張建闊,李加念,吳 昊,馬澤宇,Waleed Elnour Babekir Salih,胡赫諶
(昆明理工大學現代農業工程學院,昆明 650500)
基于雙吸肥口的低壓文丘里施肥器設計與試驗
張建闊,李加念※,吳 昊,馬澤宇,Waleed Elnour Babekir Salih,胡赫諶
(昆明理工大學現代農業工程學院,昆明 650500)
為降低文丘里施肥器的吸肥臨界進口壓力,使之適用于低壓灌溉施肥系統,設計了一種雙吸肥口文丘里施肥器。選取喉管收縮比、收縮段角度、擴散段角度和喉管長徑比4個結構參數,采用正交試驗設計方法,構建16種結構參數組合方案,運用CFD模擬技術對每種方案的吸肥性能進行模擬,以吸肥性能為評價指標確定最佳結構參數組合,并根據最佳結構參數組合試制文丘里施肥器原型樣品,并在0~0.15 MPa進口壓力范圍內對其吸肥性能進行分析。結果表明,最佳結果參數為:喉管收縮比為 0.3、收縮段角度為 20°、擴散段角度為8°、喉管長徑比為 1.1。最佳結構文丘里施肥器試制樣品實測結果與模擬分析結果一致,在相同進口壓力下各個實測值均略小于模擬分析值,實測與模擬吸肥量、進口流量比、肥液濃度和吸肥效率的均方根誤差分別為0.22 L/min、0.96%、0.93%和0.68%。在相同進口壓力下,相比于相同結構參數的單吸肥口文丘里施肥器,模擬得出的吸肥量提高了90%,進口流量比提高了85%,肥液濃度提高了80%,吸肥效率提高了 80%,表明雙吸肥口施肥器的吸肥性能比單吸肥口施肥器有較大提高;雙吸肥口施肥器實測臨界進口壓力為0.007 MPa,當進口壓力為0.05 MPa時其吸肥濃度可達13.6%,與現有文丘里施肥器相比,在獲得同等或更高的吸肥性能時具有更低的工作進口壓力,更適用于低壓滴灌系統。
結構; CFD;數值分析; 文丘里施肥器; 雙吸肥口; 低壓; 吸肥性能
水肥一體化灌溉技術是現代農業的一個重要標志,既可滿足灌溉的質量要求,同時對環境的污染也最小,在發達國家已成為一種標準的作業方式。低壓滴灌技術是一種能量優化利用的水肥一體化灌溉技術,不僅具備常壓滴灌技術的所有優點,還可以降低灌溉系統的建設成本和運行成本,是未來滴灌技術發展的一個重要方向[1]。施肥裝置是實現滴灌施肥的重要部件之一,目前國內外常用的施肥裝置主要有自壓式[2]、壓差式[3]、機械驅動注入式[4]、水力驅動注入式[5]和文丘里吸入式等[6-8]。文丘里施肥器因成本低、結構簡單、無需外部動力等優點,在國內外得到了廣泛應用,但在實際應用中存在所需進口壓力較高,且壓力損失較大(占總水頭10%~30%[9])等問題,對吸肥效率和灌溉施肥均勻性產生重要影響[10],從而難以直接適用于低壓滴灌系統,因此有必要進一步研究能適用于更低進口壓力的文丘里施肥器。由于文丘里施肥器的吸肥性能主要受其結構參數影響,對文丘里結構進行性能分析與優化設計是當前的研究熱點,近年來,為了降低文丘里施肥器進口壓力,提高吸肥效率,國內外關于文丘里施肥器的研究,主要集中于采用理論分析與試驗測試方法[11-18]、計算流體動力學數值模擬分析方法[18-23],分析結構參數與吸肥性能之間的關系并對其結構進行優化設計[23-27],以及基于文丘里施肥器為核心執行部件的灌溉施肥裝置的設計與試驗[28-31]。這些研究取得了較好的進展,尤其是在結構參數與吸肥性能的關系方面積累了較好的研究基礎,但對于低壓范圍內的結構設計及其參數優化還鮮有涉及。為此,本文面向低壓滴灌系統,在兼顧吸肥性能前提下,以降低進口工作壓力為目標,進行文丘里施肥器的結構設計與參數優化,以期研制出一種適用于低壓滴灌系統的文丘里施肥器。
1.1 雙吸肥口施肥器結構設計
文丘里施肥器根據引射原理利用文丘里管進行吸肥,其吸肥量取決于文丘里管進出口壓差。實際應用中,文丘里施肥器出口多為自然出流狀態或出口壓力為某一固定值,其吸肥量主要取決于入口壓力。有研究表明,相同進出口壓力下,適當增加引射口(對應于文丘里施肥器則為吸肥口)可以提高文丘里管的引射能力[32]。因此,為滿足低壓灌溉應用的需求,降低文丘里管工作壓力,采用雙吸肥口結構設計文丘里施肥器,如圖1所示,其主要結構由進口直管段、收縮段、喉部、擴散段、出口直管段和吸肥口6部分組成。其中,2個相同的吸肥口在水平方向上對稱分布于喉管兩側,并且連接于喉管中部;由于同等條件下吸肥管與喉管直徑相同時其吸肥量可達到最大[22],故設計吸肥口直徑A等于喉管直徑a1;進口和出口直管段直徑相同;進出口直管段長度B和F均為20 mm,收縮段長度C、擴散段長度E、喉管長度D由文丘里管結構參數決定。

圖1 文丘里管結構示意圖Fig.1 Structural diagram of Venturi injector
1.2 施肥器最佳結構參數的確定方法
