999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

秸稈還田深松旋埋聯合耕整機設計與試驗

2017-12-15 02:18:26張居敏祝英豪張春嶺Tahir夏俊芳
農業工程學報 2017年22期
關鍵詞:作業設計

周 華,張居敏,祝英豪,張春嶺,H.M.Tahir,夏俊芳

?

秸稈還田深松旋埋聯合耕整機設計與試驗

周 華,張居敏,祝英豪,張春嶺,H.M.Tahir,夏俊芳※

(華中農業大學工學院,武漢 430070)

深松作業能有效打破犁底層,提高土壤蓄水保墑能力。秸稈還田是秸稈資源利用最為直接有效的方式,將2種保護性耕作方式結合在一起可大大提高作業效率。為了滿足深松和秸稈還田同時作業的需求,設計了集土壤深松、破茬碎土、秸稈旋埋、平地等多功能于一體的深松旋埋聯合耕整機。該機主要由自激振動深松裝置和秸稈還田旋埋刀輥組成,自激振動深松裝置可調節預緊力,不僅可以在一定程度上減少深松耕作阻力,還可以在遇到障礙物時有效保護深松鏟,深松鏟柄的設計利用了滑切原理,可有效切斷秸稈和雜草,防止纏繞和堵塞深松鏟,對旋埋刀輥進行了重新布置和優化,提高了工作穩定性和破土能力。田間試驗表明深松作業可有效減小旋埋刀輥功率;在拖拉機1擋和2擋速度下深松旋埋組合作業總功率分別為單獨深松和單獨旋埋2項作業之和的85.0%和82.2%;深松旋埋組合作業下深松和旋埋的平均耕深分別為28.9和17.5 cm,耕深穩定性分別為93.5%和87.4%,秸稈埋覆率為92.0%,耕后地表平整度為1.0 cm,深松旋埋聯合作業后的各項性能參數均超過質量評定指標,滿足農藝要求。

農業機械;設計;土壤;深松;秸稈還田;滑切;旋埋;組合作業

0 引 言

傳統的旋耕方式作業多年后對土壤壓實嚴重,形成堅硬的犁底層,導致耕層變淺,作物根系發展空間受限[1-3]。深松作業可有效改善土壤耕層結構,提高蓄水保墑能力,利于作物根系發展,是作物增產的一項重要技術[4-7]。秸稈還田作為對秸稈資源最直接有效的利用方式,一方面減少了秸稈焚燒帶來的環境污染問題[8-12],另一方面提高了土壤的有機質含量,是作物增產增收的另一技術措施[13]。深松作業與秸稈還田作業通常是2個單獨的作業環節,增加了拖拉機的下地次數,不但不利于搶農時還對土壤進行了二次碾壓,因此設計一種將深松與秸稈還田2種保護性耕作的方式結合在一起的機具非常必要。

為了實現保護性耕作的目的,國內外學者對深松和秸稈還田方式及相應機具進行了研究。Celik等[14]研究了不同作業情況下深松的功耗對比和對土壤的擾動情況。Amardeep等[15]針對不同材質的旋耕刀片工作后的磨損情況進行了試驗分析,為節省刀片更換時間提供了參考。張麗等[16]研究了深松和秸稈還田對農田土壤物理特性的影響,確定了深松結合秸稈還田對土壤耕層的改善優于單獨深松作業。趙偉等[17-18]設計了深松旋耕組合作業機,并對其進行了功率消耗和動力學分析。王瑞麗等[19]設計了秸稈深埋還田開溝滅茬機,并通過試驗證明其具有較好的開溝、滅茬、碎土效果。韋麗嬌等[20]通過甘蔗地深松旋耕和犁鏵旋耕作業對比,證明深松旋耕可提高作業效率40%左右,且旋耕質量能達到作業要求。孫東霞等[21]設計了深松旋耕施肥聯合整地機,可一次作業完成深松、旋耕、施肥、鎮壓作業,還可分解重組,達到較好的試驗效果。田慎重等[22]研究了深松旋耕數年后土壤有機碳含量變化情況,證明其效果優于常規旋耕處理。國內外學者主要針對無秸稈田進行了深松和旋耕研究,或對秸稈單獨還田作業進行了研究,但對深松和秸稈還田組合作業機具研究不多,尤其對有秸稈田深松作業研究更少。

為了實現深松和秸稈還田2種保護性耕作模式相結合,緩解保護性耕作條件下作物秸稈和雜草對深松鏟的纏繞和堵塞現象,增加秸稈和土壤混埋程度,本文結合課題組已研發的秸稈還田旋埋刀輥[23-27]設計了深松旋埋聯合耕整機,并對刀輥的刀具進行重新排布優化,該機能夠一次完成土壤深松、破茬碎土、秸稈旋埋、平地等作業,可進行組合作業,也可拆分進行單項作業。對各作業工況的工作阻力、功率消耗以及耕前耕后土壤狀況進行了田間對比試驗研究,以期為研究保護性耕作模式提供參考。

1 整機結構設計

根據耕整地農藝要求,所設計的機具作業工序為深松→秸稈還田旋埋→平地。機具整體結構如圖1所示,主要包括自激振動深松裝置1、旋埋刀輥2、平土拖板3、中間變速箱4、側邊傳動箱5、機架6和限深輪7等。

1.自激振動深松裝置 2.旋埋刀輥 3.平土拖板 4.中間變速箱 5.側邊傳動箱 6.機架 7.限深輪

1.1 工作原理

工作時,深松旋埋機懸掛于拖拉機后方,隨拖拉機的前行,深松裝置先入土進行深松作業,疏松土壤,為旋埋刀輥減輕作業阻力,并由限深輪控制其深松深度,然后旋埋刀輥入土,進一步破碎上層土壤,并對秸稈和雜草進行埋覆,最后由平土拖板將耕后地表拖壓平整。

