC+POC后處理技術(shù)介紹[J]. 內(nèi)燃機(jī)與配件,2012(11):32-35.

Guan Wei, Sun Fusheng, Wang Zhaoyin, Introduction of DOC+POC after treatment technology for commercial diesel engine[J]. Internal Combustion Engine & Parts, 2012(11): 32-35. (in Chinese with English abstract)

[31] 譚滿志,李小平,徐振波,等. 電控高壓共軌柴油機(jī)燃用生物柴油的燃燒特性[J]. 車用發(fā)動(dòng)機(jī),2009(3):36-39.

Tan Manzhi, Li Xiaoping, Xu Zhenbo, et al. Combustion characteristic of electronically controlled high pressure common rail diesel engine fueled with biodiesel[J]. Vehicle Engine, 2009(3): 36-39. (in Chinese with English abstract)

杜家益,魏 松,張登攀,袁銀男,逄大慶. DOC與POC耦合柴油機(jī)燃用調(diào)合生物柴油的顆粒物排放特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):69-74. doi:10.11975/j.issn.1002-6819.2017.22.009 http://www.tcsae.org

Du Jiayi, Wei Song, Zhang Dengpan, Yuan Yinnan, Pang Daqing. Effects of DOC+POC on characteristics of particulate matter from diesel engine fueled with biodiesel blends[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 69-74. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.009 http://www.tcsae.org

Effects of DOC+POC on characteristics of particulate matter from diesel engine fueled with biodiesel blends

Du Jiayi1, Wei Song1, Zhang Dengpan1, Yuan Yinnan2, Pang Daqing3

(1.,,212013,; 2.,,215006,; 3.,213001,)

Particulate matter (PM) emissions from diesel engines are being recognized as the pollutants having adverse effects on the environment as well as on human health. Therefore, the combination of using clean alternative fuels and particulate matter after-treatment devices is one of the effective ways to reduce particulate emissions. Biodiesel as an alternative fuel can significantly reduce particulate emissions. The diesel oxidation catalysts (DOC) are commonly used to oxidize carbon monoxide (CO) and hydrocarbon (HC) emissions as well as partial particles. The particulate oxidation catalyst (POC) is considered as an alternative PM reduction aftertreatment technology to the wall-flow diesel particulate filter (DPF). The combination of DOC and POC is a commonly and widely used to reduce PM. In order to analyze the influence of biodiesel blending ratio, DOC+POC on PM emissions and components of soluble organic fractions (SOF), bench test was carried out on a high pressure common rail diesel engine fueled with diesel-biodiesel dual fuels (B0, B10 and B20). Particles were collected at rated condition. Particle samples with different size grades were achieved from micro-orifice uniform deposition impactor (MOUDI) and mass concentration was obtained by weighting the particle samples. Using the Soxhlet extraction method to extract SOF component from particulates. The effects of biodiesel blending ratio and DOC+POC on SOF content were studied by gas chromatography-mass spectrometer (GC-MS) analysis. The distribution of carbon atoms of B0 and B20 were obtained by analyzing the GC-MS data. The results showed that when the content of biodiesel percentage was increased, DOC + POC conversion rate of particulate matter was increased,the conversion of total mass concentration of B0, B10 and B20 were 42.57%, 48.91% and 52.25% respectively. The mass concentration within each size grade was decreased. The mass concentration peak value of particulate matter emitted from three fuels all ranged from 0.18 to 0.32m. The mass fraction of lipids and acids components in SOF were increased and alkanes, aromatic hydrocarbons and phenols compounds were decreased. Moreover, the increase of biodiesel percentage promotes the oxidation of high-carbon atoms into low-carbon atoms. the mass fraction of carbon atoms in SOF of B0 and B20 showed a normal distribution with a peak at C16. After the installation of DOC+POC, the mass concentration of particulate matter was decreased and the convert efficiency of accumulation state particles was higher than that of coarse particles. Meanwhile, the convert efficiency of accumulation state particles with B20 reached 58.36%. With the increase of biodiesel percentage, the convert efficiency of SOF was increased, and the convert efficiency of SOF reached 65.15% when B20 fuel was used. DOC+POC had a significant effect on the conversion of lipid and acid substances. The mass fraction of lipid and acid substances changed from 15.4% to 6.86% and 9.43% to 5.35% respectively. Moreover, DOC+POC had obvious effect on the oxidation of C12-C18 in SOF of B20.These results could provide a theoretical basis for the aftertreatment of biodiesel combustion particulates, and it is helpful to improve and optimize of diesel oxidation catalysts and particulate oxidation catalyst,according to the biodiesel emission characteristics.

