999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GENERALIZED RADFORD BIPRODUCT HOM-HOPF ALGEBRAS AND RELATED BRAIDED TENSOR CATEGORIES

2017-11-06 09:36:38MATianshuiWANGYongzhongLIULinlin
數(shù)學(xué)雜志 2017年6期
關(guān)鍵詞:數(shù)學(xué)

MA Tian-shuiWANG Yong-zhongLIU Lin-lin

(1.Department of Mathematics,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

(2.Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

(3.School of Mathematics and Information Science,Xinxiang University,Xinxiang 453003,China)

GENERALIZED RADFORD BIPRODUCT HOM-HOPF ALGEBRAS AND RELATED BRAIDED TENSOR CATEGORIES

MA Tian-shui1,2,WANG Yong-zhong3,LIU Lin-lin1

(1.Department of Mathematics,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

(2.Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

(3.School of Mathematics and Information Science,Xinxiang University,Xinxiang 453003,China)

In this paper,the Hom-type of Radford biproduct is introduced.By combining generalized smash product Hom-algebra and generalized smash coproduct Hom-coalgebra,we derive necessary and su ff cient conditions for them to be a Hom-bialgebra,which includes the well-known Radford biproduct.

Radford biproduct;quantum Yang-Baxter equation;Yetter-Drinfeld category

In this paper,we unify the Makhlouf-Panaite’s smash product in[10]and Ma-Li-Yang’s in[6],and then extend the Radford biproduct to a more general case.We also construct a class of braided tensor categories(extending the Yetter-Drinfeld category to the Hom-case),and provide a solution to the Hom-quantum Yang-Baxter equation.

2 Preliminaries

Throughout this paper,Kwill be a field,and all vector spaces,tensor products,and homomorphisms are overK.We use Sweedler’s notation for terminologies on coalgebras.For a coalgebraC,we write comultiplication Δ(c)=c1?c2for anyc∈C.And we denoteIdMfor the identity map fromMtoM.Any unexplained de finitions and notations can be found in[4–6,14].We now recall some useful de finitions.

De finition 2.1A Hom-algebra is a quadruple(A,μ,1A,α)(abbr.(A,α)),whereAis a linear space,μ:A?A?→Ais a linear map,1A∈Aandαis an automorphism ofA,such that

are satisfied fora,a′,a′′∈A.Here we use the notationμ(a?a′)=aa′.

Let(A,α)and(B,β)be two Hom-algebras.Then(A?B,α ? β)is a Hom-algebra(called tensor product Hom-algebra)with the multiplication(a?b)(a′?b′)=aa′?bb′and unit 1A?1B.

De finition 2.2A Hom-coalgebra is a quadruple(C,Δ,εC,β)(abbr.(C,β)),whereCis a linear space,Δ:C?→C?C,εC:C?→Kare linear maps,andβis an automorphism ofC,such that

are satisfied forc∈A.Here we use the notation Δ(c)=c1?c2(summation implicitly understood).

Let(C,α)and(D,β)be two Hom-coalgebras.Then(C?D,α?β)is a Hom-coalgebra(called tensor product Hom-coalgebra)with the comultiplication Δ(c?d)=c1?d1?c2?d2and counitεC? εD.

De finition 2.3A Hom-bialgebra is a sextuple(H,μ,1H,Δ,ε,γ)(abbr.(H,γ)),where(H,μ,1H,γ)is a Hom-algebra and(H,Δ,ε,γ)is a Hom-coalgebra,such that Δ andεare morphisms of Hom-algebras,i.e.,Δ(hh′)=Δ(h)Δ(h′);Δ(1H)=1H?1H,ε(hh′)=ε(h)ε(h′);ε(1H)=1.Furthermore,if there exists a linear mapS:H?→Hsuch that

then we call(H,μ,1H,Δ,ε,γ,S)(abbr.(H,γ,S))a Hom-Hopf algebra.