1.2.1 待定結構參數選擇
表征文丘里施肥器結構的主要參數有 7個:進口直管段直徑a、喉管直徑a1、喉管收縮比γ、收縮段角度α、擴散段角度β、喉管長徑比λ和吸肥口直徑A,其中γ=a1/a、λ=D/a1。由圖1可知,對于某一進口直徑的文丘里施肥器,只需喉管收縮比γ、收縮段角度α、擴散段角度β、喉管長徑比λ這4個參數即可表征其整體結構。
以a為25 mm的文丘里施肥器為例,根據前人研究結果優選各參數的取值,即α和β選取范圍分別為15°~30°和4°~10°[22]、γ和λ取值范圍分別為0.3~0.45和1.1~1.4[20]。
1.2.2 CFD數值模擬
1)模擬方法建立
為降低數值分析與模擬計算的運算量,進行4因素4水平正交設計L16(44),采用CFD模擬方法,分析16種結構參數組合在不同進口壓力下的吸肥性能。用正交試驗設計方法對4個結構參數進行組合。進行模擬前,對每種參數組合采用Solidworks2015軟件建立文丘里施肥器三維模型,并采用Gambit2.4.6軟件以0.7 mm劃分六面體結構化網格,然后采用CFD軟件Fluent 16.2.0進行模擬分析。模擬分析過程中,采用標準k?ε湍流模型進行數值模擬,采用二階迎風差分格式和壓力基求解器 SIMPLE算法對離散方程組求解,收斂標準均取各因變量相鄰 2次迭代殘差<10–4。
2)模擬方法驗證
為驗證數值計算方法和條件設置的正確性,選取一款 DN25文丘里施肥器(喉管收縮比為 0.35,收縮角為25°,擴散角為10°,喉管長徑比為1.1),應用上述方法構建文丘里施肥器三維模型并對其吸肥性能進行數值模擬分析,然后在相同條件下通過試驗實測其吸肥性能并與模擬分析結果對比。其中,模擬工況設置為:進口壓力為0.06 MPa,吸肥口壓力為 -5×103Pa,出口壓力為0。結果表明:數值模擬得到的出口肥液濃度為10.8%,試驗實測得到的出口肥液濃度為10.3%,其相對誤差為4.9%,表明所建立的方法用于模擬文丘里施肥器吸肥性能的可靠性。
3)模擬參數設置
運用 Fluent軟件模擬分析時,進口壓力分別設置為0.03、0.06、0.09、0.12和0.15 MPa;出口壓力設置為0,即出口為自流狀態;由于文丘里施肥器臨界入口壓力與吸肥液面密切相關,并考慮到實際應用中的常用吸肥液面高度,將吸肥液面高度設為500 mm,即吸肥管入口壓力設置為–0.005 MPa。
1.2.3 吸肥性能指標計算
施肥器吸肥性能采用進口流量比M、吸肥效率η和肥液濃度θ這3個指標進行衡量。
式中q、Q分別為吸肥量和進口流量,kg/s;P1,P2和P3分別為施肥器進口、出口和吸肥口壓力,MPa;M為施肥器進口流量比,用于反映文丘里施肥器的吸肥能力,%;η為吸肥效率,用于反映文丘里施肥器的綜合吸肥性能,%;θ為水肥混合后的肥液濃度,能直觀反映文丘里施肥器性能優劣,%。
1.3 施肥器最佳結構參數分析結果
1.3.1 不同組合吸肥性能分析
16種結構參數組合方案在各進口壓力下的吸肥性能模擬結果如表1所示。表1表明,對于某一特定組合,θ和M均隨進口壓力增加而增大,吸肥效率η隨進口壓力增加而減小。已有研究[15,21]將出口壓力設置為某個大于0的定值,而本文設置出口壓力為 0以便獲得低壓條件下文丘里施肥器的吸肥性能,這導致η偏低。在實際應用中,可適當調整。

表1 文丘里施肥器不同結構參數組合的吸肥性能模擬結果Table 1 Fertilizer absorption performance simulation results of different structure parameters combinations of Venturi injector
1.3.2 最佳組合參數確定
由式(1)~(3)知,η、θ均是M的函數,且θ僅決定于M,則η和M亦可表示為θ的函數。由于本文目的是探尋一種能滿足低壓灌溉的文丘里施肥器,以θ為主要研究對象,對表1中低壓0.03 MPa情況下的θ模擬結果進行正交分析,如表2所示。

表2 進口壓力為0.03 MPa時吸肥濃度模擬值正交分析結果Table 2 Orthogonal analysis results of simulated fertilizer concentration at input pressure 0.03 MPa
