孫 偉,劉小龍,張 華,王虎存,田 斌
?
馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機設計
孫 偉,劉小龍,張 華,王虎存,田 斌※
(甘肅農業大學機電工程學院,蘭州 730070)
為實現全膜覆蓋種行覆土馬鈴薯機械化種植,針對地膜全域覆蓋膜上對行覆土等難題,設計了馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機。對樣機關鍵部件進行了分析與設計,確定了液壓偏置懸掛裝置、跨越式膜上覆土裝置、排種系統、碎土整形裝置結構及工作參數,解析了核心部件作業機理。田間試驗表明,馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機膜下播種深度合格率為86%,種薯間距合格指數為89%,重種指數為5%,漏種指數為4%,種行覆土寬度合格率為92%,種行覆土厚度合格率為94%,鄰接行距合格率為86%,地膜采光面機械破損程度為48.1 mm/m2,滲水孔間距合格率為96%。田間性能試驗指標均達到國家和行業標準要求,試驗結果滿足設計要求,能夠實現施肥、播種、起壟、全膜覆蓋、種行覆土一體化作業。
機械化;設計;農作物;全膜雙壟溝;種行覆土;馬鈴薯種植機
馬鈴薯地膜全域覆蓋溝壟栽培是近年來西北黃土高原旱作區普遍采用的抗旱種植模式,研究表明,該技術比露地栽培增產20%以上[1-3]。但是由于無配套種植機具,目前采用先覆膜、后人工點播的分段作業方式,勞力消耗大,作業質量差,急需實現機械化聯合作業。
自20世紀50年代開始,歐美許多發達國家馬鈴薯生產裝備開始向自動化方向發展,馬鈴薯種植機經歷了由小到大、由低級半機械化到高級自動化的發展過程,在技術水平和基礎理論研究方面都取得了巨大的成果。典型機具有:英國STANDEN ENGINEERINGLTD公司開發的SP系列馬鈴薯播種機列馬鈴薯播種機,德國Grimme-UK公司生產的GL、VL系列馬鈴薯播種機,美國Crary公司開發了Lockwood 504Pick、506 Pick、508 Pick系馬鈴薯播種機[4]。這些機型可一次性完成開溝、施肥、播種、起壟、鎮壓等多項作業,智能化程度高,但基本不設計覆膜功能。20世紀80年代以后,中國馬鈴薯播種機械發展迅速,先后有十幾家科研或教學生產單位開始研制生產馬鈴薯播種機,技術上日漸成熟[5-9]。如內蒙古農業大學研制的2BSL-2型馬鈴薯起壟播種機[10],黑龍江八一農墾大學研制的2CM-2型馬鈴薯播種機[11],黑龍江省農業機械工程科學研究院研制的2CMF-4型懸掛式馬鈴薯種植機[12],中機美諾科技股份有限公司開發的1240A馬鈴薯種植機,這些機型基本滿足北方不同地域大面積露地栽培農藝要求。青島洪珠農業機械有限公司研發的2CM-1/2馬鈴薯播種機,一次性可以完成施肥、播種、起壟、覆膜作業;甘肅酒泉鑄隴機械制造有限責任公司研發的2CMLF-2A馬鈴薯播種機[13],增加了膜上覆土功能,作業后整個膜面上覆蓋3~5 cm左右土壤,這2款機型適合半覆膜壟作種植模式。
馬鈴薯地膜全域覆蓋溝壟栽培要求相鄰膜邊對接,溝壟完全被地膜覆蓋。現有覆膜種植技術基本上采用膜側取土,要求膜與膜之間留有裸露條帶,以便覆土機構取土和作業機具行走,不符合地膜全域覆蓋溝壟栽培農藝要求。為此,設計了馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機,并進行了田間試驗。
研究表明,馬鈴薯幼芽具有自動破膜能力[14-16],即在播種后膜上覆一層3~5 cm土壤,利用作物發芽時芽不見光,子葉就不散開的特性,依靠膜上的土壤重力和幼芽自然向上作用使幼苗自動破膜,自然出苗。為此,將該特性應用于馬鈴薯地膜全域覆蓋高產栽培技術。圖1為馬鈴薯全膜覆蓋種行覆土種植壟形,大小壟總寬120 cm,大壟寬80 cm,小壟寬40 cm,高10~13 cm,用幅寬135 cm地膜全覆蓋,大壟上種植馬鈴薯,播種深度13 cm,種行上方覆蓋一層寬度17 cm、厚度3~5 cm土壤。
如圖2所示,馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機主要由機架、排肥系統、排種系統、變速箱、開溝器、地輪、跨越式膜上覆土裝置、整形碎土裝置、覆膜機構構成。