Let(H,γ)and(H′,γ′)be two Hom-bialgebras.The linear mapf:H?→H′is called a Hom-bialgebra map iff?γ=γ′?fand at the same timefis a bialgebra map in the usual sense.

De finition 2.4Let(A,β)be a Hom-algebra.A left(A,β)-Hom-module is a triple(M,?,α),whereMis a linear space,?:A?M?→Mis a linear map,andαis an automorphism ofM,such that

are satisfied fora,a′∈Aandm∈M.

Let(M,?M,αM)and(N,?N,αN)be two left(A,β)-Hom-modules.Then a linear morphismf:M?→Nis called a morphism of left(A,β)-Hom-modules iff(h?Mm)=h?Nf(m)andαN?f=f?αM.

De finition 2.5Let(H,β)be a Hom-bialgebra and(A,α)a Hom-algebra.If(A,?,α)is a left(H,β)-Hom-module and for allh∈Handa,a′∈A,

then(A,?,α)is called an(H,β)-module Hom-algebra.

De finition 2.6Let(C,β)be a Hom-coalgebra.A left(C,β)-Hom-comodule is a triple(M,ρ,α),whereMis a linear space,ρ:M?→C?M(writeρ(m)=m?1?m0,?m∈M)is a linear map,andαis an automorphism ofM,such that

are satisfied for allm∈M.

Let(M,ρM,αM)and(N,ρN,αN)be two left(C,β)-Hom-comodules.Then a linear mapf:M?→Nis called a map of left(C,β)-Hom-comodules iff(m)?1?f(m)0=m?1?f(m0)andαN?f=f?αM.

De finition 2.7Let(H,β)be a Hom-bialgebra and(C,α)a Hom-coalgebra.If(C,ρ,α)is a left(H,β)-Hom-comodule and for allc∈C,

then(C,ρ,α)is called an(H,β)-comodule Hom-coalgebra.

De finition 2.8Let(H,β)be a Hom-bialgebra and(C,α)a Hom-coalgebra.If(C,?,α)is a left(H,β)-Hom-module and for allh∈Handc∈A,

then(C,?,α)is called an(H,β)-module Hom-coalgebra.

De finition 2.9Let(H,β)be a Hom-bialgebra and(A,α)a Hom-algebra.If(A,ρ,α)is a left(H,β)-Hom-comodule and for alla,a′∈A,

then(A,ρ,α)is called an(H,β)-comodule Hom-algebra.

3 Generalized Radford Biproduct Hom-Hopf Algebra

In this section,we first introduce the notions of generalized smash product Hom-algebraA#mHand generalized Hom-smash coproduct Hom-coalgebra.Then the necessary and sufficient conditions forA#mHandonA?Hto be a Hom-bialgebra structure are derived.

Proposition 3.1Let(H,β)be a Hom-bialgebra,(A,?,α)an(H,β)-module Homalgebra andm∈Z.Then(A#mH,α?β)(A#mH=A?Has a linear space)with the multiplication(a?h)(a′?h′)=a(βm(h1)?α?1(a′))?β?1(h2)h′,wherea,a′∈A,h,h′∈H,and unit 1A?1His a Hom-algebra.In this case,we call(A#mH,α?β)generalized smash product Hom-algebra.

ProofIt is straightforward by the de finition of Hom-algebra.

Remarks(1)Noting that(A#0H,α ? β)is exactly the Ma-Li-Yang’s Hom-smash product in[5,6]and(A#?2H,α ? β)is exactly the Makhlouf-Panaite’s Hom-smash product in[10].

(2)Ifα=IdAandβ=IdHin(A#mH,α ? β),then one can obtain the usual smash productA#Hin[13].

(3)Let(H,μH,ΔH)be a bialgebra and(A,α)a leftH-module algebra in the usual sense with action denoted byH?A→A,h?ah·a.Letβ:H→Hbe a bialgebra endomorphism andα:A→Aan algebra endomorphism,such thatα(h·a)=β(h)·α(a)for allh∈Handa∈A.If we consider the Hom-bialgebraHβ=(H,β ?μH,ΔH?β,β)and the Hom-associative algebraAα=(A,α?μH,α),then(Aα,α)is a left(Hβ,β)-module Hom-algebra with actionHβ?Aα→Aα,h?ah?a:=α(h·a)=β(h)·α(a).