1.2 整機性能和結構參數設計

由于機具作業地為旱地,偏黏性土壤,因此土壤堅實度普遍較高,深松作業時牽引阻力較大,秸稈旋埋作業時旋埋刀輥功率消耗較大。深松旋埋聯合耕整機結合了土壤深松和秸稈旋埋2項作業,與2項單獨作業相比,其整機綜合性能有助于改善以上問題。首先,深松作業使土壤松動,土壤堅實度大大降低,越靠近上層土壤擾動量越大,這種上松下實的土壤狀況為旋埋刀輥改善了作業條件,可有效減小旋埋刀輥的旋埋功率,其次,旋埋刀輥旋轉過程中受到土壤的反作用力,尤其是旋埋刀輥上的螺旋橫刀橫向切土使該力更為明顯,該反作用力相當于給深松旋埋聯合耕整機施加了一個主動推力,該主動推力可抵消部分深松作業的牽引阻力,減輕拖拉機的作業負荷。

深松旋埋聯合耕整機的設計有效工作幅寬為2 m,而深松深度不應低于25 cm,由于深松作業的土壤擾動寬度約為深松深度的2倍,因此取兩深松鏟的橫向安裝距離為50 cm,配置4個深松鏟,深松鏟居中對稱布置,兩邊各留25 cm,以完全覆蓋后面的旋埋區間。秸稈和雜草埋覆在8~10 cm以下的比例越大越好,設計以10 cm為基準,增加40%為最小耕深,因此旋埋刀輥的耕深需在14 cm以上,旋埋刀輥的切土長度即為整機的有效工作幅寬2 m。深松旋埋聯合耕整機的前后兩部分下面由8個M18的U型螺栓連接固定,上面由一根長度可調的帶螺紋的鋼管連接,深松旋埋聯合耕整機的主要結構參數如表1所示。

表1 深松旋埋聯合耕整機主要結構參數 Table1 Main structural parameters of combined tillage machine for subsoiling and rotary burying

1.3 動力傳遞方式

深松旋埋聯合耕整機工作過程中,深松裝置的驅動力由拖拉機牽引力提供,旋埋刀輥的驅動力由拖拉機動力輸出軸提供,動力傳遞路線為拖拉機動力輸出軸→萬向節→中間變速箱→萬向節→側邊傳動箱→旋埋刀輥,如圖2所示。

1.動力輸出軸 2.萬向節 3.中間變速箱 4.側邊傳動箱 5.旋埋刀輥

1.4 機具受力分析

深松旋埋機在作業過程中受到來自于土壤的作用力,受力情況較為復雜,主要受力部件有拖板、旋埋刀輥、深松裝置和限深輪等。以其前進方向地面為軸,以深松鏟柄連接段方向為軸,建立坐標系,其各部件受力如圖3所示。

作業過程中,在水平方向,除土壤對旋埋刀輥切土過程的反作用力F與前進方向相同外,其余的水平分力方向均與前進方向相反,而在垂直方向,除土壤對深松鏟運動過程中產生的垂直分力F和機具自身重力為垂直地面向下,其余的垂直分力方向均向上,由此建立拖拉機牽引力方程

式中為機具質量,kg。

注:為拖拉機的瞬時牽引點,F為拖拉機的水平牽引合力,N;F為拖拉機的垂直牽引合力,N;F為拖拉機的牽引阻力,N;F為土壤對拖板的摩擦阻力,N;F為土壤對拖板的支持力,N;F為土壤對旋埋機的摩擦阻力,N;F為土壤對旋埋機的支持力,N;F為土壤對刀具切土過程反力的水平分力,N;F為土壤對刀具切土過程反力的垂直分力,N;F為土壤對深松鏟的水平阻力,N;F為土壤對深松鏟的垂直阻力,N;F為土壤對鏟底的摩擦阻力,N;F為土壤對鏟底的支持力,N;F為限深輪的滾動阻力,N;F為土壤對限深輪的支持力,N;為機具沿前進方向的加速度,m·s-2;為機具的重力,N。

Note:is instantaneous towing point of tractor,Fis horizontal traction force of tractor, N;Fis vertical traction force of tractor, N;Fis traction resistance of tractor, N;Fis frictional resistance of soil to the planker, N;Fis the supporting force of soil to the planker, N;Fis friction resistance of soil to rotary burying machine, N;Fis the supporting force of soil to rotary burying machine, N;Fis horizontal component force of soil reaction force during cutting soil, N;Fis vertical component force of soil reaction force during cutting soil, N;Fis horizontal resistance of soil to the subsoiling, N;Fis vertical resistance of soil to the subsoiling, N;Fis frictional resistance of soil to subsoiler bottom, N;Fis the supporting force of soil to subsoiler bottom, N;Fis rolling resistance of depth wheel, N;Fis the supporting force of soil to depth wheel, N;is the acceleration of the machine along the advancing direction, m·s-2;is gravity of machine, N.

圖3 深松旋埋聯合耕整機受力簡圖

Fig.3 Force diagram of combined tillage machine for subsoiling and rotary burying

由于機具正常工作時視為勻速運動,故為0,限深輪和拖板受土壤作用力相對于深松鏟和旋埋機較小,可忽略不計,由此可得拖拉機牽引合力為

拖拉機牽引功率P

由此可得機具所消耗總功率為

式中P為拖拉機牽引功率,kW;v為機具前進速度,m/s;為機具所消耗總功率,kW;P為旋埋刀輥所消耗驅動功率(即拖拉機動力輸出軸功率),kW。

2 關鍵部件設計

2.1 自激振動深松裝置設計

由于深松旋埋聯合耕整機作業對象為秸稈殘茬覆蓋地,地表情況復雜,秸稈和雜草對深松作業影響較大,深松鏟易產生秸稈纏繞和堵塞現象[28-29],傳統的深松裝置難以滿足要求,增加切草裝置又會增大機具空間,因此需要設計合理的深松裝置。

2.1.1 滑切型深松鏟設計

深松鏟柄的設計是深松鏟設計的關鍵,合理的鏟型不但可以緩解工作過程中秸稈和雜草的纏繞,還可有效降低其工作阻力,為此設計了滑切型深松鏟柄(圖4)。深松鏟柄由連接段、切土段和鏟尖連接段三部分組成。

