999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON THE SUM OF k-POWER OF ALL DISTANCES IN BIPARTITE GRAPHS

2017-11-06 09:36:38GENGXianyaZHAOHongjinXULili
數學雜志 2017年6期
關鍵詞:數學

GENG Xian-ya,ZHAO Hong-jin,XU Li-li

(1.School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232001,China)

(2.School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China)

ON THE SUM OFk-POWER OF ALL DISTANCES IN BIPARTITE GRAPHS

GENG Xian-ya1,ZHAO Hong-jin1,XU Li-li2

(1.School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232001,China)

(2.School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China)

Denote the sum ofk-power of all distances between all pairs of vertices inGbySk(G).In this paper,by applying the vertex partition method,sharp bound of all connectednvertex bipartite graphs of diameterdon theSk(G)is obtained,and the extremal graphs with the minimalSk(G)are also characterized.

bipartite graph;diameter;extremal graph

1 Introduction

In this paper,we only consider connected,simple and undirected graphs and assume that all graphs are connected,and refer to Bondy and Murty[2]for notation and terminologies used but not de fined here.

LetG=(VG,EG)be a graph with vertex setVGand edge setEG.G?v,G?uvdenote the graph obtained fromGby deleting vertexv∈VGor edgeuv∈EG,respectively(this notation is naturally extended if more than one vertex or edge is deleted).Similarly,G+uvis obtained fromGby adding an edgeuv/∈EG.Forv∈VG,letNG(v)(N(v)for short)denote the set of all the adjacent vertices ofvinGandd(v)=|NG(v)|,the degree ofvinG.

A bipartite graphGis a simple graph,whose vertex setVGcan be partitioned into two disjoint subsetsV1andV2such that every edge ofGjoins a vertex ofV1with a vertex ofV2.A bipartite graph in which every two vertices from different partition classes are adjacent is called complete,which is denoted byKm,n,wherem=|V1|,n=|V2|.

The distanced(u,v)between verticesuandvinGis de fined as the length of a shortest path between them.The diameter ofGis the maximal distance between any two vertices ofG.LetBdnbe the class of all bipartite graphs of ordernwith diameterd.

LetSk=Sk(G)be the sum ofk-power of distances between all pairs of vertices ofG,which is denoted by

whereHG(v)is the sum ofk-power of all diatances fromvinG.

Whenk=1,Skis Wiener index.The Wiener index is popular in chemical literatures.This quantity was introduced by Mustapha Aouchich and Pierre Hansen in[1]and was extensively studied in the monograph.Recently,S2(G)is applied to the research of distance spectral radius.Zhou and Trinajsti?[19]proved an upper bound using the ordernin addition to the sum of the squares of the distancesS2(G),see[18,20].They also proved a lower bound on the distance spectral radius of a graph using onlyS2(G).As a continuance of it,in this paper,we determine the extremal graphs with the minimalSk(G)for the class of all connectedn-vertex bipartite graphs of diameterd.For surveys and some up-to-date papers related to Wiener index of trees and line graphs,see[7,9,11–15,17]and[3,6,8,10,16],respectively.

In this paper we study the quantitySkin the case ofn-vertex bipartite graphs,which is an important class of graphs in graph theory.Based on the structure of bipartite graphs,sharp bounds onSkamongBdnare determined.The corresponding extremal graph is also identified.

Further on we need the following lemma,which is the direct consequence of the de finition ofSk.

Lemma 1.1LetGbe a connected graph of ordernand not isomorphic toKn.Then for each edgeSk(G)>Sk(G+e).

2 The Graph with Minimum Skamong Bdn

LetGbe a graph inClearly there exists a partitionV0,V1,···,VdofVGsuch that|V0|=1 andd(u,v)=ifor each vertexv∈Viandu∈V0(i=0,1,···,d).We callVia block ofVG.Two blocksVi,VjofVGare adjacent if|i?j|=1.For convenience,let|Vi|=lithroughout this section.

Lemma 2.1[15]For any graphwith the above partition ofVG,G[Vi]induces an empty graph(i.e.,containing no edge)for eachi∈(i=0,1,···,d).

Given a complete bipartite graphwith bipartition(X,Y)satisfyingandchoose a vertexx(resp.y)inX(resp.Y)and let?xy,whereG′is depicted in Figure 1.LetG?be the graph obtained fromG′by attaching pathsandatxandy,respectively.It is routine to check thatfor oddd.

Given a complete bipartite graphKp,qwith bipartition(X,Y)satisfying|X|=p≥3,|Y|=q≥2,andp+q=n?d+4,choose two different vertices,sayx,yinXand let

whereG′′is depicted in Figure 1.Letbe the graph obtained fromG′′by attaching pathsandatxandy,respectively.It is routine to check thatfor evend.Set

Figure 1:Graphs G′and G′′

Theorem 2.2LetGbe inwith the minimumSk(G).