ProofStraightforward.

Proposition 3.2Let(H,β)be a Hom-bialgebra,(C,ρ,α)an(H,β)-comodule Homcoalgebra andn∈Z.Then()(=C?Has a linear space)with the comultiplication ΔCH(c?h)=c1?βn(c2(?1))β?1(h1)?α?1(c2(0))?h2,wherec∈C,h∈H,and counitεC?εHis a Hom-coalgebra.In this case,we call()generalized smash coproduct Hom-coalgebra.

ProofStraightforward.

Remarks(1)()is exactly the Li-Ma’s Hom-smash coproduct in[5].

(2)(2H,α ? β)is exactly the dual version of the Makhlouf-Panaite’s Hom-smash product in[10].

(3)Ifα=IdAandβ=IdHin(A#mH,α ? β),then one can obtain the usual smash coproductA×Hin[13].

Theorem 3.3Let(H,β)be a Hom-bialgebra,(A,α)a left(H,β)-module Hom-algebra with module structure?:H?A?→Aand a left(H,β)-comodule Hom-coalgebra with comodule structureρ:A?→H?A.Then the following are equivalent:

(i)(A◇mnH,μA#H,1A?1H,ΔAH,εA?εH,α?β)is a Hom-bialgebra,where(A#mH,α?β)is a generalized smash product Hom-algebra and()is a generalized smash coproduct Hom-coalgebra.

(ii)The following conditions hold:

(R1)(A,ρ,α)is an(H,β)-comodule Hom-algebra;(R2)(A,?,α)is an(H,β)-module Hom-coalgebra;

(R3)εAis a Hom-algebra map and ΔA(1A)=1A?1A;

(R4)ΔA(ab)=a1(βm+n+2(a2(?1))?α?1(b1))?α?1(a2(0))b2;

(R5)βn+1((βm+1(h1)?b)?1)h2?(βm+1(h1)?b)0=h1βn+2(b(?1))? βm+2(h2)?b(0),wherea,b∈B,h∈Handm,n∈Z.In this case,we call(A◇mnH,α?β)generalized Radford biproduct Hom-bialgebra.

ProofBy a tedious computation we can prove it.

Remarks(1)Whenm=n=0 in Theorem 3.3,we can get[5,Theorem 3.3].

(2)Whenα=IdAandβ=IdHin Theorem 3.3,then one can obtain[13,Theorem 1].

Proposition 3.4Let(H,β,SH)be a Hom-Hopf algebra,and(A,α)ba a Hom-algebra and a Hom-coalgebra.Assume that(A◇mnH,α ? β)is a generalized Radford biproduct Hom-bialgebra de fined as above,andSA:A→Ais a linear map such thatSA(a1)a2=a1SA(a2)=εA(a)1Aandα?SA=SA?αhold.Then(A◇mnH,α?β,SA◇mnH)is a Hom-Hopf algebra,where

ProofFor alla∈A,h∈H,we have

and the rest is direct.

4 Generalized Hom-Yetter-Drinfeld Category

In this section,we construct a class of braided tensor category,which extends the Yetter-Drinfeld category to the Hom-case.Next we give the concept of Hom-Yetter-Drinfeld module via generalized Radford biproduct Hom-Hopf algebra de fined in Theorem 3.3.

De finition 4.1Let(H,β)be a Hom-bialgebra,(U,?U,αU)a left(H,β)-module with action?U:H?U→U,h?uh?Uuand(U,ρU,αU)a left(H,β)-comodule with coactionρU:U→H?U,uu(?1)?u(0).Then we call(U,?U,ρU,αU)a(left-left)Hom-Yetter-Drinfeld module over(H,β)if the following condition holds:

for allh∈Handu∈U.