注:A為連接段,B為切土段,C為鏟尖連接段,E為雙翼深松鏟,α為入土角,(°);β為鏟尖連接段與水平面夾角,(°);τ為滑切角,(°);h為深松鏟長度,mm。

切土段利用滑切原理設計而成,滑切角越小,滑切阻力越大;滑切角越大,滑切阻力越小,滑切角的選擇可根據以下公式[30]進行取值

式中F為滑切刃的正壓力,N;為滑切角,(°);為滑切刃與土壤摩擦角,(°);0為被切割質點質量,kg;a為質點沿滑切刃切向加速度,m/s2。

由式(5)可知,在滑切刃正壓力F>0時,要使被切割土壤與滑切刃產生滑切作用,必須令a>0,即>,由于滑切刃與土壤的摩擦系數范圍大約在0.2~0.6之間,取最大摩擦系數0.6計算得約為31°,因此必須大于31°才能產生滑切作用。研究表明[31-33],當滑切角為35°~55°時滑切阻力較小,若滑切角取值過小,則滑切減阻和秸稈切斷效果不明顯,若滑切角取值過大,則鏟柄長度過大,鏟柄強度和穩定性降低,因此切土段設計滑切角取中間值為45°。切土刃口角也是影響切削性能的重要因素,切土刃口角取值過大會導致切削能力降低,工作阻力增大,過小會導致刃口偏薄,容易損壞,據文獻[34]的設計要求設計切土刃口角為60°。

為防止切土段和鏟尖連接段相交處土壤夾塞等問題,其角度變化不宜過大,即鏟尖連接段與水平面的夾角不宜過小,因此設計其角度為45°,而深松鏟的入土角對其牽引阻力和碎土效果有著重要影響,當入土角達到或超過40°時,牽引阻力會顯著增加,一般入土角不超過25°,因此鏟尖入土角度取為19°。深松裝置后面的旋埋刀輥存在旱耕旋埋秸稈埋覆深度不足的現象,為擴大底層土壤擾動量而提高其作業質量,鏟尖整體采用雙翼型深松鏟。深松鏟其余尺寸設計要求按照文獻[34]進行設計。

2.1.2 深松鏟受力分析

深松鏟在作業過程中受土壤作用力情況較為復雜,可將其劃分為幾個區域,受力情況如圖5所示。

注:B1為鏟柄切土區,B2為過渡區,E1為深松鏟連接區,E2為鏟面區,E3為鏟底接觸區,FN1,FN2,FN3,FN4為法向阻力,N;Ff1,Ff3,Ff4為切向阻力,N;FN5為土壤對鏟底的支持力,N;Ff5為土壤對鏟底的摩擦力,N。

由于深松鏟柄及雙翼深松鏟材質均為65Mn鋼,土壤視為均勻體,故其具有相同的摩擦系數,由此可得式(7)。

式中為深松鏟與土壤間的摩擦系數。將式(7)代入(6)可得

故深松裝置所受水平合力與垂直合力分別為

2.1.3 自激振動和連接調節裝置設計

傳統的深松鏟連接方式為通過鏟座固連在機架橫梁上,當作業過程中遇到障礙物(如石塊等)時,會在瞬間產生較大的阻力,而深松鏟只能強行通過,這也是深松鏟容易損壞變形的主要原因之一。針對上述問題,設計了深松鏟自激振動保護裝置和與其相匹配的連接調節裝置,如圖6a所示。自激振動裝置不但可以有效保護深松鏟,還可在一定范圍內降低深松鏟的耕作阻力[35-37]。自激振動裝置內部主要包括彈簧和滑塊,外部主要包括彈簧套筒和預緊螺栓等,深松鏟的頂端與其鉸接在一起,通過調節預緊螺栓控制彈簧的預緊力,以便深松鏟適應不同條件的土壤。連接調節裝置主要包括前連接板和后連接板,前后連接板上均開有L型槽,L型槽對置裝配,前連接板和深松鏟柄夾在兩塊后連接板中間。當彈簧的預緊力調節完畢,對置的L型槽可以實現深松鏟柄前后和上下的二維移動,使深松鏟柄連接段在正常狀態下始終垂直于水平面,而對置的L型槽間始終有2個交點,由螺栓連接。

1.自激振動裝置 2.連接調節裝置 3.深松鏟柄

1.Self-excited vibration device 2.Connection adjustment device 3.Subsoiler handle

注:為鉸接點,為鏟尖位置,為轉角,為地面,為障礙物。

Note:,arehinge points;,aresubsoiler tip position;is the angle of rotation;is ground;is obstacle.

圖6 深松鏟保護裝置示意圖

Fig.6 Diagram of subsoiler protection device

當深松裝置在前進過程中遇到障礙物時,如圖6b,彈簧在深松鏟柄的杠桿作用下繼續壓縮,深松裝置的3個鉸接點發生相對位移,深松鏟整體會沿鉸接點產生一定的角度(即)轉動,鉸接點移動到′,而鏟尖位置由移動到′,深松鏟整體向上和向后移動,機具繼續前行,由此跨過障礙物,保護深松鏟,當鏟尖完全跨過障礙物,其阻力又恢復至正常耕作狀態,彈簧所受額外壓力釋放,深松鏟自動恢復原有耕深,以保證其耕深穩定性。

2.2 旋埋刀輥設計

秸稈埋覆還田主要由旋埋刀輥完成,旋埋刀輥包括六段區間,每段區間均由彎刀、螺旋橫刀、刀盤和IIT 245旋耕刀組成。主要參數包括:7個刀盤、36把彎刀、18把螺旋橫刀和36把旋耕刀。螺旋橫刀焊接在左右彎刀上,彎刀通過螺栓緊固在刀盤上,六段區間的刀具排布分為2種,1、3、5節相同,2、4、6節相同,第1、2節刀具排布如圖7a所示,每節刀具螺旋橫刀成3條螺旋線排布,旋耕刀均勻排布在螺旋橫刀中間,成兩邊對稱的3條螺旋線。旋埋作業時,螺旋橫刀和旋耕刀對土壤均有軸向側推效應,對應的螺旋橫刀與旋耕刀的推土方向相反,使這2種效應相互抵消,保證作業后地表平整和秸稈均勻揉合于耕層土壤中。

