999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A PROPER AFFINE SPHERE THEOREM RELATED TO HOMOGENEOUS FUNCTIONS

2017-11-06 09:36:38ZHAOLeina
數學雜志 2017年6期
關鍵詞:重慶數學

ZHAO Lei-na

(College of Mathematics and Statistics;College of Transportation,Chongqing Jiaotong University,Chongqing 400074,China)

A PROPER AFFINE SPHERE THEOREM RELATED TO HOMOGENEOUS FUNCTIONS

ZHAO Lei-na

(College of Mathematics and Statistics;College of Transportation,Chongqing Jiaotong University,Chongqing 400074,China)

In this paper,we focus on the affine sphere theorem related to homogeneous function.Based on Hopf maximum principle,we obtain that the affine sphere theorem does hold for given elementary symmetric curvature problems under concavity conditions.In particular,it gives a new proof of Deicke’s theorem on homogeneous functions.

affine sphere theorem;homogeneous functions

1 Main theorems

LetLbe a positive function of classC4(Rn/{0})with homogeneous of degree one.Introducing a matrixgof elements

Deicke[4]showed that the matrixgis positive and the following theorem,a short and elegant proof was presented in Brickell[1].

Theorem 1.1Let detgbe a constant on Rn/{0}.Thengis a constant matrix on Rn/{0}.

Theorem 1.1 is very important in affine geometry[10,11,13]and Finsler geometry[4].There are lots of papers introducing the history and progress of these problems,for example[7].A laplacian operator and Hopf maximum principle is the key point of Deicke[4]’s proof.However,our method depends on the concavity of the fully nonlinear operator,we give a new method to prove more generalized operator than Theorem 1.1,for considering operatorF(g),which including the operator of determinant.

Theorem 1.2LetF(g)be a constant on Rn/{0},F(g)be concave with respect to matrixg,and the matrixbe positive semi-de finite.Thengis a constant matrix on Rn/{0}.

In fact

(1)IfF(g)=logdetg,Theorem 1.2 is just Theorem 1.1.

(2)An interesting example of Theorem 1.2 is,whereSk(g)is the elementary symmetric polynomial of eigenvalues ofg.The concavity ofF(g)was from Ca ff arelli-Nirenberg-Spruck[3].A similar Liouville problem for theS2equation was obtained in[2].

It is easy to see that the method of Brickell[1]does not apply to our Theorem 1.2.

On the other hand,there are some remarkable results for homogeneous solution to partial differential equations.Han-Nadirashvili-Yuan[6]proved that any homogeneous order 1 solution to nondivergence linear elliptic equations in R3must be linear,and Nadirashvili-Yuan[8]proved that any homogeneous degree other than 2 solution to fully nonlinear elliptic equations must be“harmonic”.In fact,our methods can also be used to deal with the following hessian type equations

More recently,Nadirashvili-Vlǎdut?[9]obtained the following theorem.

Theorem 1.3Letube a homogeneous order 2 real analytic function in R4/{0}.Ifuis a solution of the uniformly elliptic equationF(D2u)=0 in R4/{0},thenuis a quadratic polynomial.

However,our theorem say that above theorem holds providedFwith some concavity/convexity property.Pingali[12]can show for 3-dimension,there is concave operatorGformFwithout some concavity/convexity property,for example

forλ1≤ λ2≤ λ3are eigenvalues of hessian matrixD2u.Then

has a uniformly positive gradient and is concave ifλ1>3.That is to say,using our methods,there is a simple proof of Theorem 1.3 if one can construct a concave operator with respect toFin Theorem 1.3.

2 Proof of Theorem 1.2

Here we firstly list the Hopf maximum principle to be used in our proof,see for example[5].

Lemma 2.1Letube aC2function which satisfies the differential inequality

in an open domain ?,where the symmetric matrixaijis locally uniformly positive de finite in ? and the coefficientsaij,biare locally bounded.Ifutakes a maximum valueMin ?thenu≡M.

Proof of Theorem 1.2Di ff erentiating this equation twice with respect tox

one has

The concavity ofF(g)with respect togsays that the matrixis positive semi-de finite.In particular,

We firstly consider(2.2)as an inequality in unit sphereSn?1,

that is to say using Hopf maximum principle of Lemma 2.1 and taking ?=Sn?1,it shows thatgkkis constant onSn?1,and it is so on Rn/{0}becausegkkis positively homogeneous of degree zero.Then,owing to the matrixFijgijklbe positive semi-de finite

Using Hopf maximum principle again andgklis positively homogeneous of degree zero,then the matrixgis constant matrix.We complete the proof of Theorem 1.2.

[1]Brickell F.A new proof of Deicke’s theorem on homogeneous functions[J].Proc.Amer.Math.Soc.,1965,16:190–191.

[2]Chang S Y A,Yuan Y.A Liouville problem for the sigma-2 equation[J].Discrete Contin.Dyn.Syst.,2010,28(2):659–664.

[3]Ca ff arelli L,Nirenberg L,Spruck J.The Dirichlet problem for nonlinear second-order elliptic equations.III.Functions of the eigenvalues of the Hessian[J].Acta Math.,1985,155(3-4):261–301.

[4]Deicke A.über die Finsler-R?ume mitAi=0[J].Arch.Math.,1953,4:45–51.

[5]Gilbarg D,Trudinger N S.Elliptic partial differential equations of second order(2nd ed.)[M].Grundlehren der Mathematischen Wissenschaften,224,Berlin:Springer,1983.