1.排種系統 2.種箱 3.肥箱 4.懸掛機構 5.覆土器 6.開溝器 7.跨越式膜上覆土裝置 8.整形碎土裝置 9.覆膜機構 10.地輪
工作時,種植機通過液壓偏置懸掛裝置與拖拉機三點懸掛架連接,在拖拉機牽引下種植機地輪驅動排肥系統和排種系統工作,勺鏈式排種器將種薯投擲至尖角翼形開溝器開出的“V”型種溝內。位于開溝器側后方的跨越式膜上覆土裝置將土壤鏟起并提升越過覆膜機構輸送至覆土器,跨越式膜上覆土裝置起土后在地表形成2個壟溝,壟溝中間為小壟,兩邊各形成半個大壟。整形碎土裝置進一步修整壟形,覆膜機構將膜鋪放到已成形的種床上面。覆土器將跨越式膜上覆土裝置輸送來的土壤鋪灑到種植種行正上方及膜邊。機組一趟作業形成中間1個小壟和兩側半個大壟,下趟作業相鄰兩行半個大壟相接,在大壟壟面中間膜邊相接,不留空白帶。
馬鈴薯地膜全域覆蓋溝壟栽培機械作業存在幅寬配套問題,即拖拉機輪輻寬度大于種植機作業幅寬,為此,設計了液壓偏置懸掛裝置。
如圖3所示,液壓偏置懸掛裝置主要由磁感應液壓油缸、上滑動支桿、下滑動支桿和懸掛架組成。其中,懸掛架通過上、下滑動支桿和上、下滑動套筒與機架連接,磁感應液壓油缸安裝在機架與懸掛架之間。工作時,通過調整磁感應液壓油缸長度改變機架與懸掛架相對位置,從而實現種植機偏置。

1.機架 2.拉桿 3.下滑動支撐桿 4.懸掛架 5.上滑動支桿 6.磁感應液壓油缸
控制系統和液壓油缸分別由拖拉機蓄電池和液壓系統提供動力。如圖4所示,工作時,駕駛員按下按鈕開關A1,D1導通,油缸活塞向右移動,活塞桿推動機架向右偏置,當活塞移動至感應開關K2,電路切斷,D1停止工作;駕駛員按下按鈕開關A2,D2導通,油缸活塞向左移動,活塞桿推動機架向左偏置,當活塞移動至感應開關K1,電路切斷,D2停止工作,機架停留在偏置位置。
加肥、加種后,播種機質量為410 kg,偏置時液壓油缸需提供的推拉力min=,式中,為鋼之間的摩擦系數;為滑動桿提供的支撐力,與播種機質量相等,則液壓油缸需提供的推拉力>602.7 N。磁感應開關K1、K2之間的距離為拖拉機輪輻寬度與播種機作業幅寬之差。該機配套25.7 kW輪式拖拉機,拖拉機輪輻寬度為1.5 m,則油缸行程為0.3 m,選擇MOB40-300型磁感應液壓油缸。


a.液壓油路a. Hydraulic circuitb.控制電路b. Control circuit
1.電磁閥 2.磁感應液壓油缸 3.磁感應開關 4.按鈕開關 5.小型繼電器
1.Electromagnetic valve 2.Magnetic induction hydraulic cylinder 3.Magnetic induction switch 4.Button switch 5. Miniature relay
注:A1、A2為按鈕開關;K1、K 2為磁感應開關;D1、D2為電磁閥;J1、J2為繼電器觸點。
Note: A1 and A2 are button switches; K1 and K2 are magnetic induction switches; D1 and D2 are electromagnetic valves; J1 and J2 are relay contacts.
圖4 液壓偏置懸掛機構原理圖
Fig.4 Principle diagram of hydraulic offset suspension mechanism
國內對膜上覆土機構的研究主要是針對半膜種植模式,有滾輪式、滾筒式和旋耕式[17-19],這幾種膜上覆土機構均采用膜側取土,橫向輸送覆土的方式,地膜之間須有裸露條帶,不符合全膜覆蓋的要求,故采用膜前取土的方式設計了跨越式膜上覆土裝置。如圖5a所示,跨越式膜上覆土裝置由開溝取土鏟、刮板升運帶、升運器張緊機構、側向輸送器、覆土器、主動輪和從動輪等構成。膜上覆土裝置通過正反扣調節器與種植機機架聯接,整體裝置的安裝角度確保作業狀態下刮板升運帶與水平面的夾角為45°。


a.機構簡圖a. Mechanism diagramb.軸測圖b. Axonometric drawing
1.開溝取土鏟 2.張緊機構 3.從動輪 4.刮板 5.升運帶 6.整形器 7.膜輥 8.正反扣調節器 9.主動輪 10.護罩 11.側向輸送器 12.覆土器 13.清土裝置
1.Shovel for ditching and taking soil 2.Tightening devices 3.Driven wheel 4.Scraper 5.Lifting belt 6.Shaping device 7.Plastic film roller 8.Pros and cons button adjuster 9.Driving wheel 10.Shield 11.Lateral conveyor 12.Covering soil device 13.Cleaning soil device
圖5 跨越式膜上覆土裝置機示意圖
Fig.5 Diagram of spanning type device of covering soil on plastic film
2.2.1 開溝取土鏟
開溝取土鏟主要作用是將土壤掘起后送至刮土板,起土后在地表形成集雨溝,2個開溝取土鏟之間形成集雨面。按農藝要求,2個開溝取土鏟間距為400 mm。將開溝取土鏟鏟面設計成梯形,升運帶寬度與升運帶一致,取150 mm,為減小刮板升運帶工作阻力,避免刮土板直接刮取集雨溝底部土壤,當刮土板運動至從動輪正下方呈豎直狀態時,開溝取土鏟前端應低于刮土板頂點,兩者垂直距離取20 mm。為防止刮板在作業過程中與開溝取土鏟尾部干涉,間隙取25 mm。為保證土壤在開溝鏟上流動通暢,不產生堆積,經過反復試驗,開溝取土鏟的入土角取30°,長度取80 mm。
在兩刮板相繼取土的時間間隔內,機組前進的距離=/,則起土量