螺旋橫刀的結構由一個直角梯形沿一定螺旋線掃描而成,如圖7b所示,主要結構參數有水平長度,軸向轉角,最大切土半徑,工作過程中,旋埋刀輥正轉,旋轉半徑大于的旋耕刀先入土,進行切土和破茬作業,再由螺旋橫刀進一步碎土并埋覆秸稈,這樣既能發揮傳統旋耕刀切土破茬的優勢,又能發揮螺旋橫刀秸稈埋覆的優勢[12]。

注:圖7a中,為左右彎刀;為螺旋橫刀;為左右旋耕刀;為刀盤。圖7b中,l為螺旋橫刀水平長度,mm;r為螺旋橫刀最大切土半徑,mm;φ為螺旋橫刀的軸向轉角,(°);OO'為旋埋刀輥軸線。

3 田間試驗

3.1 試驗目的和試驗條件

3.1.1 試驗目的

試驗主要檢測深松旋埋聯合作業機配置的合理性,探究整機工作的穩定性和適應性,測試整機的牽引阻力、功率消耗、耕作狀況及秸稈埋覆情況,以及探討不同作業方式下的功率消耗情況。

3.1.2 試驗條件

2017年4月14至15日在華中農業大學現代農業科技試驗基地選取了大豆收獲后的閑置田進行試驗,該田塊為旱作區,土壤為偏黏性土,試驗前田塊長有雜草和秸稈殘茬,土壤狀況適耕,田塊各處試驗條件基本相同,試驗田塊面積滿足測試要求。試驗儀器主要包括東方紅LX954拖拉機(中國一拖集團)、深松旋埋聯合耕整機、CKY-810扭矩傳感器(北京中航科儀測控技術有限公司,量程:0~3 000 N·m,精度為0.5%)、BK-5型牽引力負荷傳感器(中國航天空氣動力技術研究院,精度等級:0.3)、數據采集箱、帶有動力學參數遙測軟件的接收電腦、TJSD-750型土壤緊實度測定儀(浙江托普云農科技股份有限公司,精度:±0.5‰FS)、環刀、烘箱、電子秤、卷尺、直尺等,試驗前田塊各項參數狀況如表2所示。

表2 試驗前田塊各項參數 Table 2 Field parameters before experiment

3.2 試驗方法

本設計的深松旋埋聯合耕整機為可拆卸式,可分別進行深松作業和旋埋作業。因此,分別對深松機單機作業、深松后旋埋作業、單獨旋埋作業和深松旋埋組合作業4種情況進行性能試驗,對機具的牽引阻力和功率消耗進行分析,其他性能參數有深松耕深、旋埋耕深、耕深穩定性、耕后地表平整度、耕后土壤堅實度、秸稈埋覆率等。

試驗分8個工況進行:1)深松機單獨作業,深松深度25~30 cm,分拖拉機1擋、2擋2個作業速度;2)在深松地上進行單獨旋埋作業,旋埋刀輥轉速300 r/min,旋埋深度14~18 cm,分拖拉機1擋、2擋2個作業速度;3)未耕地單獨旋埋作業,旋埋刀輥轉速300 r/min,旋埋深度14~18 cm,分拖拉機1擋、2擋2個作業速度;4)深松旋埋組合作業,旋埋刀輥轉速300 r/min,深松深度25~30 cm,旋埋深度14~18 cm,分拖拉機1擋、2擋2個作業速度。試驗田塊長度為50 m,取中間20 m為拖拉機穩定工作區間,2頭各留15 m作為拖拉機起步和掉頭距離,每個工況重復3次,取其平均值作為該工況試驗結果,田間試驗情況如圖8所示。

機具的牽引阻力和旋埋刀輥的功率測試分別采用牽引力負荷傳感器和扭矩傳感器。牽引力負荷傳感器包括3個懸掛銷,分別安裝在拖拉機的三點懸掛處,每個傳感器的輸出為電信號4~20 mA,該電信號通過接收電腦進行實時采集,并經內部的處理軟件將電信號轉換為可直接讀取的阻力數值,對應測量范圍為0~30 kN,3個傳感器可測量上拉桿和左右懸掛處機具的6個參數,即三點的水平受力和垂直受力。扭矩傳感器將測得的拖拉機動力輸出軸的扭矩和轉速同樣傳遞到電腦軟件,并自動通過式(11)進行計算旋埋刀輥所消耗功率:

式中為拖拉機動力輸出軸扭矩,N·m;為拖拉機動力輸出軸轉速,r/min。

3.3 試驗結果和分析

各工況下三點懸掛所測水平和垂直分力以及其合力如表3所示,表4為各工況作業后試驗數據。

表3 各工況下拖拉機牽引力

注:“-”代表受力方向與原規定受力正方向相反。

Note: “-” represents the force direction is opposite to the original force direction.

表4 作業后試驗數據

由表3可知,單獨深松時隨前進速度的增加,拖拉機水平牽引合力F明顯增加;而旋埋作業時其水平牽引合力F均很小,甚至為負值,說明旋埋刀輥正向旋轉時產生的水平推力抵消了其水平阻力;深松旋埋組合作業時其水平牽引合力F與單獨深松作業相比,在1擋時,分別為11 886和11 448 N,增加了3.8%,而在2擋時,分別為12 064和13 580 N,減小了11.2%,再次證明旋埋刀輥的水平推力抵消了機具部分水平阻力。