Proposition 4.2When(H,β)is a Hom-Hopf algebra,(HY D)is equivalent to

for allh∈H,u∈U.

Proof(HY D)(HY D)′.We have

(HY D)′=?(HY D)is proved as follows:

finishing the proof.

De finition 4.3Let(H,β)be a Hom-bialgebra.We denote byHHYD the category whose objects are Hom-Yetter-Drinfeld modules(U,?U,ρU,αU)over(H,β);the morphisms in the category are morphisms of left(H,β)-modules and left(H,β)-comodules.

In the following,we give a solution to the Hom-quantum Yang-Baxter equation introduced and studied by Yau in[16].

Proposition 4.4Let(H,β)be a Hom-bialgebra and(U,?U,ρU,αU),(V,?V,ρV,αV)∈HHYD.De fine the linear map

whereu∈Uandv∈V. Then we haveτU,V?(αU? αV)=(αV? αU)? τU,V,if(W,?W,ρW,αW)∈HHYD,the mapsatisfy the Hom-Yang-Baxter equation

ProofIt is easy to prove the first equality,so we only check the second one.For allu∈U,v∈Vandw∈W,we have

The proof is completed.

Lemma 4.5Let(H,β)be a Hom-bialgebra,if(U,?U,ρU,αU),(V,?V,ρV,αV)are(leftleft)Hom-Yetter-Drinfeld modules,then(U?V,?U?V,ρU?V,αU? αV)is a Hom-Yetter-Drinfeld module with structures

and

for allh∈H,u∈U,v∈V.

ProofIt is easy to check that(U?V,?U?V,αU? αV)is an(H,β)-Hom module and(U?V,ρU?V,αU? αV)is an(H,β)-Hom comodule.Now we check the condition(HY D).For allh∈H,u∈U,v∈V,we have

finishing the proof.

Lemma 4.6Let(H,β)be a Hom-bialgebra,and

With notation as above,de fine the linear map

whereu∈U,v∈Vandw∈W.ThenaU,V,Wis an ismorphism of left(H,β)-Hom-modules and left(H,β)-Hom-comodules.

ProofSame to the proof of[9,Proposition 3.2].

Lemma 4.7Let(H,β)be a Hom-bialgebra and(U,?U,ρU,αU),(V,?V,ρV,αV)∈HHYD.De fine the linear map

whereu∈Uandv∈V.ThencU,Vis a morphism of left(H,β)-Hom-modules and left(H,β)-Hom-comodules.

ProofFor allh∈H,u∈Uandv∈V,we have

and

finishing the proof.

Theorem 4.8Let(H,β)be a Hom-bialgebra.Then the Hom-Yetter-Drinfeld categoryHHYD is a pre-braided tensor category,with tensor product,associativity constraints,and pre-braiding in Lemmas 4.5,4.6 and 4.7,respectively,and the unitI=(K,IdK).

ProofThe proof of the pentagon axiom foraU,V,Wis same to the proof of[9,Theorem 3.4].Next we prove that the hexagonal relation forcU,V.Let(U,?U,ρU,αU),(V,?V,ρV,αV),(W,?W,ρW,αW)∈HHYD.Then for allu∈U,v∈Vandw∈W,we have

and and the rest is obvious.These complete the proof.

[1]Andruskiewitsch N,Schneider H-J.On the classi fication of finite-dimensional pointed Hopf algebras[J].Ann.Math.,2010,171(1):375–417.

[2]Hartwig J T,Larsson D,Silvestrov S D.Deformations of Lie algebras usingσ-derivations[J].J.Alg.,2006,295:314–361.

[3]Hu Naihong.q-Witt algebras,q-Lie algebras,q-holomorph structure and representations[J].Alg.Colloq.,1999,6(1):51–70.

[4]Kassel C.Quantum groups[M].Graduate Texts in Mathematics 155,Berlin:Springer Verlag,1995.

