999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于HYDRUS-2D模型的玉米高出苗率地下滴灌開溝播種參數優選

2017-11-01 23:03:55李光永蔡明坤徐新涵邊新洋
農業工程學報 2017年17期
關鍵詞:深度

莫 彥,李光永,蔡明坤,王 丹,徐新涵,邊新洋

?

基于HYDRUS-2D模型的玉米高出苗率地下滴灌開溝播種參數優選

莫 彥1,2,李光永1※,蔡明坤1,王 丹1,徐新涵1,邊新洋3

(1. 中國農業大學水利與土木工程學院,北京 100083;2. 中國水利水電科學研究院水利研究所,北京 100048;3. 京藍沐禾節水裝備有限公司,赤峰 024000)

開溝播種是一種可顯著提高地下滴灌春玉米出苗率的新型播種方式,為了優化該技術模式,該文通過兩年田間試驗分析了地下滴灌玉米出苗率與灌水后種子處土壤有效飽和度(effective saturation)的關系,并基于HYDRUS-2D構建了地下滴灌開溝播種土壤水分運動模型,以90%玉米出苗率為前提,研究了不同土質和土壤初始含水率條件下3個技術參數——開溝深度、滴灌帶埋深和灌水量對種子處土壤有效飽和度的影響。結果表明:1)出苗率隨土壤有效飽和度線性遞增,土壤有效飽和度不小于0.77時,出苗率超過90%;2)地下滴灌開溝播種HYDRUS-2D模型模擬精度較高,模擬得到的土壤有效飽和度隨開溝深度增大而增大,隨滴灌帶埋深增大而減小;3)滿足土壤有效飽和度為0.77所需的出苗水灌水量隨土壤黏粒含量、土壤初始含水率和開溝深度增大而減小,隨滴灌帶埋深增大而增大。當表層土壤初始含水率為40%田持~60%田持時,開溝深度每增加5 cm,砂壤土的出苗水灌水量減小15~20 mm,粉壤和粉黏土的出苗水灌水量減小6~18 mm;滴灌帶埋深由30 cm增大到35 cm時,砂壤土的出苗水灌水量增大16~21 mm,粉壤和粉黏土的出苗水灌水量增大4~14 mm。不同埋深和開溝深度下,當表層土壤初始含水率由40%田持增大到60%田持時,砂壤土的出苗水灌水量減小9~14 mm,粉壤和粉黏土的出苗水灌水量減小9~19 mm;4)綜合考慮土壤質地、玉米根系分布、機械作業、耗能、耕作深度和土壤水深層滲漏以及土壤初始含水率,玉米地下滴灌適宜的滴灌帶埋深為30~35 cm,開溝深度為10~15 cm,灌水量范圍為25~67 mm。農業生產者可以根據當地實際情況對以上3個技術參數進行合理配置。

灌溉;質地;含水率;地下滴灌;開溝播種;HYDRUS-2D;土壤有效飽和度

0 引 言

地下滴灌的滴灌帶一般鋪設在耕作層以下[1],可以將水分和養分直接輸送到作物根區,提高水分利用效率,減少水分蒸發和地表徑流[2-4]。但由于重力作用,水分向上運移速度低于向下的速度[5-6],加之播種前的旋耕使地表土壤變得干松,毛細作用很弱,水分很難運移到種子處,在春旱嚴重地區容易導致出苗率降低。因此,在種子萌發期和幼苗期,一般采用噴灌灌溉[7],這就需要2套灌溉系統,增加了系統投資[8],對于諸如玉米和棉花等大田作物經濟回報率低[9]。

地下滴灌玉米出苗受滴灌帶埋深、土壤質地、土壤初始含水率等因素影響[4,9-10]。在滴灌帶埋深方面,大多數學者研究了出苗后滴灌帶埋深對作物生長的影響,而滴灌帶埋深對作物出苗的影響鮮有研究[6,11-14]。有學者研究了滴灌帶埋深和滴頭流量對濕潤體的影響并建立了回歸模型[15]。對于滴灌帶埋深影響土壤表面鹽分累積從而影響作物出苗的研究也較為常見[16-17]。

近年來,HYDRUS-2D軟件被廣泛運用于土壤水分運動研究[18]。當土壤質地為砂壤土和黏壤土,滴灌帶埋深為5~30 cm時,Skaggs等[19-21]利用土壤含水率和濕潤體尺寸實測值驗證了HYDRUS-2D模擬的準確性。在均質砂土中,灌水后,只有6%的水分運移到滴灌帶上方[22];在均質壤土中,灌水13 mm后,濕潤鋒約向上運移6 cm[23];在均質黏壤土中,灌水53 mm后濕潤鋒向上運移17 cm[5]。Skaggs等[24-25]研究發現,在相同灌水量下,滴頭流量的變化對濕潤鋒影響較小。當土壤初始含水率增大時,濕潤體在水平和豎直方向均增大,尤其在豎直方向[20,24]。此外,一些學者基于HYDRUS-2D綜合土壤質地、土壤初始含水率、2個滴頭流量和滴灌帶埋深對土壤蒸發、土壤水深層滲漏[26-27]和鹽分積累[28]的影響來制定適宜的地下滴灌管理制度。