由表2可知,當γ為水平II、α為水平III、β為水平I、λ為水平III時,即γ為0.35、α為25°、β為4°、λ為1.3時,肥液濃度達到最大。此參數組合為理想狀態下的理論值,還需考慮低進口壓力的實際情況進行綜合取值。在實際灌溉施肥中,α過大會引起收縮段局部水頭損失增大,β過小且擴大段長度過長會導致沿程水頭損失增加,同時考慮到相同條件下沿程水頭損失隨λ增大而增大,θ隨γ的增加而呈下降趨勢[20],故以盡可能減小收縮段角度α、增大擴散段角度β為基礎,并在滿足吸肥濃度大于10%[33]的前提下,以有效降低進口壓力為目標,將進口直徑為 25 mm的文丘里施肥器的最佳結構參數組合確定為:喉管收縮比γ為0.3、收縮段角度α為20°、擴散段角度β為8°、喉管長徑比λ為1.1。該參數組合的文丘里施肥器通過 CFD數值模擬得出在進口壓力為 0.05 MPa的條件下,肥液濃度θ達到14.4%,滿足低壓條件下肥液濃度的要求。
2.1 材料與方法
從以下3個方面分析文丘里施肥器的吸肥性能:1)根據所確定的最佳結構參數,采用3D打印技術制出文丘里施肥器原型樣品,進行試驗,驗證CFD模擬結果的可靠性;2)采用 CFD數值模擬分析方法,比較雙吸肥口文丘里施肥器與相同結構參數的單吸肥口文丘里施肥器吸肥性能;3)將實測試驗得出的雙吸肥口施肥器吸肥性能與現有研究或文丘里施肥器產品進行對比分析。
利用制成的文丘里施肥器樣品(如圖2a所示)在昆明理工大學現代農業工程學院樓梯間進行試驗。試驗裝置如圖2b所示,安裝文丘里施肥器時,確保2個吸肥口水平放置且進口、出口、吸肥口三者軸心在一個水平面上,肥液液面與吸肥口的垂直距離(即吸肥液面高度)為500 mm;文丘里施肥器進口水源由蓄水桶提供,肥液(試驗過程中采用常溫清水代替)由肥液桶提供,出口為自然出流狀態;進口水壓通過調節儲水桶與文丘里施肥器之間的高度差實現在0~0.15 MPa之間變化(蓄水桶高度調節范圍在0~15 m之間),并采用壓力變送器(量程0.2 MPa,精度等級為0.5)測定其進口水壓,分別將進口水壓調節為0.01、0.03、0.05、0.07、0.09、0.11、0.13和0.15 MPa進行試驗;試驗過程中,為保證入口水壓穩定,通過補水使蓄水桶始終處于滿水位狀態,而且每次測量數據前使吸肥液面高度為500 mm。試驗采用稱質量法計算吸肥量和肥液濃度,即:待施肥器運行穩定3 min后開始計時60 s,并利用電子稱(型號為英橫YHW-L01,量程為30 kg,精度為0.5 g)分別測量肥液桶和水肥混合桶計時前后的質量,吸肥量為肥液桶計時前后的質量差,水肥混合量為水肥混合桶計時前后的質量差,進口量為水肥混合量與吸肥量的差值,吸肥流量、水肥混合流量、入口流量分別為其60 s的均值,肥液濃度為吸肥流量與水肥混合流量的比值。對于每個進口壓力點重復進行試驗10次并取其均值作為結果。

圖2 文丘里施肥器樣品及吸肥性能試驗裝置Fig.2 Venturi injector sample and fertilizer absorption performance test device
2.2 結果與分析
2.2.1 吸肥性能實測驗證試驗
對比于CFD數值模擬分析結果,雙吸肥口文丘里施肥器原型樣品在 0~0.15 MPa進口壓力下的吸肥性能驗證試驗結果如圖 3所示,施肥器原型樣品實測的吸肥量性能隨進口壓力的變化均與數值模擬分析結果一致,實測與模擬吸肥量、進口流量比、肥液濃度和吸肥效率的均方根誤差分別為0.22 L/min、0.96%、0.93%和0.68%。這表明施肥器原型樣品可以在較低工作壓力下獲得良好的吸肥性能,也證實了采用CFD數值模擬方法分析文丘里施肥器結構的可靠性。
如圖3a~圖3c可知,施肥器實測的臨界吸肥進口壓力為0.007 MPa,略大于模擬分析得出的0.005 MPa,當進口壓力從0.007 MPa增至0.05 MPa時,實測吸肥量、進口流量比和肥液濃度分別從0快速單調遞增至4.99 L/min、15.95%和13.6%,當進口壓力逐漸增至0.15 MPa時,實測吸肥量、進口流量比和肥液濃度分別平緩地單調遞增至7.42 L/min、17.51%和14.9%;如圖3d可知,當進口壓力從0.007 MPa增加至0.05 MPa時,實測吸肥效率從3.87%快速單調遞減至1.58%,當進口壓力逐漸增至0.15 MPa時,實測吸肥效率平緩地單調遞減至0.59%。

圖3 模擬與實測吸肥性能對比Fig.3 Comparison of simulated and measured fertilizer absorption performance
2.2.2 與單吸肥口文丘里施肥器的吸肥性能對比