式中為升運帶寬度,mm;為挖掘深度,mm;為刮板間距,mm;為升運帶速度與前進速度之比。
起土量應大于刮板的輸土量,則

式中為刮板升運帶與水平面的夾角,(°);為土壤內摩擦角,(°);為刮板高度,mm。
由此可知,起土鏟入土深度影響起土量。作業中,由于土壤類型及耕整地方式差異,相同結構參數下機組下陷深度不同導致入土深度不一致,為適應不同工況,如圖5b所示,設計了正反扣調節器調整深度。若土壤松軟機組下陷較大,可以旋轉絲套,使絲套2端的正反絲桿旋入絲套,正反扣深度調節器變短,起土鏟入土深度變淺,反之亦然。
2.2.2 刮板升運帶
圖6為刮板的運動分析,刮板上的土壤表面與水平面呈一夾角,該夾角為土壤內摩擦角。每個刮板上的土壤量即為升運帶長度的輸送量,體積由端面面積與刮板寬度相乘求得,則一定長度的膜上覆土量為[20]

式中為輸送效率,主要與充滿系數、升運帶打滑率有關。
按種行覆土栽培要求,種行膜面需覆蓋寬度17 cm、厚度3~5 cm的土壤,單側膜邊覆蓋寬度10 cm、厚度3~5 cm的土壤,則單位長度膜面覆土量8.1×10-3~1.4×10-2m3。該裝置采用5×150 mm橡膠帆布傳動帶,刮板間距取100 mm,刮板高度取60 mm,升運帶速度與前進速度之比為1.35。根據(3)式可以算得升運帶理論輸土量為0.016 m3,故滿足設計要求。
為調整升運帶的松緊,如圖5所示,設計了張緊機構,通過調節兩側拉桿長度帶動從動輪輪軸前后移動實現松緊調整。為避免進入升運帶背部的土壤隨粘附在從動輪上,改變從動輪半徑破壞裝配關系,設計了清土裝置。清土裝置安裝在張緊機構上,主要由2塊橡膠刮片構成,一塊抵靠在從動輪上,清理粘附在從動輪上的土壤,另一塊抵靠在升運帶背部,清理進入升運帶背部的土壤。

1.土壤 2.開溝取土鏟 3.從動輪 4.刮板 5.升運帶
1.Soil 2.Shovel for ditching and taking soil 3.Driven wheel 4.Scraper 5.Lifting belt
注:為從動輪角速度,rad·s-1;為前進速度,m·s-1;為起土深度,mm;為升運帶與水平面的夾角,(°);為土壤內摩擦角,(°);為從動輪半徑,mm;為刮板高度,mm;為刮板間距,mm;為升運帶速度,m·s-1;為刮板與溝底間隙;為開溝取土鏟的入土角,(°)。
Note:is angular velocity of driven wheel, rad·s-1;is forward velocity, m·s-1;is depth of plowing, mm;isthe angle between the lifting belt and the horizontal plane, (°);is soil internal frictional angle, (°);is radius of driven wheel, mm;is the height of scraper, mm;is scraper spacing, mm;is velocity of lifting belt, m·s-1;is clearance between scraper and bottom, mm;.is penetration angle of shovel for ditching and taking soil, (°).
圖6 刮板的運動分析
Fig.6 Motion analysis of scraper
2.2.3 側向輸送器
起土鏟作業后在地表形成小壟溝,壟溝間距400 mm,即兩套膜上覆土裝置中心距為400 mm,而種行間距(2個開溝器之間距離)為700 mm,為了將土壤覆蓋在種行正上方,升運帶提升的土壤須側向輸送一定距離。該機采用螺旋輸送器側向輸送土壤,結構如圖7所示。由于刮板升運帶寬度為150 mm,覆土寬度為170 mm,則輸送器長度為320 mm;為提高輸送器排雜能力,防止上季作物根茬和石塊堵塞,螺旋輸送器外徑取150 mm,輸送器軸徑取48 mm,螺距取150 mm,葉片與底殼的間隙取5 mm;為提高輸送器結構強度,防止根茬和石塊對葉片的破壞,采用不等厚葉片,厚度1取2.5 mm,取5 mm[21]。