Mo等[29]于2017年提出了一種可以提高出苗率的地下滴灌播種方式——開溝播種,將傳統玉米播種機開溝器加以改造,可形成溝深10 cm、頂寬30 cm、底寬6 cm的梯形播種溝,種子被播種在溝底下方5 cm處,與傳統平地播種相比,提高了種子處的土壤初始含水率,并且由于縮短了種子和滴灌帶之間的距離,使得出苗水更易于運移到種子處,出苗率顯著提高。但與之配套的諸如開溝深度、滴灌帶埋深和出苗水灌水量等技術參數的優化配置仍需要進一步研究。

本文基于大田試驗研究,引入土壤有效飽和度(effective saturation,S)參數,研究不同出苗水灌水量下玉米出苗率和種子處土壤有效飽和度的關系;建立地下滴灌開溝播種HYDRUS-2D模型,得到出苗率達到90%時對應的S值;探索在不同土壤質地和土壤初始含水率下開溝深度、滴灌帶埋深和灌水量對S的影響,獲得90%以上玉米出苗率下的地下滴灌開溝播種技術參數最佳組合,以期為地下滴灌技術的推廣應用提供依據。

1 材料與方法

1.1 大田試驗

1.1.1 試驗處理

地下滴灌田間試驗于2015和2016年在內蒙古赤峰市進行。玉米生育期內有效降雨量2015年為180 mm,在2016年為251 mm。在2015年玉米出苗期(5月8日—5月30日),沒有有效降雨,在2016年玉米出苗期(5月5日—5月25日),有效降雨量為24 mm,為了保證玉米出苗不受降雨影響,在降雨時用遮雨布將所有小區遮擋起來,降雨結束后再將遮雨布收起。

玉米品種為先玉335,寬窄行(80 cm×40 cm)種植,滴灌帶位于窄行中央。玉米種植株距為20 cm,種植密度是83 000 株/hm2。滴灌帶(NATEFIM)直徑為16 mm,滴頭間距為30 cm,滴頭流量為1.05 L/h,滴灌帶埋深=30 cm,滴灌帶鋪設間距為1.2 m,鋪設長度為50 m,每個小區有6條滴灌帶。

試驗設置開溝深度和出苗水灌水量2個因素。2015年在2個開溝深度(=0 cm,=10 cm)下設置1個出苗水灌水量(25 mm),共2個處理,每個處理3個重復,共6個試驗小區;2016年在2個開溝深度(=0 cm,=10 cm)下分別設置4個出苗水灌水量(15、25、45、60 mm),共8個處理。每個處理3個重復,共24個試驗小區。小區面積50 m×8 m,小區隨機布置。

不同開溝深度小區布置如圖1所述。滴灌帶埋深=30 cm。由于=0 cm處理的種子置于土表下方5 cm處,故種子相對于原狀土表距離為5 cm;而=10 cm處理的種子置于溝底下方5 cm處,故種子相對于原狀土表距離為15 cm[29]。出苗水灌溉時期為2015年5月10日和2016年5月7日。玉米生育期內施加尿素、磷酸一銨和氯化鉀分別為572.7、221.3和217.7 kg/hm2,折合純氮量、有效磷(P2O5)和有效鉀(K2O)分別為290.0、135.0和135.0 kg/hm2,種肥和追肥(隨水滴施)比例為1:4(氮肥)、1:1(磷肥)和1:1(鉀肥)。

a. 開溝深度0 cm

a. Furrow depth 0 cm

b. 開溝深度10 cm

b. Furrow depth 10 cm

注:圖中數值單位為cm。

Note: Unit of data is cm.