[5]Li Haiying,Ma Tianshui.A construction of Hom-Yetter-Drinfeld category[J].Colloq.Math.,2014,137(1):43–65.

[6]Ma Tianshui,Li Haiying,Yang Tao.Cobraided smash product Hom-Hopf algebras[J].Colloq.Math.,2014,134(1):75–92.

[7]Ma Tianshui,Li Haiying,Zhao Wenzheng.On the braided structures of Radford’s biproduct[J].Acta Math.Sci.Ser.B Engl.Ed.,2011,31(2):701–715.

[8]Majid S.Double-bosonization of braided groups and the construction ofUq(g)[J].Math.Proc.Cambridge Philos.Soc.,1999,125(1):151–192.

[9]Makhlouf A,Panaite F.Yetter-Drinfeld modules for Hom-bialgebras[J].J.Math.Phys.,2014,55:013501.

[10]Makhlouf A,Panaite F.Twisting operators,twisted tensor products and smash products for Homassociative algebras[J].Glasg.Math.J.,arXiv:1402.1893.

[11]Makhlouf A,Silvestrov S D.Hom-algebra stuctures[J].J.Gen.Lie The.Appl.,2008,2:51–64.

[12]Makhlouf A,Silvestrov S D.Hom-algebras and hom-coalgebras[J].J.Alg.Appl.,2010,9:553–589.

[13]Radford D E.The structure of Hopf algebra with a projection[J].J.Alg.,1985,92:322–347.

[14]Radford D E.Hopf algebras[M].KE Series on Knots and Everything,Vol.49,New Jersey:World Scientic,2012.

[15]Yau D.Module Hom-algebras[J].arXiv:0812.4695v1.

[16]Yau D.Hom-quantum groups II:cobraided Hom-bialgebras and Hom-quantum geometry[J].arXiv:0907.1880.

廣義Radford雙積Hom-Hopf代數(shù)和相關(guān)辮子張量范疇

馬天水1,2,王永忠3,劉琳琳1
(1.河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院數(shù)學(xué)系,河南新鄉(xiāng) 453007)
(2.河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院大數(shù)據(jù)統(tǒng)計(jì)分析與優(yōu)化控制河南省工程實(shí)驗(yàn)室,河南新鄉(xiāng) 453007)
(3.新鄉(xiāng)學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,河南新鄉(xiāng) 453003)

本文研究了Radford雙積的Hom-型.通過(guò)把廣義smash積Hom-代數(shù)和廣義smash余積Hom-余代數(shù)相結(jié)合,得到了他們成為Hom-雙代數(shù)的充分必要條件,這一結(jié)果推廣了著名的Radford雙積.

Radford雙積;量子Yang-Baxter方程;Yetter-Drinfeld范疇

O153.3

16T05;81R50

A

0255-7797(2017)06-1161-12

1 Introduction

LetHbe a bialgebra,A#Ha smash product algebra andA×Ha smash coproduct coalgebra.Radford(see[13])gave a bialgebra structure onA?H(named Radford biproduct by other researchers)viaA#HandA×H.Later,Majid made the following conclusion:to any Hopf algebraAin the braided category of Yetter-Drinfeld modulesHHYD,one can associate an ordinary Hopf algebraA★H,there called the bosonization ofA(i.e.,Radford biproduct)(see[8]).While Radford biproduct is one of the celebrated objects in the theory of Hopf algebras,which plays a fundamental role in the classi fication of finite-dimensional pointed Hopf algebras(see[1]).Other references related to Radford biproduct see[1,6–8,13,14].