1.升運帶 2.護罩 3.螺旋輸送器 4.種行覆土 5.覆土器
1.Lifting belt 2.Shield 3.Screw conveyer 4.Covering soil of seedling belt 5.Covering device
注:為葉片厚度,mm;為輸送器長度,mm;為螺旋輸送器外徑,mm;為輸送器軸徑,mm;為螺距,mm。
Note:is blade thickness, mm;is conveyor length, mm;is outer diameter of the screw conveyor, mm;is shaft diameter of the screw conveyor, mm;is pitch, mm.
圖7 側向輸送器結構示意圖
Fig.7 Structure diagram of lateral conveyor
螺旋輸送器推運量為[22]:

式中為葉片與底殼的間隙,mm;為充滿系數,取0.3;為轉速,r/min;為輸送器傾斜輸送系數,由于螺旋輸送器水平布置,取1。
在機組1 m/s的作業速度下,螺旋輸送器推運量要與升運帶輸土量匹配,由式(4)可得,螺旋輸送器轉速取140 r/min,螺旋輸送器推運量為0.016 m3,符合設計要求。
勺鏈式排種器是目前中小型馬鈴薯播種機普遍采用的一種排種裝置,其性能直接影響播種作業質量和效率[23-26]。該機排種器采用12A型鏈條,每6節布置雙側彎板,用來安裝種勺,則種勺間距為114.3 mm,如圖8所示。影響勺鏈式排種器性能的諸多因素中,種勺尺寸和容種高度(即排種鏈埋入種子層中的長度)最為關鍵。切塊薯質量在50 g左右,馬鈴薯密度在1 000~1 200 kg/m3之間,則切塊薯的當量直徑在34.2~36.2 mm之間,考慮到切塊薯形體差異較大,種勺內壁為SR30 mm球面,深度為18 mm,為提高充種性能,勺口高度大于兩側高度,勺口采用大半徑弧線過渡。


a. 主視圖a. Front viewb. 側視圖b. Lateral view
1. 12 A側板鏈 2. 取種勺
1. 12 A lateral plate chain 2. Taken seed spoon
圖8 勺鏈式排種器結構示意圖
Fig.8 Structure diagram of spoon chain type metering device
實踐表明,隨著容種高度增加,勺鏈式排種器漏種率降低,重播率升高。傳統單種箱排種系統存在重播率、漏種率不穩定的情況。作業前期種箱薯塊數量多,容種高度高,重播率高,后期隨薯塊數量減少,容種高度降低,漏種率升高。根據實際情況,為便于調整容種高度,對傳統種箱進行了優化和改進。如圖9所示,種箱主要由補種箱、排種箱、隔板和破拱裝置構成,其中,隔板安裝在補種箱、排種箱之間,破拱裝置安裝在排種箱下部。作業時,勺鏈式排種器順時針轉動,處于種薯內的排種勺在充種、取種過程中帶動周圍種薯向上運動,在其周圍形成一定厚度的帶動層。同時,副種箱下部種薯向主排種箱流動,用以補償取種勺帶走種薯。通過調整隔板上下位置,可以改變容種高度。由于切塊薯流動性較差,會出現架空現象,為避免補種箱向排種箱補薯不及時導致容種高度下降的問題,在補種箱下面設計了破拱裝置。該裝置在地輪帶動下沖擊安裝在種箱上的橡膠板,橡膠板振動破拱,解決切塊薯由于流動性差造成的架空問題。

1.補種箱 2.排種箱 3.取種勺 4.種薯運動方向 5.調整隔板 6.橡膠板 7.破拱裝置
膜頂坐土促生技術要求覆土條帶與種行上下對正,防止莖芽頂到裸露地膜造成高溫燒苗,為此,設計了尖角翼形開溝器。如圖10所示,開溝器由前刀刃、側翼板和鏟柄構成,其中,前刀刃劃開根茬(西北黃土高原旱作區多采用馬鈴薯、玉米輪作),側翼形成“V”型種溝,保證薯塊在溝底的穩定性。前刀刃高度2取130 mm,與播種深度一致;側翼板高度1取270 mm,后翼高度3取100 mm;開溝器寬度b略大于護種槽寬度,取85 mm;為保證前刀刃對土壤的滑切作用,1>π/2+1,1為土壤與刀刃間的摩擦角,1=14°~38°,1取128°;為使側翼面上的土壤向后滑移,減小工作阻力,1<π?21,1取104°[22]。


a. 主視圖a. Front viewb. 軸測圖b. Axonometric drawingc. 俯視圖c. Top view
1.前刀刃 2.側翼板 3.鏟柄 4.定位孔
1.Front edge 2.Side wing 3.Handle 4.Location hole
注:1為側翼板高度,mm;2為前刀刃高度,mm;3為后翼高度,mm;1為刀刃前角,(°);1為側翼板張角,(°)。
Note:1is height of flank plate, mm;2is height of front edge, mm;3is height of rear wing, mm;1is rake angle of front edge,(°);1is flare angle of flank plate, (°).
圖10 尖角翼形開溝器結構示意圖
Fig.10 Structure diagram of pointed wing furrower
馬鈴薯覆膜種植不僅有保墑增溫作用,還有滅草功能。這就要求地膜與壟面緊密貼合且無破損。壟面不平整及壟面上的土塊是引起地膜破損的原因之一。為保證壟型和壟面平整,防止表層板結土塊破壞地膜完整性,設計了碎土整形裝置。碎土整形裝置結構如圖11所示,由輪架、預緊裝置、碎土整形輥等構成。作業時,碎土整形輥滾動過程中柵條對土塊有破碎功能,在預緊裝置壓力作用下鎮壓土壤形成壟型。