圖1 滴灌帶埋深30 cm不同開溝深度處理的示意圖

Fig.1 Schematic of different furrow depths with 30 cm dripline depth

1.1.2 測試指標

1)土壤含水率

在灌出苗水前和剛灌完水時,取土測試種子處和種子下方10、20、30和45 cm土壤含水率(圖1)。灌出苗水前各處理土壤初始體積含水率如表1所示。開溝深度10 cm時開溝導致的壟上的土壤初始體積含水率為0.122 cm3/cm3。

表1 不同開溝深度處理的土壤初始體積含水率

2)出苗率

出苗率測試地塊面積為6 m×1 m,播種后10 d(2015年5月18日和2016年5月15日)開始觀測,每2 d觀測1次,出苗率穩定不變時即為最終出苗率。

1.2 開溝播種數值模擬及模型驗證

1.2.1 模型建立

Hydrus-2D[30]是1個可用來模擬水分、熱量和溶質在二維和三維飽和或非飽和介質中運移的模型軟件。當滴頭間距遠小于滴灌帶鋪設間距時,地下滴灌土壤水分運動可以簡化為線源二維入滲[31]。在均勻、各向同性土壤中,水流的控制方程為Richard方程,Hydrus-2D利用Galerkin有限元法求解。由于對稱性,只對滴灌帶一側土體進行模擬。

對于開溝深度=0 cm處理,計算區域為100 cm× 100 cm的正方形,如圖2a所示,種子處的坐標是(20,5)。對于開溝深度=10 cm處理,土壤表面形狀和尺寸與實際開溝后相同,如圖2b所示,壟頂坐標是(0,?11),溝底坐標是(20,10),種子處的坐標是(20,15)。在左側邊界有1個半徑0.8 cm的半圓形,代表滴頭,其坐標是(0,30)。模型中設置了5個觀測點,分別與圖1中大田土壤含水率測試點對應。此外,在圖2a坐標為(0,100)處增設觀測點6,計算水分運移到該點所需灌水量W,作為在100 cm土層發生土壤水深層滲漏的依據。

1.2.2 初始和邊界條件

開溝深度=0 cm和=10 cm的HYDRUS-2D模型0~60 cm土壤初始含水率根據表1進行設定,60~80 cm土壤初始含水率按40~60 cm土層設置,并假定土壤初始含水率在水平方向是均勻分布的[32]。如圖2所示,模型上邊界設為大氣邊界,下邊界設為自由排水邊界。模型左側(除了滴頭位置)和右側邊界設為零通量邊界。滴頭位置設為變通量邊界,流量為1.05 L/h的滴頭的水流通量根據式(1)[19]計算得到,為6.96 cm/h。

a. H=0 cmb. H=10 cm

注:為開溝深度,cm;為滴灌帶埋深,cm。

Note:is furrow depth, cm;is dripline depth, cm.

圖2 不同開溝深度處理HYDRUS-2D模型計算區域形狀

Fig.2 Domain geometry of different furrow depths for HYDRUS-2D simulations

1.2.3 土壤水力特性

播種后,=0 cm處理以地表為基準面,=10 cm處理以溝底為基準面,用環刀取0~10,>10~20,>20~40,>40~60和>60~100 cm土層的土樣,每層取3個重復。此外,=10 cm處理還取了開溝形成的土壟頂部向下0~10 cm的土樣。測定各層土壤顆粒組成(用英國Malvern公司生產的Master-sizer 2000馬爾文激光粒度儀測定)和土壤容重,利用HYDRUS軟件中的Rosetta模型預測土壤水力特性參數。利用室內環刀法測定田間持水量(體積含水率)。

1.2.4 模型驗證

采用均方根差(root mean square of error,RMSE)表征地下滴灌開溝播種HYDRUS-2D模型的模擬精度。

1.3 數值模擬試驗

模擬設1種滴頭流量:1.05 L/h;3種土壤質地:砂壤、粉壤和粉黏土,各土壤質地的顆粒分布、容重和田間持水量分別采用表2中相同土壤質地的平均值。

表2 不同開溝深度處理的土壤物理特性

根據2012-2015年的實測資料[29,33-35],表層土壤初始含水率取田間持水量的40%~60%,計算域底層土壤初始含水率取100%田間持水量,設土壤表層到底層初始含水率呈線性變化。模擬設5個開溝深度(=0,5,10,15和20 cm)和5個滴灌帶埋深(=20,25,30,35和40 cm)。

2 結果和分析

2.1 出苗率和種子處土壤有效飽和度關系

以2015—2016年2 a的大田試驗數據為基礎,綜合考慮土壤含水率和土壤質地,參考文獻[36-37]引入土壤有效飽和度S分析灌出苗水后種子對水分的有效利用,其計算方法如式(2)。如圖3所示,出苗率與S呈現顯著的線性關系,2為0.70(<0.01),由圖3中擬合公式可知,若使玉米地下滴灌出苗率達到90%,S需不小于0.77。郝遠遠等[37]在內蒙古河套灌區的試驗結果認為,生育期內作物根區土壤(0~100 cm)的S為0.44~0.90時,可以基本滿足小麥、玉米和葵花等作物生長需求(小麥產量6 000 kg/hm2,玉米產量12 000 kg/hm2,葵花產量3 000 kg/hm2)。利用該文中的土壤含水率推求出在文獻[37]中玉米種子萌發期(5月1日-5月10日),0~10 cm土層的S約為0.73,比本文結果略小的原因可能是該文的玉米出苗率低于90%。上述出苗率和S的關系是在本試驗地砂壤土下得到的,本文模擬其他土壤質地時,也采用此關系。