分別基于單吸肥口和雙吸肥口,建立 2個結構參數完全相同的文丘里施肥器模型,采用CFD數值模擬方法,在0~0.15 MPa進口壓力范圍內對比分析了2種施肥器的吸肥性能,結果如圖4所示,雙吸肥口施肥器的吸肥量、進口流量比、肥液濃度和吸肥效率隨進口壓力的變化均與單吸肥口一致,但相同進口壓力下雙吸肥口吸肥性能遠遠高于單吸肥口。由圖4a可知,單/雙吸肥口2種文丘里施肥器的臨界吸肥進口壓力均為 0.005 MPa,進口壓力在0.005~0.05 MPa范圍內吸肥量增加較快,雙吸肥口施肥器的吸肥量從0快速增至5.1 L/min,在0.05~0.15 MPa范圍內變化趨勢逐漸趨于平緩,其吸肥量從5.1 L/min增至7.6 L/min,在相同進口壓力下,相比于單吸肥口文丘里施肥器,雙吸肥口文丘里施肥器的吸肥量提高 90%以上;由圖4b和4c可知,雙吸肥口施肥器進口流量比和肥液濃度在進口壓力 0.005~0.05 MPa范圍內快速增至16.7%和14.4%,進口壓力繼續增加其進口流量比和肥液濃度增加平緩,當進口壓力為0.15 MPa時,其進口流量比和肥液濃度為18.2%和15.4%;由圖4d可知,雙吸肥口文丘里施肥器進口壓力0.005~0.05 MPa范圍內增加,其吸肥效率從4.5%快速減至1.6%,當進口壓力增至0.15 MPa時,其吸肥效率為0.6%。在相同進口壓力下,相比于單吸肥口文丘里施肥器,雙吸肥口文丘里施肥器的吸肥量提高了90%,進口流量比提高了85%,肥液濃度提高了80%,吸肥效率提高了80%。這表明雙吸肥口施肥器與單吸肥口具有相同的工作原理,但由于雙吸肥口增加了吸肥過流面積,其引射能力得到增強,使得雙吸肥口施肥器的吸肥性能大大優于具有相同結構參數的單吸肥口施肥器。

圖4 單雙吸肥口文丘里施肥器吸肥性能對比Fig.4 Comparison of fertilizer absorption performance of single and double fertilizer inlets
2.2.3 與現有文丘里施肥器的性能對比
現廣泛研究的文丘里施肥器主要有進出口直徑相同、進出口直徑互異這2種:
1)對于進出口直徑相同的國內文丘里施肥器,其試制樣品開始吸肥時的進口壓力可低至0.03 MPa,但其吸肥濃度較小,當進口壓力上升至0.1 MPa時肥液濃度才達最大值10%[8],而本研究雙吸肥口文丘里施肥器實測結果表明,其吸肥時進口壓力為0.007 MPa,且進口壓力在0.05 MPa時,肥液濃度可達 13.6%;與進出口直徑相同的以色列文丘里施肥器相比,在較低進口壓力下其肥液濃度均能滿足灌溉要求,但在獲得相同吸肥量時雙吸肥口文丘里施肥器具有更低的進口壓力,當吸肥量為5 L/min時,以色列文丘里施肥器的進口壓力為0.06 MPa[18],而本文雙吸肥口文丘里施肥器的進口壓力為0.05 MPa,與之相比降低了0.01 MPa,因而更適用于低壓灌溉系統。
2)對于進出口直徑互異的文丘里施肥器,其進口流量比最大可達11%,且進口壓力在0.15 MPa時,最大吸肥量為2.7 L/min[23],而本文雙吸肥口施肥器進口壓力在0.05 MPa時,進口流量比15.95%,吸肥量5 L/min,可在較低的進口壓力下獲得更高的進口流量比和吸肥量。
上述以色列文丘里施肥器與進出口直徑互異的文丘里施肥器大多采用喉部環繞式結構,該結構的設計原理與雙吸肥口文丘里施肥器相同,均可在一定程度上提高喉部負壓的利用效率、增強文丘里施肥器的性能;由于雙吸肥口文丘里施肥器具有2個肥液入口,比只有1個肥液入口的喉部環繞式文丘里施肥器具有更大的吸肥過流面積,因而在相同進口壓力下可較大幅度地提高其吸肥量,從而在獲得相同吸肥量時可工作于更低進口壓力下,而且與喉部環繞式文丘里施肥器相比,其加工制造工藝較為簡單,成本較低。市面上常見文丘里施肥器(首沃S02、華維8210等),其最小工作壓力為0.07 MPa,最大肥液濃度約為12%。本文所設計的雙吸肥口施肥器,其臨界進口壓力為0.007 MPa,當進口壓力為0.05 MPa時其吸肥濃度可達13.6%,這完全滿足實際農業生產中灌溉施肥的濃度要求。相比之下,在獲得等同于或高于現有文丘里施肥器的吸肥性能時,雙吸肥口文丘里施肥器具有更低的工作壓力,更適用于低壓滴灌系統。
1)本文設計了一種雙吸肥口文丘里施肥器,采用CFD數值模擬方法確定其最佳結構參數為喉管收縮比為0.3、收縮段角度為 20°、擴散段角度為 8°、喉管長徑比為1.1,并試制出其原型樣品。
2)雙吸肥口文丘里施肥器原型樣品的吸肥性能試驗結果與CFD模擬分析結果吻合,相比于模擬分析結果,實測吸肥量、進口流量比、肥液濃度和吸肥效率的均方根誤差分別為0.22 L/min、0.96%、0.93%和0.68%,可見模擬結果的可靠性。
3)采用 CFD數值模擬方法對比分析了具有相同結構參數的單/雙吸肥口2種文丘里施肥器,結果表明二者吸肥性能隨進口壓力的變化規律一致,但雙吸肥口文丘里施肥器的吸肥量、進口流量比、肥液濃度和吸肥效率均較單吸肥口施肥器提高了80%以上。
4)所設計的雙吸肥口施肥器進口壓力在 0.05 MPa時其吸肥濃度可達13.6%,在滿足灌溉要求的前提下,其進口壓力更低,適用于低壓滴灌系統。下一步將對設計的文丘里施肥器進行實際應用,驗證其性能,并根據應用結果對產品進行完善。