(i)Ifd=2,then

(ii)Ifd≥3,thenG≌G?for odddandG∈B for evend,whereG?and B are de fined as above.

ProofChooseG∈Bdnwith bipartition(X,Y)such thatSk(G)is as small as possible.

(i)Ifd=2,then by Lemma 1.1,G≌Kn?t,t,wheret≥2 orn?t≥2.Let|X|=n?t,|Y|=t.Then it is routine to check that,for allx(resp.y)inX(resp.Y),one has

which gives

Ifnis odd,thenwith equality if and only if,o r,i.e.And ifnis even,thenwith equality if and only ifi.e.,,as desired.

(ii)First we show the following facts.

Fact 1G[Vi?1,Vi]induces a complete bipartite subgraph for eachi∈(0,1,···d),and|Vd|=1 ford≥3.

Proof of Fact 1The first part follows directly from Lemmas 1.1 and 2.1.So in what follows,we prove the second part.

Letd≥3,z∈Vdandw∈Vd?3.If|Vd|>2,thenG+zw∈BdnandV0∪V1∪Vd?3{w}∪Vd?2∪Vd?1∪{w}∪Vdis a partition ofVG+zw.By Lemma 1.1Sk(G+zw)<Sk(G),a contradiction.

This completes the proof of Fact 1.

Fact 2Consider the vertex partitionVG=V0∪V1∪···∪VdofG.

(i)Ifdis odd,then

(ii)Ifdis even,then

Proof of Fact 2(i)Note thathere we only show that|V1|=1 holds.Similarly,we can also showwe omit the procedure here.

In fact,ifd=3,our result is trivial.So we consider thatd≥5.If|V1|≥2,then chooseu∈V1and letG′=G?v0u+{ux:x∈V4}.In fact,the vertex partition ofG′isV0∪V1{u}∪V2∪V3∪{u}∪V4∪···∪Vd,in view of Fact 1 and the choice ofG,any two of adjacent blocks ofVG′induce a complete bipartite subgraph and|Vd|=1 ford≥5.

This gives

i.e.,Sk(G)>Sk(G′),a contradiction to the choice ofG.Hence,|V1|=1.

Next we show that ifdis odd,thenWithout loss of generality,we assume thatThen it suffices to show thatIf this is not true,thenChooselet

then the vertex partition ofG′is

and each of the two adjacent blocks ofVG′induces a complete bipartite graph.By direct calculation,we have

a contradiction to the choice ofG.

(ii)By the same discussion as the proof of the first part of(i)as above,we can show thatwe omit the procedure here.

Now,we show that ifdis even,thenWithout loss of generality,we assume thatThen it suffices to show that

then the vertex partition ofG?is

and each of the two adjacent blocks ofVG?induces a complete bipartite graph.By direct calculation,we have

a contradiction to the choice ofG.

This completes the proof of Fact 2.

Now we come back to show the second part of Theorem 2.2.In view of Fact 2(i),ifdis odd,note thattogether withwe obtain thatas desired.

In view of Fact 2(ii),ifdis even,note thattogether withwe obtain thatG∈B.Furthermore,

for evennandfor oddn.

This completes the proof.

[1]Mustapha Aouchiche,Pierre Hansen.Distance spectra of graphs:a survey[J].Lin.Alg.Appl.,2014,458:301–386.

[2]Bondy J A,Murty U S R.Graph theory[M].GTM,Vol.224,American:Springer,2008.

[3]Cohen N,Dimitrov D,Krakovski R,et al.On Wiener index of graphs and their line graphs[J].MATCH Commun.Math.Comput.Chem.,2010,64:683–698.

[4]Wang T,Wu L X.Decomposition of planar graphs without 5-cycles orK4[J].J.Math.,2016,36(2):223–233.

[5]Zhang X E,Jiang W.Complements of distance-regular graphs[J].J.Math.,2016,36:234–238.

[6]Dankelmann P,Gutman I,Mukwembi S,et al.The edge-Wiener index of a graph[J].Disc.Math.,2009,309:3452–3457.

[7]Dobrynin A,Entringer R,Gutman I.Wiener index of trees:theory and applications[J].Acta Appl.Math.,2001,66:211–249.

[8]Don Y,Bian Y,Gao H,et al.The polyphenyl chains with extremal edge-Wiener indices[J].Match Commun.Math.Comput.Chem.,2010,64:757–766.

[9]Gutman I,Klav?ar S,Mohar B,et al.Fifty years of the Wiener index[J].Match Commun.Math.Comput.Chem.,1997,3:51–259.

[10]Iranmanesh A,Kafrani A S.Computation of the first edge-Wiener index ofTUC4C8(S)nanotube[J].Match Commun.Math.Comput.Chem.,2009,62:311–352.

[11]Li S C,Song Y B.On the sum of all distances in bipartite graphs[J].Disc.Appl.Math.,2014,169:176–185.

[12]Liu M,Liu B.On the variable Wiener indices of trees with given maximum degree[J].Math.Comput.Model.,2010,52:1651–1659.