由表4可得,單獨深松時當速度從0.52增加到0.84 m/s時,速度增加61.5%,總功率從5.95 增加到11.41 kW,總功率增加91.8%,說明速度對深松功率影響明顯。深松后旋埋作業和單獨旋埋作業牽引功率消耗均較小,僅為0.07~1.29 kW,主要消耗為旋埋功率,深松后旋埋作業相比于單獨旋埋作業,在1擋速度下的旋埋功率分別為24.36和32.28 kW,減小24.5%,總功率分別為24.62和32.55 kW,減小24.4%;在2擋速度下的旋埋功率分別為30.74和38.23 kW,減小19.6%,總功率分別為30.81和39.52 kW,減小22.0%,因此,先進行深松作業可有效降低旋埋作業時的功率消耗。深松旋埋組合作業在1擋和2擋下的總功率分別為32.72和41.88 kW,略大于單獨旋埋作業,但小于單獨深松和單獨旋埋作業功率消耗之和,在1擋和2擋速度下其總功率分別占2項作業之和的85.0%和82.2%。與傳統的深松旋耕組合作業機相比,通過參閱文獻[17,38],對比相近的作業參數,通過比例關系換算成相同的作業幅寬,得出其在2個擋位速度下的功率消耗分別為34.2~38.4和45.5~48.7 kW,功率減小范圍分別在4.4%~14.8%和7.9%~14.0%,說明本文設計的深松旋埋聯合耕整機比傳統的深松旋耕組合作業機具有更好的功率利用率。

由于目前沒有與深松旋埋聯合耕整機相配套的作業性能評價指標,因此深松旋埋聯合耕整機的作業性能按文獻[39]來評定,結果如表5所示。從表5可知,進行深松旋埋聯合作業后的深松和旋埋的平均耕深分別為28.9和17.5 cm,耕深穩定性分別為93.5%和87.4%,秸稈埋覆率為92.0%,耕后地表平整度為1.0 cm,均大于質量評定指標,說明深松旋埋聯合耕整機一次作業可達到較好的作業深度、秸稈埋覆以及平整地表的目的,滿足耕整地農藝要求。并且0~15 cm和15~30 cm的耕后土壤堅實度分別為437.6和951.8 kPa,分別比耕前減小了78.4%和67.4%;0~10和10~20 cm的耕后土壤容重分別為1.40和1.41 g/cm3,分別比耕前減小了6.7%和8.4%,達到了較好的疏松土壤效果。

表5 深松旋埋聯合耕整機的作業性能

4 結論與討論

1)深松旋埋聯合耕整機能一次下田完成土壤深松、破茬碎土、秸稈旋埋、平地等作業,實現一機多用,減少了拖拉機的下田次數,減輕了拖拉機對土壤的壓實,節約農時。

2)對深松和旋埋等關鍵部件進行了設計和優化,采用滑切原理設計的深松鏟柄可有效切斷秸稈和雜草,防止深松鏟柄發生堵塞;設計的自激振動連接裝置可有效保護深松鏟,防止因耕作阻力過大導致的深松鏟變形,還可在一定范圍內減小耕作阻力;合理優化旋埋刀輥的排布方式,提高了耕作后的地表平整度。

3)通過田間試驗表明,深松旋埋聯合作業功率消耗小于單獨深松和單獨旋埋2項作業之和,說明深松作業改善了旋埋作業的作業條件,降低了旋埋作業的功率消耗,在拖拉機1擋和2擋速度下其總功率分別占2項作業之和的85.0%和82.2%,深松和旋埋的平均耕深分別為28.9和17.5 cm,耕深穩定性分別為93.5%和87.4%,秸稈埋覆率為92.0%,耕后地表平整度為1.0 cm,均大于質量評定指標,滿足農藝要求。

本文設計的自激振動深松裝置相對于傳統深松裝置的減阻效果和整機作業后的破茬碎土率、秸稈埋覆深度穩定性以及作業效率等問題還有待于進一步試驗研究。

[1] 朱瑞祥,張軍昌,薛少平,等. 保護性耕作條件下的深松技術試驗[J]. 農業工程學報,2009,25(6):145-147. Zhu Ruixiang, Zhang Junchang, Xue Shaoping, et al. Experimentation about subsoiling technique for conservation tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 145-147. (in Chinese with English abstract)

[2] 李洪文,陳君達,李問盈. 保護性耕作條件下深松技術研究[J]. 農業機械學報,2000,31(6):42-45. Li Hongwen, Chen Junda, Li Wenying. Study on subsoiling technique for conservation tillage field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(6): 42-45. (in Chinese with English abstract)

[3] 張金波,佟金,馬云海. 仿生減阻深松鏟設計與試驗[J]. 農業機械學報,2014,45(4):141-145. Zhang Jinbo,Tong Jin,Ma Yunhai. Design and experiment of bionic anti-drag subsoiler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 141-145. (in Chinese with English abstract)

[4] Raper R L. In-row subsoilers that reduce soil compaction and residue disturbance[J]. Applied Engineering in Agriculture, 2007, 23(3): 253-258.

[5] 張瑞富,楊恒山,高聚林,等. 深松對春玉米根系形態特征和生理特性的影響[J]. 農業工程學報,2015,31(5):78-84. Zhang Ruifu, Yang Hengshan, Gao Julin, et al. Effect of subsoiling on root morphological and physiological characteristics of spring maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 78-84. (in Chinese with English abstract)

[6] 張祥彩,李洪文,王慶杰,等. 我國北方地區機械化深松技術的研究現狀[J]. 農機化研究,2015,37(8):261-264. Zhang Xiangcai, Li Hongwen, Wang Qingjie, et al. Research status on mechanized subsoiling technology in northern China[J]. Journal of Agricultural Mechanization Research, 2015, 37(8): 261-264. (in Chinese with English abstract)

[7] 劉俊安,王曉燕,李洪文,等. 基于土壤擾動與牽引阻力的深松鏟結構參數優化[J]. 農業機械學報,2017,48(2):60-67.

Liu Jun’ an, Wang Xiaoyan, Li Hongwen, et al. Optimization of structural parameters of subsoiler based on soil disturbance and traction resistance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 60-67. (in Chinese with English abstract)

[8] 胡宏祥,程燕,馬友華,等. 油菜秸稈還田腐解變化特征及其培肥土壤的作用[J]. 中國生態農業學報,2012,20(3):297-302.

Hu Hongxiang, Cheng Yan, Ma Youhua, et al. Decomposition characteristics of returned rapeseed straw in soil and effects on soil fertility[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 297-302. (in Chinese with English abstract)

[9] Blazier M A, Patterson W B, Hotard S L. Straw harvesting, fertilization,and fertilizer type alter soil microbiological and

physical properties in a loblolly pine plantation in the mid-south USA[J]. Biology and Fertility of Soils, 2008, 45(2): 145-153.