[1] 牛文全,吳普特,范興科. 低壓滴灌系統研究[J]. 節水灌溉,2005(2):29-30,32.Niu Wenquan, Wu Pute, Fan Xingke. Low-pressure drip irrigation system[J]. Water Saving Irrigation, 2005(2): 29-30, 32. (in Chinese with English abstract)
[2] 郭彥彪,李社新,鄧蘭生,等. 自壓微灌系統施肥裝置[J].水土保持研究,2008,15(1):261-262.Guo Yanbiao, Li Shexin, Deng Lansheng, et al. Fertilizing equipment of self-press micro-irrigation system[J]. Research of Soil and Water Conservation, 2008, 15(1): 261-262. (in Chinese with English abstract)
[3] 孟一斌,李久生,李蓓. 微灌系統壓差式施肥罐施肥性能試驗研究[J]. 農業工程學報,2007,23(3):41-45.Meng Yibin, Li Jiusheng, Li Bei. Fertilization performance of the pressure differential tank in micro-irrigation system[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2007, 23(3): 41-45. (in Chinese with English abstract)
[4] 朱志堅,盧秉恒,趙萬華,等. 機械注入式施肥裝置研制與應用[J]. 節水灌溉,2005(2):21-22.Zhu Zhijian, Lu Binheng, Zhao Wanhua, et al. Development and application of mechanical injecting fertigation device[J].Water Saving Irrigation, 2005(2): 21-22. (in Chinese with English abstract)
[5] 李百軍,王曉寧. 水動施肥裝置的設計與試驗[J]. 江蘇大學學報(自然科學版),2002,23(2):9-12.Li Baijun, Wang Xiaoning. Design and experiment on hydrodynamic fertilizer injection unit[J]. Journal of Jiangsu University: Natural Science, 2002, 23(2): 9-12. (in Chinese with English abstract)
[6] 韓啟彪,馮紹元,黃修橋,等. 我國節水灌溉施肥裝置研究現狀[J]. 節水灌溉,2014(12):76-79,83.Han Qibiao, Feng Shaoyuan, Huang Xiuqiao, et al. Research on fertilizer injection units in saving-water irrigation in China[J]. Water Saving Irrigation, 2014(12): 76-79,83. (in Chinese with English abstract)
[7] Villalobos Roberto, Montoya Emmy, Nomogramas paraensambley Uso, et al. Inyectora Unidrench? de dispositivo Venturi operation setting nomograms for Unidrench? Venturi injector[J].Agronomía Colombiana, 2010, 28(2): 303-318.
[8] 金永奎,夏春華,方部玲. 文丘里施肥器系列的研制[J]. 中國農村水利水電,2006(5):14-16,20.Jin Yongkui, Xia Chunhua, Fang Buling. Research and development of venturi fertilizer applicator series[J]. China Rural Water and Hydropower, 2006(5): 14-16, 20. (in Chinese with English abstract)