1.軸承 2.預緊裝置 3.碎土整形輥 4.輪架
為有效利用集雨面收集的降水,需要在溝底膜面上打滲水孔。為了簡化結構,在展膜輥上附加了打孔功能。如圖12所示,打孔器穿套在展膜輥上,由打孔針、橡膠伸縮套組成。打孔針直徑為5 mm,長度25 mm,頂部加工成錐形。為防止打孔針撕膜,同時在打孔位置更好地展膜,在打孔針周圍設計了長度100 mm的泡綿護套,打孔針底部插在泡綿護套預留孔內。

1.展膜輥 2.泡綿護套 3.打孔針
覆土裝置田間試驗于2017年5月在隴中黃土高原旱農區蘭州市西固區西柳溝街道柴家臺進行。試驗土壤為黃綿土,含水率為17.54%,容重為1.30~1.35 g/cm3,堅實度<250×103Pa,田面較平整、松碎且雜草較少,試驗地長度為75 m。使用種薯物理機械特性為平均尺寸56.4 mm×44.3 mm×31.8 mm,含水率為71.3%,每個種薯的平均質量為39.8 g。配套動力為22.1 kW東方紅-300型拖拉機。
作業完成后,參照GB/T 25417-2010《馬鈴薯種植機技術條件》、NY/T 1415-2007《馬鈴薯種植機質量評價技術規范》和NY/T 987-2006《鋪膜穴播機作業質量》標準對播種機作業性能的測定要求,測定種植深度合格率、種行覆土寬度合格率、種行覆土厚度合格率、鄰接行距合格率、地膜采光面機械破損程度、滲水孔間距合格率的試驗數值[27-30]。
種植深度合格率測定方法:在一塊地內沿地塊的長度和寬度中點連十字線,將地塊劃分為4塊,隨機抽取對角2塊作為檢測樣本。在樣本地塊中,按對角線取5個小區,每個小區長度為4.2 m(約12個穴距),測定3行,以穴為測點,共測20點。垂直切開種床土壤,在剖面上測量播種深度、種薯間距。


式中為種植深度合格率,%;為種薯間距合格指數,%;0為總測定個數;1為種植深度合格數;2為種薯間距合格數。
地膜采光面機械破損程度測定方法:隨機抽取5 m作業壟長,測量采光面機械破損的縫長或邊長、采光面展平寬度,以10個測試區的測定平均值為測試結果。

式中為地膜采光面機械破損程度,mm/m2;L為測試區內第處采光面機械破損的縫長或邊長,mm;為測試區長度,m;為測試區內采光面展平寬度平均值,m。
種行覆土寬度合格率、種行覆土厚度合格率測定方法:隨機選取測定點,在每個測定點上測定種行覆土寬度和種行覆土厚度,求平均值


式中為種行覆土寬度合格率,%;為種行覆土厚度合格率,%;0為總測定點數;1為種行覆土寬度合格點數;2為種行覆土厚度合格點數。
鄰接行距合格率測定方法:出苗后測定,在鄰接行處設定小區,每個小區長5 m,每個小區內在鄰接行處均布測10點,測定鄰接行距

式中為鄰接行距合格率,%;0為鄰接行距測定總點數;1為鄰接行距合格點數。
滲水孔間距合格率測定方法:隨機抽取5 m作業壟長,測量滲水孔間距,(300±10)mm為合格,以10個測試區的測定平均值為測試結果。

式中為滲水孔間距合格率,%;0為測定總點數;1為間距合格點數。
在測定馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機作業性能指標的同時,與2CM-2馬鈴薯播種機進行了對比試驗,其中,后者采用半覆膜壟作種植模式,試驗結果見表1。田間試驗表明,馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機膜下播種深度合格率為86%,種薯間距合格指數為89%,重種指數為5%,漏種指數為4%,種行覆土寬度合格率為92%,種行覆土厚度合格率為94%,鄰接行距合格率為86%,地膜采光面機械破損程度為48.1 mm/m2,滲水孔間距合格率為96%。由表1可知,設計的馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機滿足地膜全域覆蓋高產栽培技術要求,田間性能試驗指標均達到國家和行業標準要求,排種性能指標均高于2CM-2馬鈴薯播種機。圖13為馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機田間試驗及效果。

