999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

BELL POLYNOMIALS AND ITS SOME IDENTITIES

2017-11-06 09:36:38GUOJingLIXiaoxue
數學雜志 2017年6期
關鍵詞:數學方法

GUO Jing,LI Xiao-xue

(1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

(2.School of Mathematics,Northwest University,Xi’an 710127,China)

BELL POLYNOMIALS AND ITS SOME IDENTITIES

GUO Jing1,LI Xiao-xue2

(1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

(2.School of Mathematics,Northwest University,Xi’an 710127,China)

In this paper,we introduce a new polynomial called Bell polynomials.By using the elementary and combinational methods,we prove some identities for this polynomials.As an application of these identities,we give an interesting congruence for Bell numbers.

Bell numbers;Bell polynomials;identity;combinational method

1 Introduction

For any integersn≥k≥0,letS(n,k)denote the number of partitions of a set withnelements intoknonempty blocks.It is clear thatS(n,k)>0 for all 1≤k≤n,andS(n,k)=0 for 1≤n<k.PutS(0,0)=1 andS(0,k)=0 fork≥1,S(n,0)=0 forn≥1.These numbers were introduced by Stirling in his book“Methodus Di ff erentialis”(see[3–5]).Now they are called as the Stirling numbers of the second kind.These numbers satisfy the recurrence relation

The number of all partitions of a set withnelements is

called also a Bell number(or exponential number),related contents can be found in many papers or books.For example,see[6–8].

These numbers satisfy the recurrence formula

whereB(0)=1 by de finition.

The generating function ofB(n)is given by

where exp(y)=ey.

The numbersB(n)can be represented also as the sum of a convergent series(Dobinski’s formula)

see Pólya and Szeg?[9]for these basic properties.

In this paper,we introduce a new polynomialsB(x,n)(called Bell polynomials)as follows

It is clear thatB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,···.Ifx=1,thenB(n,1)=B(n),the well known Bell numbers.About the properties ofB(n,x),it seems that none had studied it yet,at least we have not seen any related papers before.The problem is interesting,because it can help us to further understand the properties of Bell numbers.

The main purpose of this paper is using the elementary and combinational methods to study the computational problem of the sums

Theorem 1Letkbe a positive integer withk≥1.Then for any positive integern≥1,we have the identity

where the polynomialsB(n,x)satisfy the recurrence formulaB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,and

For the polynomialsB(n,x),we also have a similar Dobinski’s formula.

Theorem 2For any positive integern≥1,we have the identities

From Theorem 1 and the recurrence formula ofB(n,x),we may immediately deduce the following congruence.

Corollary 1Letpbe an odd prime.Then for any positive integerk≥1 with(k,p)=1,we have the congruence

Corollary 2For any positive integern,we have the identity

2 Proof of the Theorems

In this section,we shall complete the proofs of our theorems.First we give a sample lemma,which are necessary in the proof of our theorems.Hereinafter,we shall use some elementary number theory contents and properties of power series,all of these can be found in references[1]and[2],so they will not be repeated here.

LemmaFor any real numberx,let functionf(t)=exp(x(et?1)),then we havef(n)(0)=B(n,x)for all integersn≥0,wheref(n)(t)denotes thenthderivative off(t)for variablet.

ProofWe prove this lemma by complete induction.It is clear thatf(0)=1=B(0,x),f′(t)=xet·exp(x(et?1))=xet·f(t),andf′(0)=x=B(1,x).So the lemma is true forn=0,1.Assume thatf(n)(0)=B(n,x)for all 0≤n≤r.Then note thatf′(t)=xet·f(t),so from the properties of derivative(Newton-Leibnitz formula),we have

Applying(2.1)and inductive hypothesis,we have

That is,f(r+1)(0)=B(r+1,x).

Now the lemma follows from the complete induction.

Proof of Theorem 1For any positive integerk≥2,it is clear thatfk(t)=exp(kx(et?1)),then from(1.4),we have

On the other hand,letg(t)=fk(t)=exp(kx(et?1)),then from the de finition of the power series and lemma,we also have

Combining(2.2)and(2.3)we may immediately deduce the identity

This proves Theorem 1.

Proof of Theorem 2Applying the power serieswe have

Comparing the coefficients oftnin(1.4)and(2.4),we may immediately deduce the identity

This proves Theorem 2.

Proof of Corollary 1Letpbe an odd prime,taken=p+1 in Theorem 1,then from the properties ofB(n,x)and Theorem 1,we have

or

Note thatk≥2 anda1+a2+···+ak=p+1,so if there are three ofa1,a2,···,akare positive integers,then

If there are only two ofa1,a2,···,akare positive integers,and both of them are greater than one,then we also have

If there are only two ofa1,a2,···,akare positive integers,and one isp,another is 1,then we also have

If only one ofa1,a2,···,akare positive integers,then it must bep+1.This time we have

Combining(2.5)–(2.10)and note that identity

we have

or

This proves the first congruence of Corollary 1.The second congruence follows from the second identity of Corollary 2 withn=p.