[6]Han Q,Nadirashvili N,Yuan Y.Linearity of homogeneous order-one solutions to elliptic equations in dimension three[J].Comm.Pure Appl.Math.,2003,56(4):425–432.

[7]Huang Y,Liu J,Xu L.On the uniqueness ofLp-Minkowski problems:the constant p-curvature case inR3[J].Adv.Math.,2015,281:906–927.

[8]Nadirashvili N,Yuan Y.Homogeneous solutions to fully nonlinear elliptic equations[J].Proc.Amer.Math.Soc.,2006,134(6):1647–1649.

[9]Nadirashvili N,Vlǎdut?S.Homogeneous solutions of fully nonlinear elliptic equations in four dimensions[J].Comm.Pure Appl.Math.,2013,66(10):1653–1662.

[10]Nomizu K,Sasaki T.Affine differential geometry[M].Cambridge Tracts Math.,111,Cambridge:Cambridge Univ.Press,1994.

[11]Petty C M.Affine isoperimetric problems[A].Discrete geometry and convexity[C].Ann.New York Acad.Sci.,440,New York:New York Acad.Sci.,1982,113–127.

[12]Pingali V P.On a generalised Monge-Ampere equation[J].arXiv:1205.1266,2012.

[13]Tzitzéica G.Sur une nouvelle classe de surfaces[J].Rend.Circ.Mat.Palermo,1908,25:180–187;1909,28:210–216.

[14]Zhang S.Rigidity theorem for complete hypersurfaces in unite sphere[J].J.Math.,2014,34(4):804–808.

齊次函數的一個仿射球定理

趙磊娜
(重慶交通大學數學與統計學院;交通運輸學院,重慶 400074)

本文研究了相關齊次函數的仿射球定理.利用Hopf極大值原理,對任意給定的帶凹性條件的初等對稱曲率問題,獲得了此類仿射球定理.特別地,這也給出了Deicke齊次函數定理的一個新證明.

仿射球定理;齊次函數

O175.25

35B50;35J15

A

0255-7797(2017)06-1173-04

date:2017-01-08Accepted date:2017-04-25

Supported by the Science and Technology Research program of Chongqing Municipal Education Commission(KJ1705136).

Biography:Zhao Leina(1981–),female,born at Qingdao,Shandong,lecture,major in partial differential and its applications.

猜你喜歡
重慶數學
重慶客APP
重慶人為什么愛吃花
我們愛數學
“逗樂坊”:徜徉相聲里的重慶味
重慶非遺
在這里看重慶
今日重慶(2017年5期)2017-07-05 12:52:25
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
數學也瘋狂
TWO DAYS IN CHONGQING 重慶兩日
漢語世界(2012年2期)2012-03-25 13:01:27
主站蜘蛛池模板: 久久综合伊人77777| 91成人免费观看| 91视频日本| 国产精品乱偷免费视频| 亚洲中久无码永久在线观看软件| 国产精品亚欧美一区二区| 69综合网| 国产一区二区三区免费| 多人乱p欧美在线观看| 国产精品爆乳99久久| 国产jizzjizz视频| 亚洲有无码中文网| 国产丰满大乳无码免费播放| 91成人精品视频| 亚洲精品久综合蜜| 亚洲无码熟妇人妻AV在线| 亚洲av无码久久无遮挡| 91免费观看视频| 在线a视频免费观看| 欧美日韩国产高清一区二区三区| aaa国产一级毛片| 亚洲人在线| 伊人婷婷色香五月综合缴缴情| 日韩免费成人| 国产亚洲高清在线精品99| 日本伊人色综合网| 亚洲国产成人麻豆精品| 欧美精品v| 亚洲精品无码高潮喷水A| 尤物国产在线| 日韩高清在线观看不卡一区二区| 亚洲一区二区黄色| 亚洲综合中文字幕国产精品欧美 | 国产91高跟丝袜| 日本免费福利视频| 国产精品天干天干在线观看| 91麻豆精品视频| 国产激情影院| 欧美成人A视频| 无码AV高清毛片中国一级毛片| 国产精品欧美激情| 热九九精品| 2020国产在线视精品在| 中国黄色一级视频| 亚洲精品无码在线播放网站| 久久精品国产91久久综合麻豆自制| 国产真实乱子伦视频播放| 亚洲Va中文字幕久久一区 | 国产麻豆91网在线看| 性网站在线观看| 青青青视频91在线 | 91精品专区国产盗摄| 成年人免费国产视频| www亚洲天堂| 日韩毛片视频| 亚洲成av人无码综合在线观看| 亚洲色偷偷偷鲁综合| 丁香亚洲综合五月天婷婷| 欧美国产在线看| 亚洲精品日产精品乱码不卡| 色婷婷狠狠干| 美女高潮全身流白浆福利区| 国产91全国探花系列在线播放| 久久亚洲日本不卡一区二区| 色AV色 综合网站| 欧美激情第一欧美在线| 精品一区二区三区自慰喷水| 欧美h在线观看| 色欲不卡无码一区二区| 欧美综合激情| 91国内外精品自在线播放| 夜夜拍夜夜爽| 亚洲天堂在线视频| 999国内精品久久免费视频| 九九热在线视频| 亚洲三级a| 好吊色妇女免费视频免费| 国产人成在线观看| 国产av无码日韩av无码网站| 久久国产热| 国产成人精彩在线视频50| 亚洲国产看片基地久久1024|