表1 田間試驗結果

a. 播種試驗a. Sowing testsb. 苗期效果b. Effect of seedling stage
注:地膜厚度0.008 mm;覆土厚度55 mm;滲水孔間距300 mm。
Note: The thickness of plastic film is 0.008 mm; the thickness of covering soil is 55 mm; the spacing of seepage hole is 300 mm.
圖13 馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機田間試驗及效果
Fig.13 Field experiments and cultivation effect of potato casingsoil planter in all-in-one machine combined with fertilizing, sowing, ridging, complete film mulching and planting line covering
基于全膜雙壟溝馬鈴薯種植農藝要求與膜頂坐土促生機理,設計了馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機。
1)對樣機關鍵部件進行了分析與設計,確定液壓偏置懸掛裝置、跨越式膜上覆土裝置、排種系統、碎土整形裝置結構及工作參數。設計的跨越式膜上覆土裝置滿足全膜種行覆土農藝要求,由補種箱、排種箱、破拱裝置等組成的排種系統,可以調整排種箱容種高度,提升排種系統性能。
2)田間試驗表明,馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機膜下播種深度合格率為86%,種薯間距合格指數為89%,重種指數為5%,漏種指數為4%,種行覆土寬度合格率為92%,種行覆土厚度合格率為94%,鄰接行距合格率為86%,地膜采光面機械破損程度為48.1 mm/m2,滲水孔間距合格率為96%。田間性能試驗指標均達到國家和行業標準要求。
[1] Zhao Hong, Wang Runyuan, Ma Baoluo, et al. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem[J]. Field Crops Research, 2014, 161: 137-148.
[2] Qin Shuhao, Zhang Junlian, Dai Hailin, et al. Effect of ridge-furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area[J]. Agricultural Water Management, 2014, 131: 87-94.
[3] 秦舒浩,張俊蓮,王蒂,等. 覆膜與溝壟種植模式對旱作馬鈴薯產量形成及水分運移的影響[J]. 應用生態學報,2011,22(2):389-394.
Qin Shuhao, Zhang Junlian, Wang Di, et al. Effects of plastic film mulching and furrow planting pattern formation and water transport on potato yield[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 389-394. (in Chinese with English abstract)
[4] 毛瓊. 國內外大田馬鈴薯播種機械化的發展現狀與未來預測[C]//中國農業工程學會2011年學術年會論文集. 重慶:中國農業工程學會,2011:1-5.
[5] 呂金慶,王英博,李紫輝,等. 加裝導流板的舀勺式馬鈴薯播種機排種器性能分析與試驗[J]. 農業工程學報,2017,33(9):19-28.
Lü Jinqing, Wang Yingbo, Li Zihui, et al. Performance analysis and experiment of cup-belt type potato seed-metering device with flow deflector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 19-28. (in Chinese with English abstract)
[6] 呂金慶,楊穎,尚琴琴,等. 氣吸式馬鈴薯排種器正壓吹種零速投種性能優化試驗[J]. 農業工程學報,2016,32(20):40-48.
Lü Jinqing, Yang Ying, Shang Qinqin, et al. Performance optimization test on air-suction potato seed metering device with positive pressure airflow and zero-speed seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 40-48. (in Chinese with English abstract)
[7] ???,苑嚴偉,羅敏,等. 雙層種箱式馬鈴薯排種裝置設計與試驗[J]. 農業工程學報,2016,32(20):32-39.
Niu Kang, Yuan Yanwei, Luo Min, et al. Design and experiment of potato metering device with double-deck seed tank[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 32-39. (in Chinese with English abstract)
[8] 王希英,唐漢,王金武,等. 雙列交錯勺帶式馬鈴薯精量排種器優化設計與試驗[J]. 農業機械學報,2016,47(11):82-90.
Wang Xiying, Tang Han, Wang Jinwu, et al. Optimized design and experiment on double-row cross spoon-belt potato precision seed metering device[J].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 82-90. (in Chinese with English abstract)
[9] Sun Wei, Shi Linrong, Wang Di, et al, Design and test of whole plastic-film mulching on double ridges potato planter[J]. Energy Education Science and Technology Part A: Energy Science and Research, 2014, 32(2): 1317-1324.
[10] 趙滿全,竇衛國,趙士杰,等. 2BSL-2型馬鈴薯起壟播種機的研制[J]. 內蒙古農業大學學報,2001,22(1):101-104.
Zhao Manquan, Dou Weiguo, Zhao Shijie, et al. The devolopment of the 2BSL-2 model of potato ridging planter[J]. Journal of Inner Mongolia Agricultural University, 2001, 22(1): 101-104. (in Chinese with English abstract)
[11] 周桂霞,張國慶,張義峰,等. 2CM-2型馬鈴薯播種機的設計[J]. 黑龍江八一農墾大學學報,2004,16(3):53-56.
Zhou Guixia,Zhang Guoqing,Zhang Yifeng, et al. Design of the potato seeder of model 2CM-2[J]. Journal of Heilongjiang August First Land Reclamation University, 2004, 16(3): 53-56. (in Chinese with English abstract)
[12] 楊金磚,呂金慶,李曉明,等. 2CMF-4 型懸掛式馬鈴薯種植機的研究[J].農機化研究,2010,32(1):127-130.
Yang Jinzhuan, Lü Jinqing, Li Xiaoming, et al. Research of 2CMF-4 potato-planting machine with hanging configuration[J]. Journal of Agricultural Mechanization Research, 2010, 32(1): 127-130. (in Chinese with English abstract)
[13] 戴飛,辛尚龍,趙武云,等. 全膜面覆土式馬鈴薯播種聯合作業機設計與試驗[J]. 農業機械學報,2017,48(3):76-83.
Dai Fei, Xin Shanglong, Zhao Wuyun, et al. Design and experiment of combined potato planting machine for covering soil on top of full film surface[J]. Transactions of the Chinese Society for Agricultural Machinery,2017, 48(3): 76-83. (in Chinese with English abstract)
[14] 楊來勝,王程,何培洪,等. 西北地區馬鈴薯膜上覆土最佳土層厚度試驗[J]. 農學學報,2016,6(7):60-63.