[13]Luo W,Zhou B.On ordinary and reverse Wiener indices of non-caterpillars[J].Math.Comput.Model.,2009,50:188–193.

[14]Merris R.An edge version of the matrix-tree theorem and the Wiener index[J].Lin.Multi.Alg.,1988,25:291–296.

[15]Pisanski T,?erovnik J.Edge-contributions of some topological indices and arboreality of molecular graphs[J].Ars.Math.Contemp.,2009,2:49–58.

[16]Wu B.Wiener index of line graphs[J].Match Commun.Math.Comput.Chem.,2010,64:699–706.

[17]Zhang X D,Liu T,Han M X.Maximum Wiener index of trees with given degree sequence[J].Match Commun.Math.Comput.Chem.,2010,64:661–682.

[18]Zhou B,Trinajsti? N.Mathematical properties of molecular descriptors based on distances[J].Croat.Chem.Acta,2010,83:227–242.

[19]Zhou B,Trinajsti? N.On the largest eigenvalue of the distance matrix of a connected graph[J].Chem.Phys.Lett.,2007,447:384–387.

[20]Zhou B,Trinajsti? N.Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected(molecular)graphs[J].Intern.Elec.J.Mol.Des.,2007,6:375–384.

[21]Zhang H H,Li S C,Zhao L F.On the further relation between the(revised)Szeged index and the Wiener index of graphs[J].Discr.Appl.Math.,2016,206:152–164.

二部圖的距離k次方和問題

耿顯亞1,趙紅錦1,徐李立2
(1.安徽理工大學數學與大數據學院,安徽淮南 232001)
(2.華中師范大學數學與統計學院,湖北武漢 430079)

本文定義Sk(G)為G中所有點對之間距離的k次方之和.利用頂點劃分的方法得到了直徑為d的n頂點連通二部圖Sk(G)的下界,并確定了達到下界所對應的的極圖.

二部圖;直徑;極圖

O157.6

05C50;05C35

A

0255-7797(2017)06-1111-07

date:2017-01-08Accepted date:2017-04-01

Supported by National Natural Science Foundation of China(11401008;61672001;61572035;61402011)and China Postdoctoral Science Foundation(2016M592030).

Biography:Geng Xianya(1981–),male,born at Fuyang,Anhui,associate professor,major in graph theory and its application.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产精品无码久久久久AV| 91精品网站| 国产91特黄特色A级毛片| 午夜日本永久乱码免费播放片| 国产h视频在线观看视频| 国产经典在线观看一区| 欧美在线三级| 国产免费a级片| 最新国产网站| 亚洲第一成年免费网站| 制服丝袜国产精品| 精品视频福利| 欧美精品二区| 午夜电影在线观看国产1区| 精品亚洲麻豆1区2区3区| 波多野结衣无码视频在线观看| 国产精品冒白浆免费视频| 国产另类视频| 99久久精品国产精品亚洲 | 国产日韩精品欧美一区喷| 久久久受www免费人成| 国产麻豆福利av在线播放| 欧美国产综合视频| 久久这里只有精品2| 91区国产福利在线观看午夜| 精品无码国产一区二区三区AV| 69国产精品视频免费| 国产精品中文免费福利| 国产精品亚洲五月天高清| 国产制服丝袜无码视频| 国产白浆视频| AV色爱天堂网| 美女高潮全身流白浆福利区| 国产成人亚洲欧美激情| 亚洲精品国产综合99| 亚洲一区二区黄色| 福利一区在线| 国产成人综合在线视频| 久久永久精品免费视频| 精品福利视频导航| 伊人色婷婷| 91久草视频| 国产哺乳奶水91在线播放| 超碰aⅴ人人做人人爽欧美| 亚洲—日韩aV在线| 中文字幕在线一区二区在线| 91av国产在线| 亚洲AV无码久久精品色欲| 九月婷婷亚洲综合在线| 91亚洲视频下载| 久久亚洲欧美综合| 欧美在线综合视频| 国产伦精品一区二区三区视频优播| 蝴蝶伊人久久中文娱乐网| 国产精品制服| 一本二本三本不卡无码| 久久香蕉国产线看精品| 久久久久无码国产精品不卡| 日本免费a视频| 小说 亚洲 无码 精品| 精品国产免费观看一区| 91久久夜色精品国产网站| 五月婷婷综合色| 久草中文网| 国产在线八区| 综合色亚洲| 成人无码区免费视频网站蜜臀| 色噜噜久久| 亚洲欧美成人影院| 午夜福利视频一区| 亚洲欧美自拍中文| 亚洲色图欧美视频| 久久久久国产精品嫩草影院| 国产一区二区三区夜色 | 91色综合综合热五月激情| 青青久视频| 72种姿势欧美久久久大黄蕉| 亚洲美女久久| 国产91高跟丝袜| 亚洲无码免费黄色网址| 少妇精品久久久一区二区三区| a级毛片网|