[10] 曹國良,張小曳,鄭方成,等. 中國大陸秸稈露天焚燒的量的估算[J]. 資源科學,2006,28(1):9-13.

Cao Guoliang, Zhang Xiaoye, Zheng Fangcheng, et al. Estimating the quantity of crop residues burnt in open field in China[J]. Resources Science, 2006, 28(1): 9-13. (in Chinese with English abstract)

[11] 竇森,陳光,關松,等. 秸稈焚燒的原因與秸稈深還技術模式研究[J]. 吉林農業大學學報,2016,38(5):1-8.

Dou Sen, Chen Guang, Guan Song, et al. Why burning of corn stover in fields and technical models studies of it’s deep incorporation to subsoil[J]. Journal of Jilin Agricultural University, 2016, 38(5): 1-8. (in Chinese with English abstract)

[12] 張秀梅,張居敏,夏俊芳,等. 水旱兩用秸稈還田耕整機關鍵部件設計與試驗[J]. 農業工程學報,2015,31(11):10-16.

Zhang Xiumei, Zhang Jumin, Xia Junfang, et al. Design andexperiment on critical component of cultivator for strawreturning in paddy field and dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 10-16. (in Chinese with Englishabstract)

[13] 王金武,王奇,唐漢,等. 水稻秸稈深埋整稈還田裝置設計與試驗[J]. 農業機械學報,2015,46(9):112-117.

Wang Jinwu, Wang Qi, Tang Han, et al. Design and experiment of rice straw deep buried and whole straw returning device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 112-117. (in Chinese with English abstract)

[14] Celik A, Raper R L. Design and evaluation of ground-driven rotary subsoilers[J]. Soil and Tillage Research, 2012, 124(4): 203-210.

[15] Amardeep S K, Gurmeet S C, Shisli S. Wear behavior of hardfacings on rotary tiller blader[J]. Procedia Engineering, 2014, 97: 1442-1451.

[16] 張麗,張中東,郭正宇,等. 深松耕作和秸稈還田對農田土壤物理特性的影響[J]. 水土保持通報,2015,35(1):102-106,117.

Zhang Li, Zhang Zhongdong, Guo Zhengyu, et al. Effects of subsoiling tillage and straw returning to field on soil physical properties[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 102-106, 117. (in Chinese with English abstract)

[17] 趙偉,張文春,周志立,等. 深松旋耕組合作業機的研制與試驗研究[J]. 農業工程學報,2007,23(1):125-128.

Zhao Wei, Zhang Wenchun, Zhou Zhili, et al. Development and experimental research of combined subsoiling and rotary tilling set[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(1): 125-128. (in Chinese with English abstract)

[18] 趙偉,周志立,牛毅,等. 深松與旋耕組合作業機具的開發[J]. 農業機械學報,2007,38(2):75,79-82.

Zhao Wei, Zhou Zhili, Niu Yi, et al. Development of subsoiling and rotary tilling unit[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(2): 75, 79-82. (in Chinese with English abstract)

[19] 王瑞麗,楊鵬,Rabiu Falalu Jahun,等. 秸稈深埋還田開溝滅茬機設計與試驗[J]. 農業工程學報,2017,33(5):40-47.

Wang Ruili, Yang Peng, Rabiu Falalu Jahun, et al. Design and experiment of combine machine for deep furrowing, stubble chopping,returning and burying of chopped straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 40-47. (in Chinese with English abstract)

[20] 韋麗嬌,董學虎,李明,等. 1SG-230型甘蔗地深松旋耕聯合作業機的設計[J]. 廣東農業科學,2013(13):177-179.

Wei Lijiao, Dong Xuehu, Li Ming, et al. Design of 1SG-230 typed sugarcane ripper cum rotary tiller[J]. Guangdong Agricultural Sciences, 2013(13): 177-179. (in Chinese with English abstract)

[21] 孫冬霞,張愛民,宮建勛. 1SZL-250A型深松旋耕施肥聯合整地機的設計與試驗[J]. 中國農機化學報,2016,37(4):1-6.

Sun Dongxia, Zhang Aimin, Gong Jianxun. Design and experiment on 1SZL-250A type sub soiling rotary tillage fertilizer combined soil working machine[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(4): 1-6. (in Chinese with English abstract)

[22] 田慎重,王瑜,寧堂原,等. 轉變耕作方式對長期旋免耕農田土壤有機碳庫的影響[J]. 農業工程學報,2016,32(17):98-105.

Tian Shenzhong, Wang Yu, Ning Tangyuan, et al. Effect of tillage method changes on soil organic carbon pool in farmland under long-term rotary tillage and no tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 98-105. (in Chinese with English abstract)

[23] 張居敏,周勇,夏俊芳,等. 旋耕埋草機螺旋橫刀的數學建模與參數分析[J]. 農業工程學報,2013,29(1):18-25. Zhang Jumin, Zhou Yong, Xia Junfang, et al. Mathematical modeling and analysis of helical blade for stubble burying rotary tiller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 18-25. (in Chinese with English abstract)

[24] 王志山,夏俊芳,許綺川,等. 水田高茬秸稈旋耕埋覆裝置功耗測試方法[J]. 農業工程學報,2011,27(2):119-123. Wang Zhishan, Xia Junfang, Xu Qichuan, et al. Power consumption testing system of high stubble buried device in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 119-123. (in Chinese with English abstract)

[25] 張居敏,賀小偉,夏俊芳,等. 高茬秸稈還田耕整機功耗檢測系統設計與試驗[J]. 農業工程學報,2014,30(18):38-46.

Zhang Jumin, He Xiaowei, Xia Junfang, et al. Design and field experiment of power consumption measurement system for high stubble returning and tillage machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 38-46. (in Chinese with English abstract)

[26] 夏俊芳,賀小偉,余水生,等. 基于ANSYS/LS-DYNA 的螺旋刀輥土壤切削有限元模擬[J]. 農業工程學報,2013,29(10):34-41.