式中為體積含水率,θ為殘余含水率,θ為飽和含水率,cm3/cm3。

圖3 2015和2016年玉米出苗率和灌水結束時種子處的土壤有效飽和度的關系

Fig.3 Relationship between emergence rate and soil effective saturation at seeds after irrigation in year 2015 and 2016

2.2 開溝播種HYDRUS-2D模型驗證

當出苗水灌水量為15~60 mm時,種子處和種子下方10、20、30和45 cm土壤含水率的HYDRUS-2D模擬值和大田實測值較為接近(圖4)。

圖4 不同出苗水灌水量和開溝深度下大田實測含水率和模擬值對比

由于表層土壤水分分布對環境變化很敏感[32,37],而內蒙古春天風力很強,故在種子處及其下方10 cm的土壤含水率模擬值和實測值略微有些偏差。土壤含水率模擬值和實測值的RMSE較小(0.024~0.035 cm3/cm3),與Skaggs等[19]和Kandelous等[31]的研究結果相近。故HYDRUS-2D可以用來模擬地下滴灌開溝播種土壤水分運動。

2.3 開溝深度和滴灌帶埋深對種子處Se的影響

在砂壤、粉壤和粉黏土中,灌水后,和對種子處的S均有明顯的影響(圖5):S隨增大而增大,隨增大而減小。當土壤質地相同時,每增大5 cm,也需大約增大5 cm才能使S值保持不變。以粉壤土為例(見圖5b),當S=0.77時,從25 cm增大到30 cm時,需要從5 cm增大到10 cm;從30 cm增大到35 cm時,需要從10 cm增大到14 cm。即在S值不變的前提下,開溝深度需要隨滴灌帶埋深增大而增大相同的距離,以保持滴灌帶與種子之間的距離不變。

在相同開溝深度、滴灌帶埋深和出苗水灌水量條件下,砂壤土的S均比粉壤土小,這是由于粗質地土壤的毛細作用相對較弱,重力作用下的水分下滲能力明顯強于向上傳輸能力,故砂壤土中種子處土壤含水率較低[25,22,38-40]。

灌水45 mm后,當S為0.77時,在砂壤土中,滴灌帶埋深為20~25 cm,對應的開溝深度為12~18 cm(見圖5a);在粉壤土和粉黏土中,由于水分向上傳輸能力比砂壤土強,在相同開溝深度下,滴灌帶可以埋設到更深的位置,或在相同滴灌帶埋深下,減小開溝深度,這2種土壤質地下滿足S=0.77的滴灌帶埋深分別為25~40和20~40 cm,對應的開溝深度分別為5~18和0~19 cm(見圖5b和5c)。

注:灌水45 mm,土壤表層到計算域底層初始含水率為40%~100%田持。

2.4 灌水量對種子處土壤有效飽和度的影響

當滴灌帶埋深30 cm時,S隨灌水量的變化如圖6所示。當灌水量大于某一臨界值W(水分運移到種子處所需灌水量,位于圖6中各條曲線的拐點處)時,S隨灌水量增大而增大。當開溝深度()減小時,需要增大灌水量使得S不變。以粉壤土為例(見圖6b),當S=0.77時,若由20 cm減小到15 cm,灌水量需要增大7 mm,若由10 cm減小到5 cm,灌水量需要增大15 mm。

注:滴灌帶埋深30 cm,土壤表層到計算域底層初始含水率為40%~100%田間持水量。

將玉米出苗率達到90%時所需灌水量定義為W,圖6中各曲線與S=0.77相交點對應的灌水量是表層土壤初始含水率為40%田持、滴灌帶埋深為30 cm下的W。不同土壤質地、初始含水率、和的W值如表3所示。

W隨增大而減小。對于砂壤土,當=30 cm時,在10~20 cm范圍內每增加5 cm,W減小15~20 mm;對于粉壤和粉黏土,在2種滴灌帶埋深下,在0~20 cm范圍內每增加5 cm,粉壤土的W減小6~15 mm,粉黏土減小7~18 mm。W隨增大而增大。當由30 cm增大到35 cm時,對于砂壤土,當為20 cm時,W增大16~21 mm;對于粉壤和粉黏土,當為10~20 cm時,W增大4~14 mm。

W隨土壤初始含水率增大而減小。當土壤表層初始含水率由40%田持增加到60%田持時,對于砂壤土,在滿足S為0.77條件的情況中(為30 cm,為15~20 cm以及為35 cm,為20 cm),W減小9~14 mm;對于粉壤和粉黏土,W減小9~19 mm。

表3 基于有效飽和度0.77的地下滴灌開溝播種灌水量

注:a推薦使用。FC,田間持水量。

Note:arecommended combinations. FC, field water holding capacity.