[9] Cooperative Extension Service College of Agriculture and Home Economics. Drip irrigation system for row crops[R].New Mexico: New Mexico State University, 2001.
[10] Neto L E L, Porto R D M. Performance of low-cost ejectors[J]. Journal of Irrigation and Drainage Engineering,2004, 130(2): 122-128.
[11] 韓啟彪,黃興法,劉洪祿,等. 6種文丘里施肥器吸肥性能比較分析[J]. 農業機械學報,2013,44(4):113-117,136.Han Qibiao, Huang Xingfa, Liu Honglu, et al. Comparative anylysis on fertilization performance of six venture injectors[J].Transaction of the Chinese Society for Agricultural Machinery,2013, 44(4): 113-117, 136. (in Chinese with English abstract)
[12] 嚴海軍,初曉一,王敏,等. 微灌系統文丘里施肥器吸肥性能試驗[J]. 排灌機械工程學報,2010,28(3):251-255,264.Yan Haijun, Chu Xiaoyi, Wang Min, et al. Injection performance of venturi injector in micro-irrigation system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(3):251-255, 264. (in Chinese with English abstract)
[13] 馮瑞玨,洪添勝,李加念,等. 文丘里施肥器控制性能試驗分析[J]. 灌溉排水學報,2011,30(6):11-14,56.Feng Ruijue, Hong Tiansheng, Li Jianian, et al. Experiment and analysis on control performance of venturi injector[J].Journal of Irrigation and Drainage, 2011, 30(6): 11-14, 56.(in Chinese with English abstract)
[14] 孔令陽,范興科. 文丘里施肥器喉部負壓的影響因素分析[J]. 干旱地區農業研究,2013,31(6):78-82,89.Kong Lingyang, Fan Xingke. Analysis on the influencing factors of throat negative pressure for Venturi injector[J].Agricultural Research in the Arid Areas, 2013, 31(6): 78-82,89. (in Chinese with English abstract)
[15] 范興科,孔令陽. 文丘里施肥器能量轉化關系[J]. 排灌機械工程學報,2013,31(6):528-533.Fan Xingke, Kong Lingyang. Relationship of energy conversion for Venturi injector[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(6): 528-533. (in Chinese with English abstract)
[16] Xu Yuncheng, Chen Yan, He Jianqiang, et al. Detection of cavitation in a Venturi injector with a combined method of strain gauges and numerical simulation[J]. Journal of Fluids Engineering Transactions of the ASME, 2014, 136(8):081302.