Xia Junfang, He Xiaowei, Yu Shuisheng, et al. Finite element simulation of soil cutting with rotary knife roller based on ANSYS/LS-DYNA software[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 34-41. (in Chinese with English abstract)

[27] 張秀梅,夏俊芳,張居敏,等. 水旱兩用秸稈還田組合刀輥作業性能試驗[J]. 農業工程學報,2016,32(9):9-15.

Zhang Xiumei, Xia Junfang, Zhang Jumin, et al. Working performance experiment of combination blade roller for straw returning in paddy field and dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 9-15. (in Chinese with English abstract)

[28] 郭新榮. 土壤深松技術的應用研究[J]. 山西農業大學學報,2005(1):74-77. Guo Xinrong. Application study oil technique of the soil deep loosening[J]. Journal of Shanxi Agricultural University, 2005(1): 74-77. (in Chinese with English abstract)

[29] 柴民杰,李洪文,何進,等. 秸稈覆蓋地深松機的設計與試驗研究[J]. 農機化研究,2006,28(7):136-138,142.

Chai Minjie, Li Hongwen, He Jin, et al. Design and experimental study on subsoiler for corn-cover field[J]. Journal of Agricultural Mechanization Research, 2006, 28(7): 136-138, 142. (in Chinese with English abstract)

[30] 權龍哲,佟金,曾百功,等. 玉米根茬鏟切刀具的滑切刃曲線優化設計[J]. 農業工程學報,2011,27(12):13-17.

Quan Longzhe, Tong Jin, Zeng Baigong, et al. Optimization design of sliding cutting edge curve of corn rootstalk cutting tool[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 13-17. (in Chinese with English abstract)

[31] 龐聲海. 關于滑切理論與滑切角的選用[J]. 華中農學院學報,1982,6(1):64-69. Pang Shenghai. On the theory of sliding cutting and the choice of its angle[J]. Journal of Huazhong Agricultural College, 1982, 6(1): 64-69. (in Chinese with English abstract)

[32] 顧耀全,賈洪雷,郭慧,等. 滑刀式開溝器設計及試驗[J]. 農業機械學報,2013,44(2):38-42. Gu Yaoquan, Jia Honglei, Guo Hui, et al. Design and experiment of sliding knife furrow opener[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 38-42. (in Chinese with English abstract)

[33] 賈洪雷,鄭嘉鑫,袁洪方,等. 仿形滑刀式開溝器設計與試驗[J]. 農業工程學報,2017,33(4):16-24.

Jia Honglei, Zheng Jiaxin, Yuan Hongfang, et al. Design and experiment of profiling sliding-knife opener[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 16-24. (in Chinese with English abstract)

[34] JB/T 9788-1999深松鏟和深松鏟柄[S]. 北京:全國農業機械標準化技術委員會,1999.

[35] 邱立春,李寶筏. 自激振動深松機減阻試驗研究[J]. 農業工程學報,2000,16(6):72-76.

Qiu Lichun, Li Baofa. Experimental study on the self-excited vibration subsoiler for reducing draft force[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(6): 72-76. (in Chinese with English abstract)

[36] 王雪艷. 振動深松技術與關鍵部件研究[D]. 北京:中國農業大學,2005.

Wang Xueyan. Study on Vibrating Subsoiling Technology and Its Parts[D]. Beijing: China Agricultural University, 2005. (in Chinese with English abstract)

[37] 張軍昌,閆小麗,林澤坤,等. 自激式振動深松整地機設計與試驗[J]. 農業機械學報,2016,47(9):44-49,72.

Zhang Junchang, Yan Xiaoli, Lin Zekun, et al. Design and experiment of self-exciting vibration deep-loosening and subsoiling machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 44-49, 72. (in Chinese with English abstract)

[38] 許春林,李連豪,趙大勇. 北方大型聯合整地機設計與試驗[M]. 北京:中國農業大學版社,2014:134-141.

[39] JB/T 10295-2001深松整地聯合作業機[S]. 北京:全國農業機械標準化技術委員會,2001.

周 華,張居敏,祝英豪,張春嶺,H.M.Tahir,夏俊芳. 秸稈還田深松旋埋聯合耕整機設計與試驗[J]. 農業工程學報,2017,33(22):17-26. doi:10.11975/j.issn.1002-6819.2017.22.003 http://www.tcsae.org

Zhou Hua, Zhang Jumin, Zhu Yinghao, Zhang Chunling, H.M.Tahir, Xia Junfang. Design and experiment of combined tillage machine for subsoiling and rotary burying of straw incorporated into soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 17-26. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.003 http://www.tcsae.org

Design and experiment of combined tillage machine for subsoiling and rotary burying of straw incorporated into soil

Zhou Hua, Zhang Jumin, Zhu Yinghao, Zhang Chunling, H.M.Tahir, Xia Junfang※

(430070,)