當土壤初始含水率、滴灌帶埋深和開溝深度相同時,相較于粉壤土或粉黏土,在砂壤土需要多灌水21~42 mm才能滿足玉米出苗率達到90%的水分需求。

滴灌帶埋深的確定應考慮玉米根系分布、耕作深度和土壤水深層滲漏,開溝深度應考慮土壤質地、機械作業與耗能,灌水量取決于滴灌帶埋深、開溝深度、土壤質地以及土壤初始含水率。灌水量過大,水分運移到地表下邊界,造成水分深層滲漏;開溝深度過大,機械作業耗能較大或由于土壤質地、機具原因無法實現(土質松散,開溝時溝壁容易坍塌)。綜合考慮上述因素,從表3中可以得出,對于砂壤土,推薦的技術參數組合為開溝深度15 cm,滴灌帶埋深30 cm,灌水量55~67 mm(取決于地表土壤初始含水率);粉壤土適宜的開溝深度為10~15 cm,滴灌帶埋深為30~35 cm,灌水量為25~46 mm;粉黏土適宜的開溝深度為5~15 cm,滴灌帶埋深為30~35 cm,灌水量為25~63 mm。農業生產者可以根據當地情況對以上技術參數組合進行選擇。

3 結 論

本文通過2015-2016年2 a的大田試驗,明確了玉米出苗率與灌水后種子處的土壤有效飽和度(S)的線性關系,發現出苗率大于90%時,S不小于0.77。在此基礎上,運用地下滴灌開溝播種HYDRUS-2D模型研究開溝播種技術參數開溝深度、滴灌帶埋深和灌水量對S的影響。得到如下結論:1)S隨開溝深度和灌水量的增大而增大,隨滴灌帶埋深增大而減小;2)使玉米出苗率達到90%時所需的灌水量隨土壤黏粒含量、開溝深度和土壤初始含水率增大而減小,隨滴灌帶埋深增大而增大;3)考慮土壤質地、玉米根系分布、機械作業、耗能、耕作深度和土壤水深層滲漏以及土壤初始含水率,玉米地下適宜的滴灌帶埋深為30~35 cm, 開溝深度為10~15 cm,出苗水灌水量范圍為25~67 mm。

本文參照已有研究,綜合考慮土壤質地和土壤水分含量,引用土壤有效飽和度來描述地下滴灌開溝播種條件下的玉米出苗率變化,土壤有效飽和度中的飽和含水率和殘余含水率可通過土壤顆粒分布和Rosetta模型預測出來,方便快捷。土壤有效飽和度與土壤有效水存在一定相關,但在實際生產中,土壤有效水是更容易被理解和可操作的參數指標,建議進一步的研究根據土壤有效水進行地下滴灌開溝播種技術參數的優化配置。

[1] Camp C R, Lamm F R. Irrigation systems, subsurface drip[M]. Encyclopedia of Water Science. New York: Marcel Dekker, Inc, 2003: 560-564.

[2] Phene C J. Drip irrigation saves water[C]//Proc Conservation 90, The National Conference and Exposition Offering Water Supply Solutions for the 1990s, Phoenix, 1990: 645-650.

[3] Lamm F R, Stone L R, Manges H L, et al. Optimum lateral spacing for subsurface drip-irrigated corn[J]. Transactions of the ASAE, 1997, 40: 1021-1027.

[4] Lamm F R, Trooien T P. Subsurface drip irrigation for corn production: A review of 10 years of research in Kansas[J]. Irrigation Science, 2003, 22: 195-200.

[5] Kandelous M M, ?im?nek J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D[J]. Agricultural Water Management, 2010, 97(7): 1070-1076.

[6] Lamm F R, Trooien T P. Dripline depth effects on corn production when crop establishment is nonlimiting[J]. Applied Engineering in Agriculture, 2005, 21(5): 835-840.

[7] Schiavon M, Serena M, Leinauer B, et al. Seeding date and irrigation system effects on establishment of warm-season turfgrasses[J]. Agronomy Journal, 2015, 107: 880-886.

[8] Hillel D. Salinity Management for Sustainable Irrigation: Integrating Science, Environment and Economics[M]. Washington: World Bank Publications, 2000.

[9] Lamm F R, Bordovsky J P, Schwankl L J, et al. Subsurface drip irrigation: Status of the technology in 2010[J]. Transactions of the ASAE, 2012, 55: 483-491.

[10] Charlesworth P B, Muirhead W A. Crop establishment using subsurface drip irrigation: A comparison of point and area sources[J]. Irrigation Science, 2003, 22: 171-176.