[17] 嚴海軍,陳燕,徐云成,等. 文丘里施肥器的空化特性試驗研究[J]. 排灌機械工程學報,2013,31(8):724-728.Yan Haijun, Chen Yan, Xu Yuncheng, et al. Experimental investigation on cavitation characteristics of Venturi injector[J].Journal of Drainage and Irrigation Machinery Engineering,2013, 31(8): 724-728. (in Chinese with English abstract)
[18] 孔令陽,范興科. 文丘里施肥器吸肥性能試驗研究[J]. 節水灌溉,2013(7):4-6.Kong Lingyang, Fan Xingke. Experimental study on fertilizer suction performance of Venturi injector[J]. Water Saving Irrigation, 2013(7): 4-6. (in Chinese with English abstract)
[19] 王淼,黃興法,李光永. 文丘里施肥器性能數值模擬研究[J]. 農業工程學報,2006,22(7):27-31.Wang Miao, Huang Xingfa, Li Guangyong. Numerical simulation of characteristics of venturi injector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 27-31. (in Chinese with English abstract)
[20] 孫艷琦,牛文全. 文丘里管結構參數對其水力性能的影響[J]. 西北農林科技大學學報,2010,38(2):211-218.Sun Yanqi, Niu Wenquan. Effects of Venturi structural parameters on the hydraulic performance[J]. Journal of Northwest A&F University, 2010, 38(2): 211-218. (in Chinese with English abstract)
[21] 嚴海軍,初曉一. 喉管直徑對文丘里施肥器性能影響的數值模擬[J]. 排灌機械工程學報,2011,29(4):359-363.Yan Haijun, Chu Xiaoyi. Numerical simulation of influence of diameter of throat on Venturi injector performance[J].Journal of Drainage and Irrigation Machinery Engineering,2011, 29(4): 359-363. (in Chinese with English abstract)
[22] 邱振宇,鮑安紅. 施肥器結構參數對施肥濃度影響的數值研究—基于并聯式文丘里施肥器[J]. 農機化研究,2012,34(4):42-45.Qiu Zhenyu, Bao Anhong. Fertilization numerical studies on the impact of structure parameters on fertilizer concentration[J].Journal of Agricultural Mechanization Research, 2012, 34(4):42-45. (in Chinese with English abstract)
[23] 嚴海軍,陳燕,初曉一,等. 文丘里施肥器結構參數優化對吸肥性能的影響[J]. 排灌機械工程學報,2013,31(2):162-166.Yan Haijun, Chen Yan, Chu Xiaoyi, et al. Influence of optimization of structural parameters on injection performance of Venturi injector[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(2): 162-166. (in Chinese with English abstract)
[24] Manzano J, de Azevedo BM, do Bomfim GV, et al. Design and prediction performance of Venturi injectors in drip irrigation[J]. Revista Brasileira de Engenharia Agricola E Ambiental, 2014, 18(12): 1209-1217.
[25] Li Jiusheng, Meng Yibin, Li Bei. Field evaluation of fertigation uniformity as affected by injector type and manufacturing variability of emitters[J]. Irrigation Science, 2007, 25(2): 117-125.
[26] Bracy R P, Parish R L, Rosendale R M. Fertigation uniformity affected by injector type[J]. Horttechnology, 2003, 13(1): 103-105.
[27] Yan Haijun, Chen Yan, Chu Xiaoyi, et al. Effect of structural optimization on performance of Venturi injector[C]//26th IAHR Symposium on Hydraulic Machinery and Systems., ,Bristol, England: IOP Publishing Ltd, 2012:072014.doi:10.1088/1755-1315/15/7/072014.
[28] 周亮亮,柯建宏. 基于模糊控制的溫室灌溉施肥控制系統[J]. 浙江農業科學,2012(12):1648-1652.
[29] Coates R, Delwiche M, Evans R, et al. Adjustable-rate fertigation system for container nurseries[J]. Applied Engineering in Agriculture, 2014, 30(6): 987-994.