Soil compaction become very serious problem due to many years of traditional tillage practices which result in formation of hard plow pan, shallower rooting depth, decreased air and water permeability, and confined root system development. Subsoiling and straw incorporated into soil applied jointly result in good working efficiency, alleviation of plow pan by subsoiling, improved water holding capacity and buried crop residue. This is direct and effective way of improving organic matter contents and it can also effectively alleviate the environmental pollution caused by straw burning. This practice will not only reduce wheel traffic in field, it also will save busy time in farming season and will play an important role in increasing crops yield and farmer’s income. Through the study of relevant literature, in order to meet the needs of deep tillage and straw burying at the same time, a multifunctional machine for subsoiling and rotary burying have designed, which was capable of joint operations like subsoiling, stubbles cutting, soil crushing, residue burying and leveling. Subsoiling implement with self-excited vibration and adjustable pre-tightening force were devised in this machine which worked to reduce subsoiling resistance to certain degree and also protected the subsoiler when it encountered obstacles. The principle of sliding cutting was adopted in the design of the deep shovel bar which can cut off straw and weeds effectively and prevented winding and clogging to the subsoiler bar. The stress analysis of the subsoiling implement was carried out and the force formula was determined. Blades of rotary cutter were rearranged and optimized to improve working stability and soil cutting and crushing capacity. Subsoiling provided good condition for rotary burying and the depth of straw embedment was increased. Different field tests such as separate subsoiling, rotary burying after subsoiling, separate rotary burying and subsoiling with rotary burying as combined operation was carried out. The traction resistance and power consumption of implement under different working conditions were analyzed. Results showed that the traction resistance and power consumption of subsoiling operation was greatly affected by the working speed. In the rotary burying operation, the driving force of the positive rotation of the rotary cutter roll was opposite to the working resistance so that the cancel out and the traction power consumption of rotary burying operation were small, and power ratio for rotary burying was more. Under the 1st and 2nd gear speeds of the tractor, the total power respectively for the combined operation of subsoiling and rotary burying was 32.72 and 41.88 kW. They accounted for 85% and 82.2% of the total sum of individual subsoiling and rotary burying operations, respectively. Through consulting relevant documents, compared with the traditional machine for subsoiling and rotary tillage, the power consumption was reduced by 4.4% to 14.8% and 7.9% to 14.0%, respectively in the same working condition. Other parameters of experiment collected after combined operation of subsoiling and rotary burying and statistically analyzed included average depth of subsoiling. The results showed that rotary burying were 28.9 and 17.5 cm, respectively, subsoiling tillage stability was 93.5% and rotary burying tillage stability was 87.4%, the average vegetation cover rate was 92.0%, the surface evenness after tillage was 1.0 cm, and soil resistance of 0-15 and 15-30 cm after tillage were 437.6 and 951.8 kPa, which were 78.4% and 67.4% less than that before tillage, respectively. Soil bulk density of 0-10 and 10-20 cm after tillage were 1.40 and 1.41 g/cm3which decreased by 6.7% and 8.4%, respectively compared with that before tillage. The performance evaluation indexes of subsoiling field preparation combine machine were compared, and the measured values of the above parameters for combined operation of subsoiling and rotary burying exceeded the quality evaluation index and meet the agronomic requirements.

agricultural machinery; design; soils; subsoiling; straw returning; sliding cutting; rotary burying; combination operation

10.11975/j.issn.1002-6819.2017.22.003

S222.4

A

1002-6819(2017)-22-0017-10

2017-07-03

2017-10-08

公益性行業(農業)科研專項經費資助項目(201503136);湖北省科技支撐計劃項目資助項目(2015BBA155);新進博士科研啟動金(2662015BQ016)

周 華,博士生,主要從事現代農業裝備設計及測控研究。Email:zhouhua688@163.com

夏俊芳,教授,博士生導師,主要從事現代農業裝備設計及測控研究。Email:xjf@mail.hza.edu.cn

猜你喜歡
作業設計
讓人羨慕嫉妒恨的“作業人”
作業聯盟
學生天地(2020年17期)2020-08-25 09:28:54
何為設計的守護之道?
現代裝飾(2020年7期)2020-07-27 01:27:42
快來寫作業
《豐收的喜悅展示設計》
流行色(2020年1期)2020-04-28 11:16:38
瞞天過海——仿生設計萌到家
藝術啟蒙(2018年7期)2018-08-23 09:14:18
設計秀
海峽姐妹(2017年7期)2017-07-31 19:08:17
有種設計叫而專
Coco薇(2017年5期)2017-06-05 08:53:16
作業
故事大王(2016年7期)2016-09-22 17:30:08
我想要自由
主站蜘蛛池模板: 亚洲IV视频免费在线光看| 精品少妇人妻无码久久| 中文精品久久久久国产网址| 欧美午夜在线视频| 少妇极品熟妇人妻专区视频| 欧美午夜在线播放| 欧美日本中文| 乱码国产乱码精品精在线播放| 激情爆乳一区二区| 国产91透明丝袜美腿在线| 精品一区二区无码av| 国产一线在线| 精品视频第一页| www.亚洲国产| 日韩在线欧美在线| 亚洲综合专区| 亚洲天堂自拍| 九九久久精品国产av片囯产区| 日韩少妇激情一区二区| 亚洲成人一区二区三区| 精品人妻系列无码专区久久| 亚洲人成亚洲精品| 国产美女在线观看| 99国产精品国产| 色妞永久免费视频| 大学生久久香蕉国产线观看| 在线国产资源| 色香蕉影院| 国产精品jizz在线观看软件| 亚洲午夜综合网| 激情综合网激情综合| 制服丝袜一区二区三区在线| 无码专区在线观看| 日韩在线播放中文字幕| 国产在线精彩视频二区| 亚洲无码视频一区二区三区| 色婷婷成人网| 欧美精品综合视频一区二区| 日韩欧美在线观看| 亚洲精品中文字幕午夜| 麻豆国产在线观看一区二区| 国产成人亚洲精品色欲AV | 欧美性久久久久| 在线观看的黄网| 中文字幕无码制服中字| 伊人成人在线| 亚洲第一中文字幕| 福利在线免费视频| 欧美中文字幕一区| 国产精品99r8在线观看| 亚洲熟女偷拍| 91精品视频播放| 亚洲欧美日韩中文字幕在线一区| 欧洲av毛片| 亚洲精品国产成人7777| 五月综合色婷婷| 孕妇高潮太爽了在线观看免费| 免费毛片视频| 极品国产一区二区三区| 亚洲Av激情网五月天| 久青草免费视频| 亚洲一本大道在线| 亚洲最新在线| 中文字幕在线观| 亚洲午夜久久久精品电影院| 小说 亚洲 无码 精品| 五月天香蕉视频国产亚| 亚洲欧州色色免费AV| 久久国产拍爱| 亚洲欧州色色免费AV| 伊人久久福利中文字幕| 久久精品日日躁夜夜躁欧美| 亚洲va视频| 国产精品一老牛影视频| 美女毛片在线| 国产美女丝袜高潮| 亚洲精品麻豆| 亚洲自拍另类| a网站在线观看| 青草午夜精品视频在线观看| 精品国产免费观看| 国内a级毛片|