[11] Enciso J M, Colaizzi P D, Multer W L. Economic analysis of subsurface drip irrigation lateral spacing and installation depth for cotton[J]. Transactions of the ASAE, 2005, 48(1): 197-204.

[12] Lamm F R, Kheira A A A, Trooien T P. Sunflower, soybean, and grain sorghum crop production as affected by dripline depth[J]. Applied Engineering in Agriculture, 2010, 26: 873-882.

[13] Pablo R G, O'Neill M K, McCaslin B D, et al. Evaluation of corn grain yield and water use efficiency using subsurface drip irrigation[J]. Journal of Sustainable Agriculture, 2007, 30: 153-172.

[14] Patel N, Rajput T B S. Effect of drip tape placement depth and irrigation level on yield of potato[J]. Agricultural Water Management, 2007, 88: 209-223.

[15] Al-Mefleh N K, Abu-Zreig M. Field evaluation of arid soils wetting pattern in subsurface drip irrigation scheme[J]. Clean-Soil Air Water, 2013, 41(7): 651-656.

[16] Oron G, DeMalach Y, Gillerman L, et al. Improved saline-water use under subsurface drip irrigation[J]. Agricultural Water Management, 1999, 39(1): 19-33.

[17] Roberts T L, White S A, Warrick A W, et al. Tape depth and germination method influence patterns of salt accumulation with subsurface drip irrigation[J]. Agricultural Water Management, 2008, 95(6): 669-677.

[18] ?im?nek J, Genuchten M T V, ?ejna M. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 2016, 15(7):1-25.

[19] Skaggs T H, Trout T J, ?im?nek J, et al. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations[J]. Journal of Irrigation and Drainage Engineering, 2004, 130(4): 304-310.

[20] Provenzano G. Using HYDRUS-2D simulation model to evaluate wetted soil volume in subsurface drip irrigation systems[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4): 342-349.

[21] Kandelous M M, ?im?nek J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D[J]. Agricultural Water Management, 2010, 97(7): 1070-1076.

[22] Cote C M, Bristow K L, Charlesworth P B, et al. Analysis of soil wetting and solute transport in subsurface trickle irrigation[J]. Irrigation Science, 2003, 22(3/4): 143-156.

[23] Rodríguez-Sinobas L, Gil M, Sánchez R, et al. Evaluation of drip and subsurface drip irrigation in a uniform loamy soil[J]. Soil Science, 2012, 177(2): 147-152.

[24] Skaggs T H, Trout T J, Rothfuss Y. Drip irrigation water distribution patterns: Effects of emitter rate, pulsing, and antecedent water[J]. Soil Science Society of America Journal, 2010, 74(6): 1886-1896.

[25] Elmaloglou S, Diamantopoulos E. Simulation of soil water dynamics under subsurface drip irrigation from line sources[J]. Agricultural Water Management, 2009, 96(11): 1587-1595.

[26] Phogat V, ?im?nek J, Skewes M A, et al. Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation[J]. Agricultural Water Management, 2016, 178: 189-200.

[27] Xi Benye, Wang Ping, Fu Teng, et al. Optimal coupling combinations among discharge rate, lateral depth and irrigation frequency for subsurface drip-irrigated triploid populous tomentosa pulp plantation[J]. Life Science Journal:Acta Zhengzhou University Overseas Edition, 2013, 10(1): 4466-4476.

[28] Roberts T, Lazarovitch N, Warrick A W, et al. Modeling salt accumulation with subsurface drip irrigation using HYDRUS-2D[J]. Soil Science Society of America Journal, 2009, 73(1): 233-240.

[29] Mo Yan, Li Guangyong, Wang Dan. A sowing method for subsurface drip irrigation that increases the emergence rate, yield, and water use efficiency in spring corn[J]. Agricultural Water Management, 2017, 179: 288-295.

[30] ?im?nek J, ?ejna M, van Genuchten M T. The HYDRUS-2D Software Package for Simulating the Two-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-saturated Media: Version 2.0[M]. California: US Salinity Laboratory, Agricultural Research Service, US Department of Agriculture, 1999.

[31] Kandelous M M, ?im?nek J, van Genuchten M T, et al. Soil water content distributions between two emitters of a subsurface drip irrigation system[J]. Soil Science Society of America Journal, 2011, 75: 488-497.

[32] Xi B, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid populous tomentosa plantation located on the North China Plain[J]. Agricultural Water Management, 2016, 176: 243-254.

[33] 米爾古麗·吾拉孜別克.內蒙古赤峰地區玉米滴灌適宜的種植模式田間試驗研究[D].北京:中國農業大學,2013.

Mierguli·Wulazibieke. The Cultivation Pattern of Maize Matching to Trickle Irrigation in the Chifeng Region[D]. Beijing: China Agricultural University, 2013. (in Chinese with English abstract)

[34] 康靜. 內蒙古東北地區玉米覆膜灌溉的效應研究[D]. 北京:中國農業大學,2014.