Proof of Corollary 2Letf(t,x)=exp(x(et?1)),then from(1.4),we have

On the other hand,from the de finition off(t,x),we also have

Comparing the coefficients oftnin(2.11)and(2.12),we may immediately deduce the identity

Note that the recurrence formulafrom(2.13)we may immediately deduce the identityThis completes the proofs of our all results.

[1]Tom M Apostol.Introduction to analytic number theory[M].New York:Springer-Verlag,1976.

[2]Tom M Apostol.Mathematical analysis(2nd ed.)[M].Boston:Addison-Wesley Publishing Co.,1974.

[3]Stirling J.Methodus differentialis[M].Londini:Sive Tractatus de Summation et Interpolazione Serierum In finitarum,1730.

[4]Boole G.Calculus of finite differences[M].London:Chelsea Publishing Company,1860.

[5]Caralambides C A.On weighted Stirling and other related numbers and come combinatorial applications[J].Fibonacci Quar.,1984,22:296–309.

[6]Conway H J,Guy R K.The book of numbers[M].New York:Copernicus,1996.

[7]Corcino C B.An asymptotic for ther-Bell numbers[J].Matimyás Mat.,2001,24:9–18.

[8]Tan M H,Xiang Y H,Zha Z W.Someinifite summation identities of the second kind[J].J.Math.,2013,33(3):388–392.

[9]Pólya G,Szeg? G.Problems and theorems in analysis I[M].New York:Springer-Verlag,1972.

關于Bell多項式及其它的一些恒等式

過 靜1,李小雪2
(1.江西科技師范大學數學與計算機科學學院,江西南昌 330038)
(2.西北大學數學學院,陜西西安 710127)

本文引入了一個新的多項式,即Bell多項式.利用初等數論及組合方法,證明了包含該多項式的一些恒等式.作為這些恒等式的應用,給出了關于Bell數的同余式.

Bell數;Bell多項式;恒等式;組合方法

O157.1

11B37;11B83

A

0255-7797(2017)06-1201-06

date:2015-04-14Accepted date:2015-07-06

Supported by National Natural Science Foundation of China(11371291);Jiangxi Science and Technology Normal University(xjzd2015002).

Biography:Guo Jing(1973–),female,born at Jinxian,Jiangxi,associate professor,major in mathematics.

猜你喜歡
數學方法
我們愛數學
學習方法
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
數學也瘋狂
錯在哪里
主站蜘蛛池模板: 波多野一区| 91九色国产porny| 亚洲综合久久成人AV| 在线观看91精品国产剧情免费| 55夜色66夜色国产精品视频| 狠狠色综合网| 天天干天天色综合网| 野花国产精品入口| 性视频一区| 美女毛片在线| 99热这里只有精品在线播放| 91在线视频福利| 亚洲高清免费在线观看| 在线观看国产一区二区三区99| 无码中文字幕加勒比高清| 欧美亚洲中文精品三区| 毛片久久久| 日韩二区三区无| 精品国产福利在线| 干中文字幕| 欧美色丁香| 日韩精品成人网页视频在线| 无码精品国产dvd在线观看9久 | 成人午夜精品一级毛片| 亚洲综合色区在线播放2019| 一本二本三本不卡无码| 亚洲国产91人成在线| 99精品热视频这里只有精品7| 精品福利国产| 最新精品久久精品| 亚洲男人在线天堂| 亚洲国产综合自在线另类| 91国语视频| 无码免费的亚洲视频| 成年免费在线观看| 国产香蕉97碰碰视频VA碰碰看| 欧美激情伊人| 精品久久久久无码| 性欧美精品xxxx| 国产91精品久久| 天堂av综合网| 无码一区二区波多野结衣播放搜索| 中文字幕va| 露脸一二三区国语对白| 日韩精品高清自在线| 东京热一区二区三区无码视频| 亚洲第一视频区| 色悠久久综合| 亚洲狠狠婷婷综合久久久久| 久久国产高潮流白浆免费观看| 亚洲成人高清在线观看| 欧美色视频日本| аⅴ资源中文在线天堂| 国产亚洲男人的天堂在线观看| 特级aaaaaaaaa毛片免费视频| 99热这里只有精品在线播放| 999福利激情视频| 日本欧美一二三区色视频| 无码专区国产精品一区| 制服无码网站| 国产精品成人不卡在线观看| 99在线免费播放| 欧美特黄一免在线观看| 色偷偷男人的天堂亚洲av| 99精品热视频这里只有精品7| 亚洲精品无码久久毛片波多野吉| 欧美区一区| 午夜精品区| 九九九精品成人免费视频7| 一本大道无码高清| 国产精品自拍合集| 国产成人精品在线| 亚洲色偷偷偷鲁综合| 久久久受www免费人成| 色视频国产| 色135综合网| 亚洲福利视频一区二区| 中文字幕亚洲电影| 玖玖精品在线| 婷婷色在线视频| 亚洲国产精品无码AV| 国产一级妓女av网站|