Yang Laisheng, Wang Cheng, He Peihong, et al. Optimum thickness of covering soil on plastic films of potato cultivation[J]. Journal of Agricultural, 2016, 6(7): 60-63. (in Chinese with English abstract)
[15] 陳建保,張祚恬,郝伯為,等. 膜上覆土對旱作覆膜馬鈴薯生長的影響[J]. 農業科技通訊,2013(4):55-57.
Chen Jianbao, Zhang Zuotian, Hao Bowei, et al. Effect of soil covering on the growth of potato covered with film on dry land[J]. Agricultural Science and Technology Communication, 2013(4): 55-57. (in Chinese with English abstract)
[16] 孫偉. 馬鈴薯自動破膜效應及全膜覆土技術研究[D]. 蘭州:甘肅農業大學,2014.
Sun Wei. Study on Effect of the Potato Self-Puncture and the Full Film Covering Soil Technology[D]. Lanzhou: Gansu Agricultural University, 2014.
[17] 李革,艾力·哈斯木,康秀生,等. 地膜播種機螺旋覆土滾筒的參數優化[J]. 農業工程學報,2003,19(6):135-137.
Li Ge, Aili Hasmu, Kang Xiusheng, et al. Parametric optimization of the spiral cylinder of a plastic-film mulch seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 135-137. (in Chinese with English abstract)
[18] 陳學庚,趙巖. 棉花雙膜覆蓋精量播種機的研制[J]. 農業工程學報,2010,26(4):106-112.
Chen Xuegeng, Zhao Yan. The research and development of cotton double film mulch sowing machine [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 106-112. (in Chinese with English abstract)
[19] 邵承會,闞君武,唐可洪. 基于因次分析的鹽田鋪膜機動力參數研究[J]. 農業機械學報,2003,34(1):121-123.
Shao Chenghui, Kan Junwu, Tang Kehong. Research on power consumption of salt-field filming machine by dimension analysis methods[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(1): 121-123. (in Chinese with English abstract)
[20] 孫偉,劉小龍,石林榕,等. 刮板升運帶式膜上覆土裝置覆土特性[J]. 機械工程學報,2016,52(7):38-45.
Sun Wei, Liu Xiaolong, Shi Linrong, et al. Covering soil on plastic-film characteristics of scraper lifting belt mechanism[J].Journal of Mechanical Engineering, 2016, 52(7): 38-45. (in Chinese with English abstract)
[21] 北京農業機械化學院主編. 農業機械學(下)[M]. 北京:農業出版社,1981.
[22] 中國農業機械化科學研究院. 農業機械設計手冊[M]. 北京:中國農業科學技術出版社,2007.
[23] 呂金慶,楊穎,李紫輝,等. 舀勺式馬鈴薯播種機排種器的設計與試驗[J]. 農業工程學報,2016,32(16):17-25.
Lü Jinqing, Yang Ying, Li Zihui, et al. Design and experiment of cup-belt type potato seed-metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 17-25. (in Chinese with English abstract)
[24] 孫偉,王關平,吳建民. 勺鏈式馬鈴薯排種器漏播檢測與補種系統的設計與試驗[J]. 農業工程學報,2016,32(11):8-15.
Sun Wei, Wang Guanping, Wu Jianmin. Design and experiment on loss sowing testing and compensation system of spoon-chain potato metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 8-15. (in Chinese with English abstract)
[25] ???,周利明,苑嚴偉,等. 勺鏈式馬鈴薯排種器自補種系統設計與試驗[J]. 農業機械學報,2016,47(增刊1):76-83.
Niu Kang, Zhou Liming, Yuan Yanwei, et al. Design and experiment on automatic compensation system of spoon- chain potato metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Supp.1): 76-83. (in Chinese with English abstract)
[26] 王關平,孫偉. 一種馬鈴薯漏播檢測及補償裝置的研制[J]. 農業現代化研究,2016,37(5):1008-1014.
Wang Guanping, Sun Wei. Development of a kind of potato loss sowing detection and compensation device[J]. Research of Agricultural Modernization, 2016, 37(5): 1008-1014. (in Chinese with English abstract)
[27] NY/T 1415-2007.馬鈴薯種植機質量評價技術規范[S].
[28] GB/T 6242-2006. 種植機械馬鈴薯種植機試驗方法[S].
[29] NY/T 987-2006. 鋪膜穴播機作業質量[S].
[30] 楊麗,史嵩,崔濤,等. 氣吸與機械輔助附種結合式玉米精量排種器[J]. 農業機械學報,2012,43(增刊):48-53.
Yang Li, Shi Song, Cui Tao, et al. Air-suction corn precision metering device with mechanical supporting plate to assist carrying seed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp.): 48-53. (in Chinese with English abstract)
Design of potato casingsoil planter in all-in-one machine combined with fertilizing, sowing, ridging, complete film mulching and planting line covering
Sun Wei, Liu Xiaolong, Zhang Hua, Wang Hucun, Tian Bin※
(College of Electromechanical Engineering, Gansu Agricultural University, Lanzhou 730070, China)