[30] 李加念,洪添勝,馮瑞玨,等. 基于脈寬調制的文丘里變量施肥裝置設計與試驗[J]. 農業工程學報,2012,28(8):105-110.Li Jianian, Hong Tiansheng, Feng Ruiyue, et al. Design and experiment of Venturi variable fertilizer apparatus based on pulse width modulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 28(8): 105-110. (in Chinese with English abstract)
[31] 李加念,洪添勝,馮瑞玨,等. 基于模糊控制的肥液自動混合裝置設計與試驗[J]. 農業工程學報,2013,29(16):22-30.Li Jianian, Hong Tiansheng, Feng Ruijue, et al. Design and experiment of automatic mixing apparatus for liquid fertilizer based on fuzzy control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2013, 29(16): 22-30. (in Chinese with English abstract)
[32] 楊帥,劉牮,常國峰,等. 引射式EGR系統文丘里管內流動數值模擬分析[J]. 內燃機工程,2011,32(3):64-67.Yan Shuai, Liu Jian, Chang Guofeng, et al. Numerical simulation on flow in Venturi tube of EGR system for turbocharged diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(3): 64-67. (in Chinese with English abstract)
[33] 李加念. 橘園水肥一體化滴灌的自動控制系統[D]. 廣州:華南農業大學,2012.Li Jianian. Automatic Control System of Drip Irrigation and Fertigation for Citrus Orchard[D]. Guangzhou: South China Agricultural University, 2012. (in Chinese with English abstract)
Design and experiment of low pressure Venturi injector based on double fertilizer inlets
Zhang Jiankuo, Li Jianian※, Wu Hao, Ma Zeyu, Waleed Elnour Babekir Salih, Hu Hechen
(College of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming650500,China)
Venturi injector has been widely used in the integrated irrigation system of water and fertilizer because of its advantages of low cost, simple structure, no external power and so on. In order to reduce the critical inlet pressure of the Venturi injector and make it suitable for low pressure irrigation and fertilization system, a kind of Venturi injector with double fertilizer inlets was designed. The design was based on the study results that increasing the numbers of fertilizer inlets can improve fertilizer absorption capability of Venturi tube. A total of 4 structural parameters (throat contraction ratio, contraction angle, diffusion angle and ratio of throat length and diameter) were required to be determined for the Venturi injector. A total of 16 combinations with the 4 structural parameters were designed by using the orthogonal method. The CFD simulation was used to simulate the fertilizer absorption performance of each scheme. According to the simulation results, the optimum combination of structural parameters was throat contraction ratio 0.3, contraction angle 20o, diffusion angle 8oand ratio of throat length and diameter 1.1. According to the optimum combination of structural parameters, a prototype of Venturi injector was manufactured by the 3D print technique for an experiment. The experiment was carried out in College of Modern Agricultural Engineering of Kunming University of Science and Technology, China. The water inlet pressure from 0 to 0.15 MPa was realized by adjusting the difference in height between the bucket and the Venturi injector and there were 8 points chosen from 0 to 0.15 MPa. The vertical distance between the liquid level and the fertilizer inlets was set to 500 mm. During the experiment, the fertilizer concentration was calculated. The experimental results showed that the measured values agreed well with the simulated values with the root-mean-square error of 0.22 L/min for fertilizer suction amount, 0.96% for flow ratio of inlet, 0.93% for fertilizer concentration, and 0.68% for fertilizer absorption efficiency. The change in measured and simulated fertilizer absorption performance with the inlet pressure was similar. The CFD simulation was used for compare single and double inlets injector with the same structural parameters and the results showed that under the same inlet pressure,fertilizer suction amount, flow ratio of inlet, fertilizer concentration and fertilizer absorption efficiency of the double inlets increased by 90%, 85%, 80% and 80%, respectively, compared to single fertilizer inlet. The measured critical inlet pressure was 0.007 MPa for the double inlets injector. When the inlet pressure was 0.05 MPa, the fertilizer concentration was 13.6%.Compared with the existing Venturi injector, the Venturi injector with double fertilizer inlets need much lower water inlet pressure to obtain the equal or higher fertilizer absorption performance and it is more suitable for low pressure irrigation system.
structures; computational fluid dynamics; numerical analysis; Venturi injector; double fertilizer inlets; low pressure; fertilizer absorption performance
10.11975/j.issn.1002-6819.2017.14.016
S224.2
A
1002-6819(2017)-14-0115-07
張建闊,李加念,吳 昊,馬澤宇,Waleed Elnour Babekir Salih,胡赫諶. 基于雙吸肥口的低壓文丘里施肥器設計與試驗[J]. 農業工程學報,2017,33(14):115-121.
10.11975/j.issn.1002-6819.2017.14.016 http://www.tcsae.org
Zhang Jiankuo, Li Jianian, Wu Hao, Ma Zeyu, Waleed Elnour Babekir Salih, Hu Hechen. Design and experiment of low pressure Venturi injector based on double fertilizer inlets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 115-121. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.14.016 http://www.tcsae.org
2017-04-04
2017-07-10
國家自然科學基金(51509121);云南省高校工程研究中心建設計劃資助項目
張建闊,男,河北邯鄲人,主要從事電子信息技術及測控技術應用研究。昆明 昆明理工大學現代農業工程學院,650500。
Email:763519823@qq.com
※通信作者:李加念,男,湖南道縣人,博士,副教授,主要從事農業測控技術應用研究。昆明 昆明理工大學現代農業工程學院,650500。
Email:ljn825@163.com