diesel engines; biodiesel; particulate matter; emission characteristic; diesel oxidation catalyst; particle oxidation catalyst

10.11975/j.issn.1002-6819.2017.22.009

TK6

A

1002-6819(2017)-22-0069-06

2017-07-06

2017-10-28

國家自然科學(xué)基金資助項(xiàng)目(51376095);江蘇省高校自然科學(xué)研究重大項(xiàng)目(13KJA470001);江蘇省高校自然科學(xué)研究項(xiàng)目(15KJB470002);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)

杜家益,男,博士,副教授,主要從事動(dòng)力機(jī)械工作過程仿真、代用燃料排放控制等研究。Email:jydu@ujs.edu.cn

猜你喜歡
顆粒物生物質(zhì)量
生物多樣性
生物多樣性
上上生物
“質(zhì)量”知識(shí)鞏固
質(zhì)量守恒定律考什么
第12話 完美生物
航空世界(2020年10期)2020-01-19 14:36:20
做夢(mèng)導(dǎo)致睡眠質(zhì)量差嗎
南平市細(xì)顆粒物潛在來源分析
質(zhì)量投訴超六成
汽車觀察(2016年3期)2016-02-28 13:16:26
錯(cuò)流旋轉(zhuǎn)填料床脫除細(xì)顆粒物研究
主站蜘蛛池模板: 日韩国产综合精选| 国产香蕉97碰碰视频VA碰碰看 | 手机精品福利在线观看| 亚洲精品无码av中文字幕| yy6080理论大片一级久久| 九九视频免费在线观看| 国产成+人+综合+亚洲欧美| 中国一级特黄大片在线观看| 国产真实自在自线免费精品| 日本爱爱精品一区二区| 免费女人18毛片a级毛片视频| 伊人91在线| 超清无码熟妇人妻AV在线绿巨人| 国产精品不卡永久免费| 亚洲嫩模喷白浆| 在线网站18禁| 三上悠亚在线精品二区| av色爱 天堂网| 久久伊人久久亚洲综合| 尤物亚洲最大AV无码网站| 日韩无码视频网站| 就去吻亚洲精品国产欧美| 国产va免费精品观看| 午夜欧美在线| 五月天天天色| 色婷婷成人| 成人午夜免费观看| 青青操视频在线| 九九九精品成人免费视频7| 久久国产高潮流白浆免费观看| 欧美成人精品高清在线下载| 91成人免费观看在线观看| 欧美国产日韩在线| 永久成人无码激情视频免费| 国产综合精品日本亚洲777| 91福利一区二区三区| 久久久久久午夜精品| 999精品色在线观看| 久久黄色毛片| 亚洲成年人网| 2020亚洲精品无码| 蜜桃视频一区二区| 久久永久精品免费视频| 日本欧美午夜| 久久免费视频6| 99在线视频免费观看| 在线中文字幕网| 精品久久久久久久久久久| 午夜不卡福利| 婷婷色狠狠干| 精品国产免费观看| 97超爽成人免费视频在线播放 | 熟女成人国产精品视频| 2021国产精品自产拍在线| 成人午夜视频网站| 国产喷水视频| 中文字幕第1页在线播| 亚洲三级a| 久久夜色精品国产嚕嚕亚洲av| 99久视频| 欧美第一页在线| 东京热一区二区三区无码视频| 波多野结衣中文字幕一区| 人妻一本久道久久综合久久鬼色| 欧美一区二区人人喊爽| 亚洲精品欧美重口| 亚洲无码高清一区| 国产午夜人做人免费视频| 91无码视频在线观看| 日韩免费毛片| 99伊人精品| 无码中字出轨中文人妻中文中| 日韩无码视频专区| 中文字幕亚洲综久久2021| 精品在线免费播放| 免费午夜无码18禁无码影院| 国产高颜值露脸在线观看| 国产主播一区二区三区| 黄片一区二区三区| 国产成人精品男人的天堂下载 | 亚洲人成网站色7777| 久久精品亚洲中文字幕乱码|