Kang Jing. The Effects of Maize Growth under Mulched Drip Irrigation in the Northeast Inner Mongolia Region[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)

[35] 袁江杰. 地下滴灌不同滴灌帶類型與灌溉制度對玉米生長的影響[D]. 北京:中國農業大學,2015. Yuan Jiangjie. The Effects of Different Subsurface Drip Tape Types and Irrigation Scheduling on Maize Growth[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)

[36] 吳元芝,黃明斌.基于Hydrus-1D模型的玉米根系吸水影響因素分析[J].農業工程學報,2011,27(增刊2):66-73.

Wu Yuanzhi, Huang Mingbin. Analysis of influential factors for maize root water uptake based on Hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 66-73. (in Chinese with English abstract)

[37] 郝遠遠,徐旭,任東陽,等. 河套灌區土壤水鹽和作物生長的HYDRUS-EPIC模型分布式模擬[J]. 農業工程學報,2015(11):110-116.

Hao Yuanyuan, Xu Xu, Ren Dongyang, et al. Distributed modeling of soil water-salt dynamics and crop yields based on HYDRUS-EPIC model in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015(11): 110-116. (in Chinese with English abstract)

[38] 王建東,龔時宏,馬曉鵬,等. 地下滴灌條件下水熱運移數學模型與驗證[J]. 水利學報,2010,41(3):368-373.

Wang Jiandong, Gong Shihong, Ma Xiaopeng, et al. Verification and application of mathematical model for simulating water flow and heat transport in subsurface drip irrigation[J]. Journal of Hydraulic Engineering, 2010, 41(3): 368-373. (in Chinese with English abstract)

[39] Diamantopoulos E, Elmaloglou S. The effect of drip line placement on soil water dynamics in the case of surface and subsurface drip irrigation[J]. Irrigation and Drainage, 2012, 61(5): 622-630.

[40] Thorburn P J, Cook F J, Bristow K L. Soil-dependent wetting from trickle emitters: Implications for system design and management[J]. Irrigation Science, 2003, 22(3/4): 121-127.

[41] 李久生,楊風艷,栗巖峰. 層狀土壤質地對地下滴灌水氮分布的影響[J]. 農業工程學報,2009,25(7):25-31.

Li Jiusheng, Yang Fengyan, Li Yanfeng. Water and nitrogen distribution under subsurface drip fertigation as affected by layered-textural soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(7): 25-31. (in Chinese with English abstract)

Selection of suitable technical parameters for alternate row/bed planting with high maize emergence under subsurface drip irrigation based on HYDRUS-2D model

Mo Yan1,2, Li Guangyong1※, Cai Mingkun1, Wang Dan1, Xu Xinhan1, Bian Xinyang3

(1.&,,100083,;2.,,100048,;3.,024000,)

Subsurface drip irrigation (SDI) is an advanced water-saving irrigation method. Alternate row/bed planting is a sowing technique with a 10 cm deep trapezoidal furrow; seeds are then sown in 5 cm deep soil below the furrow bottom. It can significantly improve the germination of spring maize under subsurface drip irrigation. To optimize this technology, 2-year field experiments were performed in Chifeng, Inner-Mongolia, China to study the relationship between the emergence rate of spring maize and soil effective saturation of soil at the location of the seeds after different pre-emergence irrigation amounts from 15 to 60 mm. A HYDRUS-2D model was established to obtain soil effective saturation when seed germination rate reached 90% and then to investigate effect of furrow depth, dripline depth, and irrigation amount in the conditions of different soil texture and initial water content on soil effective saturation in order to obtain best technique parameters combination for seed germination. The irrigation amount was 15, 25, 45 and 60 mm; the furrow depth was 0 and 10 cm; the dripline depth was 30 cm. The germination rate was obtained when the seed germination kept stabilized. The results showed that the maize germination rate increased linearly with soil effective saturation (2=0.70,<0.01). The HYDRUS-2D model simulation results had a high agreement with the measured soil water content with the root mean square error of 0.024-0.035 cm3/cm3). The soil effective saturation was not less than 0.77 for 90% of germination rate. The simulation results showed that the soil effective saturation increased with the increase of furrow depth and decreased with the increase of dripline depth. The required irrigation amount to meet the effective saturation of 0.77 decreased with the increase of soil clay content due to the larger hydraulic conductivity of the fine textured soil. The required irrigation amount to meet the effective saturation of 0.77 also decreased with the increase of initial soil water content and furrow depth, and increased with the increase of dripline depth. When the initial water content of the surface soil was 40%-60% field water holding capacity, the required irrigation amount to meet the effective saturation of 0.77 decreased by 15-20 mm for sandy loam, by 6-15 mm for silty loam and by 7-18 mm for silty clay respectively, with the increase of furrow depth by 5 cm. When the dripline depth increased from 30 to 35 cm, the required irrigation amount to meet the effective saturation of 0.77 increased by 16-21 mm for sandy loam, and by 4-14 mm for silty loam and silty clay. Under the different furrow depths and dripline depths, when the initial water content of surface soil increased from 40% to 60% of the field capacity, the required irrigation amount to meet the effective saturation of 0.77 decreased by 9-14 mm for sandy loam, and decreased by 9-19 mm for silty loam and silty clay. Considering the spring maize root distribution, cultivation and deep percolation, the dripline depth should be 30 and 35 cm; considering the soil texture, mechanical operation and energy consumption, the furrow depth should be 10 and 15 cm. Within the range of furrow depth and dripline depth mentioned above, the optimal irrigation amount was 25-67 mm. The study gives agricultural managers a guideline to determine the optimal combination of the 3 parameters.