Whole plastic mulching and furrow planting has been widely adopted as a drought resistant cultivation model of potato in the arid areas on the Loess Plateau of Northwest China in recent years. Research has shown that the technique increases the production by more than 20% compared with the open field cultivation. However, due to the lack of matching planting machine, the sectional operation is currently adopted, with film mulching and artificially dropping seeds. The mode is labor-consuming and has poor-quality work, which urgently calls for mechanized combined operation. Since the 1950s, potato production equipment has begun to develop in the direction of automation in many developed countries in Europe and America, potato planting machine has changed from the elementary semi-mechanization to the senior automation, and meanwhile great achievements have been made in technical level and basic theory research. After 1980s, potato planter has rapidly progressed in China. More than a dozen scientific research institutes or production units began to develop and produce potato seeder, and with the passage of time, the technology is maturing. Whole plastic mulching and furrow planting requires that adjacent film edge butts and the ridge as well as furrow should be completely covered with plastic film. The existing mulch film planting technology basically takes the way shoveling soil from membrane side. There is a bare strip between the films so as to shovel soil and to operate potato planter. It does not meet the requirement of whole plastic mulching and furrow planting. In order to solve the problems of releasing seedlings and dibbling artificially in potato mulching film cultivation, the growth-promoting mechanism of covering soil on plastic film is applied to potato high-yielding cultivation techniques of whole plastic-film mulching, and a potato planter combined with fertilizing, sowing, ridging, complete film mulching, planting line covering is designed. Aiming at the matching problem of widths that the width of the tractor is larger than the width of the planter, a hydraulic offset suspension device is designed. To solve the problems of wind damage, cavity dislocation and seedlings burnt caused by not having enough volume of covering soil, the device is designed which is suitable for whole plastic-film mulching machine, namely spanning type device of covering soil on plastic film. In view of the problem of poor seeding stability of traditional chain metering device, the seed metering system is optimized and improved. Sharp wing furrower is designed to make the soil strip and the seedlings belt aligned both up and down. A soil-crushing and reshaping device is designed to ensure the shape of ridges. A punch is designed to drill the holes for water seepage on the film surface of the ditch bottom and to effectively make use of the rainfall collected by rainwater collecting surface. The key components of the prototype are analyzed to determine the structure and working parameters of hydraulic offset suspension device, spanning type device of covering soil on plastic film, seed metering system, and soil-crushing and reshaping device. The working mechanisms of the key components are clarified too. Field experiments show that, the qualified rate of sowing depth under the mulching film is 86%, the qualified index of seed potato spacing is 89%, the reseeding and miss-seeding index are 5% and 4% respectively, the qualified rates of soil width and soil depth covered on planting line are 92% and 94% respectively, the qualified rate of adjacent row spacing is 86%, the mechanical damage degree of day lighting surface of plastic film is 48.1 mm/m2, and the spacing qualification rate of water-leaking hole is 96%. Field performance test indices have reached the requirements of the national and industry standards; moreover, the results meet the design requirements, and the machine can realize integrated operation of fertilization, sowing, ridging, whole film mulching and covering soil on planting line.
mechanization; design; crops; complete film mulching on double ridges; covering soil on planting line; potato planter
10.11975/j.issn.1002-6819.2017.20.002
S223.2
A
1002-6819(2017)-20-0014-09
2017-06-07
2017-08-14
國家自然科學基金資助項目(51765004);甘肅農業大學伏羲人才項目(GAUFX-02J01);甘肅省科技支撐計劃(1504NKCA002)。
孫 偉,副教授,主要從事旱作農機裝備技術研究。 Email:sunw@gsau.edu.cn
※通信作者:田 斌,教授,主要從事農業機械設計制造及理論。 Email:tianb@gsau.edu.cn
孫 偉,劉小龍,張 華,王虎存,田 斌. 馬鈴薯施肥播種起壟全膜覆蓋種行覆土一體機設計[J]. 農業工程學報,2017,33(20):14-22. doi:10.11975/j.issn.1002-6819.2017.20.002 http://www.tcsae.org
Sun Wei, Liu Xiaolong, Zhang Hua, Wang Hucun, Tian Bin. Design of potato casingsoil planter in all-in-onemachine combined with fertilizing, sowing, ridging, complete film mulching and planting line covering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 14-22. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.20.002 http://www.tcsae.org