The algebra of Hom-type can be found in[2]by Hartwig,Larsson and Silvestrov,where a notion of Hom-Lie algebra in the context ofq-deformation theory of Witt and Virasoro algebras(see[3])was introduced.There are various settings of Hom-structures such asalgebras,coalgebras,Hopf algebras,see[6,10–12]and so on.In[15],Yau introduced and characterized the concept of module Hom-algebras as a twisted version of usual module algebras.Based on Yau’s de finition of module Hom-algebras,Ma,Li and Yang[6]constructed smash product Hom-Hopf algebra()generalizing the Molnar’s smash product(see[13]),and gave the cobraided structure(in the sense of Yau’s de finition in[16])on().Makhlouf and Panaite de fined and studied a class of Yetter-Drinfeld modules over Hom-bialgebras in[9]and derived the constructions of twistors,pseudotwistors,twisted tensor product and smash product in the setting of Hom-case(see[10]).Li and Ma studied the Yetter-Drinfeld category of Hom-type via Radford biproduct(see[5]).Recently,Ma,Liu and Li extend the above results in the monoidal Hom-case.

date:2015-07-16Accepted date:2015-11-25

Supported by China Postdoctoral Science Foundation(2017M611291);Foundation for Young Key Teacher by Henan Province(2015GGJS-088);Natural Science Foundation of Henan Province(17A110007).

Biography:Ma Tianshui(1977–),male,born at Tanghe,Henan,associate professor,major in Hopf algebra and its application.

猜你喜歡
數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
我們愛(ài)數(shù)學(xué)
我為什么怕數(shù)學(xué)
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學(xué)到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過(guò),因?yàn)槲铱吹綌?shù)學(xué)就難過(guò)
數(shù)學(xué)也瘋狂
主站蜘蛛池模板: 国产欧美日韩专区发布| 97视频精品全国免费观看| 国产区人妖精品人妖精品视频| 欧美成人怡春院在线激情| 国产91无码福利在线| 国产精品视频白浆免费视频| 欧美日韩在线成人| 国产a v无码专区亚洲av| 欧美午夜视频| 午夜啪啪网| 亚洲无线国产观看| 美女无遮挡拍拍拍免费视频| 国产无码制服丝袜| 亚洲AV无码乱码在线观看代蜜桃| 丰满人妻一区二区三区视频| 国产丝袜无码精品| 777午夜精品电影免费看| 国产一区三区二区中文在线| 亚洲天堂网在线播放| 日韩精品高清自在线| 女人18一级毛片免费观看| 免费中文字幕在在线不卡 | 欧美97欧美综合色伦图| 爆乳熟妇一区二区三区| 国产99视频在线| 精品国产自在在线在线观看| 精品国产女同疯狂摩擦2| 在线看片中文字幕| 99久久这里只精品麻豆 | 五月婷婷精品| 亚洲国模精品一区| 制服丝袜一区二区三区在线| 中国成人在线视频| 亚洲女同欧美在线| 国产精品久久久免费视频| 中文无码毛片又爽又刺激| 久久久亚洲国产美女国产盗摄| 免费看美女毛片| 久久精品这里只有国产中文精品| 国产性生交xxxxx免费| 制服丝袜国产精品| 欧美精品影院| 国产微拍精品| 91探花在线观看国产最新| 国产高清免费午夜在线视频| 国产91无码福利在线| 在线播放精品一区二区啪视频| 亚洲第一成人在线| 色综合五月婷婷| 欧美一级在线| 尤物午夜福利视频| 久久国产精品77777| 久久精品丝袜| 国产精品视频系列专区 | 免费一级无码在线网站| 久久五月视频| 91蝌蚪视频在线观看| 99视频精品全国免费品| 思思热精品在线8| 国产高清不卡| 日韩在线影院| 国产原创第一页在线观看| 国产精品视频第一专区| 精品国产一区二区三区在线观看 | 不卡午夜视频| 国产精品免费久久久久影院无码| 免费xxxxx在线观看网站| 国产成人做受免费视频 | 久久精品人妻中文系列| 久久永久视频| 成人国产精品视频频| 国产福利免费视频| 婷婷伊人久久| 91午夜福利在线观看| 日本91在线| 亚洲成aⅴ人片在线影院八| 91无码人妻精品一区| 一区二区欧美日韩高清免费| 欧美综合中文字幕久久| 114级毛片免费观看| 日韩精品一区二区三区中文无码| 国产精品99久久久久久董美香|