irrigation; texture; water content; subsurface drip irrigation; alternate row/bed planting; HYDRUS-2D; soil effective saturation

10.11975/j.issn.1002-6819.2017.17.014

S275

A

1002-6819(2017)-17-0105-08

2017-04-01

2017-08-10

國家十二五科技支撐計劃課題(2014BAD12B05)

莫 彥,博士生,主要從事節水灌溉理論與新技術研究。北京 中國農業大學水利與土木工程學院,100083。Email:moyansdi@163.com

李光永,教授,博士生導師,主要從事節水灌溉理論與新技術和水資源高效利用等研究。北京 中國農業大學水利與土木工程學院,100083。Email:lgycau@163.com

猜你喜歡
深度
深度理解不等關系
四增四減 深度推進
深度理解一元一次方程
深度觀察
深度觀察
深度觀察
深度觀察
芻議深度報道的深度與“文”度
新聞傳播(2016年10期)2016-09-26 12:14:59
提升深度報道量與質
新聞傳播(2015年10期)2015-07-18 11:05:40
微小提議 深度思考
主站蜘蛛池模板: 亚洲无限乱码一二三四区| 精品91视频| 2020最新国产精品视频| 日韩精品中文字幕一区三区| 亚洲a级毛片| 国产网友愉拍精品视频| 欧美天天干| 国产91特黄特色A级毛片| 国产乱论视频| 亚洲成年人网| 九九热在线视频| 国产成人精品高清不卡在线| a毛片免费观看| 久久亚洲天堂| 青青久在线视频免费观看| 日韩国产亚洲一区二区在线观看| 国产专区综合另类日韩一区| 操操操综合网| 中文成人无码国产亚洲| 免费可以看的无遮挡av无码| 2021国产精品自产拍在线| 欧美日韩中文字幕在线| 国产成人91精品| 白丝美女办公室高潮喷水视频| 亚洲综合色吧| 午夜精品国产自在| 九九九精品成人免费视频7| 亚洲人成亚洲精品| 日韩专区欧美| 国产精品伦视频观看免费| 色婷婷在线播放| 国产精品白浆在线播放| 毛片免费在线视频| 无码有码中文字幕| 国产原创演绎剧情有字幕的| 无码丝袜人妻| 国产h视频免费观看| 在线一级毛片| 久久综合干| 天天综合网色| 亚洲第一极品精品无码| 午夜性爽视频男人的天堂| 四虎免费视频网站| 久久免费视频播放| 一级一级一片免费| 国产精品欧美在线观看| 中文无码精品a∨在线观看| 毛片免费试看| 国产精品片在线观看手机版| 一级成人a毛片免费播放| 国产三级成人| 亚洲一区二区在线无码| 久久精品这里只有国产中文精品| 亚洲成人精品在线| 日韩在线成年视频人网站观看| 伊人五月丁香综合AⅤ| 99在线观看视频免费| 久热精品免费| 国产精品极品美女自在线| 久久伊人久久亚洲综合| 久久精品国产精品青草app| 无码国内精品人妻少妇蜜桃视频| 2019年国产精品自拍不卡| 久久精品人妻中文视频| 欧美日韩免费在线视频| 欧美三级不卡在线观看视频| 欧洲精品视频在线观看| 色精品视频| 亚洲不卡av中文在线| 色视频国产| a天堂视频在线| 久久五月视频| 91精品国产综合久久香蕉922| 国产精品亚洲综合久久小说| 亚洲中文精品人人永久免费| 国产乱子伦无码精品小说| 欧美黄网站免费观看| 久久这里只有精品免费| 精品一区二区三区中文字幕| 国产综合日韩另类一区二区| 狠狠v日韩v欧美v| 国产成人精品无码一区二|