裴棟梁 何軍3)? 王杰英 王家超 王軍民3)?
1)(山西大學光電研究所,太原 030006)
2)(山西大學,量子光學與光量子器件國家重點實驗室,太原 030006)
3)(山西大學,極端光學協同創新中心,太原 030006)
銫原子里德伯態精細結構測量?
裴棟梁1)2)何軍1)2)3)?王杰英1)2)王家超1)2)王軍民1)2)3)?
1)(山西大學光電研究所,太原 030006)
2)(山西大學,量子光學與光量子器件國家重點實驗室,太原 030006)
3)(山西大學,極端光學協同創新中心,太原 030006)
里德伯態光譜是測量里德伯態能級結構和中性原子間相互作用的常用技術手段,特別是高精度的里德伯光譜,可以測量室溫原子氣室中由偶極相互作用等導致的原子能級頻移.在實驗中利用反向的852 nm激光和509 nm激光實現了室溫原子氣室中銫原子6S1/2—6P3/2—57S(D)躍遷的級聯雙光子激發,實現了里德伯態原子的制備.基于階梯型電磁誘導透明獲得了銫原子里德伯態的高分辨光譜.實驗中,基于速度選擇的射頻邊帶調制技術,對光譜信號進行了頻率標定,測量了銫原子里德伯態57D3/2和57D5/2的精細分裂,分裂間隔為(354.7±2.5)MHz,與理論計算結果基本一致.速度選擇的射頻調制光譜可以實現里德伯態原子的能級分裂測量,其測量精度對于單光子躍遷的絕對激光頻率不敏感;實驗中影響57D3/2和57D5/2精細分裂間隔測量精度的主要因素是功率加寬導致的電磁感應透明信號的展寬和509 nm激光頻率掃描的非線性.
里德伯態,電磁感應透明,精細結構,超精細結構
里德伯態原子即主量子數較高的激發態原子[1],其超長的激發態壽命、較大的電偶極矩以及正比于主量子數n7的極化率使其在光與原子相互作用、中性原子之間的強相互作用等研究領域有著重要的意義.高里德伯態的中性原子非常敏感于外界電場,基于里德伯原子的這種特性其可以用作傳感器實現電場或者微波場的測量[2?6];里德伯態的中性原子之間有較強的相互作用,宏觀中性原子的集體效應可以實現量子糾纏[7?10];里德伯原子作為非線性介質,可以實現單光子級別的相互作用[11];基于里德伯原子作為中性原子的可控量子比特,可以實現中性原子量子邏輯門[12]和單光子源[13].
里德伯態制備的方法目前有單光子激發[14]、雙光子激發[15]和三光子激發[16].對于雙光子激發,可以利用對射的激光光束,通過速度選擇接近零速度群的原子與兩個光場相互作用,實現室溫原子氣室中的里德伯態原子的制備,獲得接近原子自然線寬的亞多普勒光譜.對于里德伯態原子的能級結構測量,熱原子氣室中通常利用電磁誘導透明(electromagnetically induced transparency,EIT)或者光抽運光譜來實現.EIT是利用一束較強相干光場與原子系統相互作用使本應被吸收的探測光吸收減弱的現象[17],三能級結構的EIT一般包括Λ型,V-型和階梯型(又稱級聯型),通常用綴飾態理論[18]和量子相消干涉[19]來解釋.利用EIT現象,可實現原子里德伯態能級結構的非破壞性測量.基于EIT光譜技術,國內外多個小組已實現室溫原子氣室中中性原子里德伯態的光譜測量[20?24].
對于銫原子里德伯態的制備,雙光子激發是非常有效的實驗方案,實驗上一般采用852 nm和509 nm的激光雙光子激發[20]制備銫原子里德伯態.509 nm激光可通過搭建1018 nm激光倍頻系統獲得[25].在本文中,我們通過1018 nm激光倍頻系統獲得了實驗所需的509 nm激光,進一步通過852 nm和509 nm激光兩步激發實現了133Cs里德伯態的制備.基于階梯型EIT實現了銫原子里德伯態光譜的識別和測量.基于速度選擇的邊帶調制光譜技術,測量了里德伯態精細結構分裂,同時測量了銫原子中間態的超精細分裂.

圖1 (網刊彩色)133Cs的階梯型EIT能級 ?P為探測光失諧量,6S1/2→ 6P3/2(F′=3,4,5)→ 57S和6S1/2→ 6P3/2(F′=3,4,5)→ 57D分別為不同里德伯態EIT能級結構,57D態由于精細相互作用分裂為57D3/2和57D5/2態Fig.1.(color online)Energy-levels of133Cs laddertype EIT:?Pis the detuning frequency of probe laser,the ladder-type EIT 6S1/2→ 6P3/2(F′=3,4,5)→nS and 6S1/2→6P3/2(F′=3,4,5)→nD are achieved by two-photon excitation.The state 57D split into 57D3/2and 57D5/2since the fi ne interaction;the energy splitting of 6P3/2and 6S1/2are due to the hyper fi ne structure interaction.
圖1為133Cs的階梯型EIT能級結構.對于133Cs原子,由于超精細相互作用,基態6S1/2態分裂為F=3和F=4兩個超精細態,6P3/2態分裂為F′=(2,3,4,5)四個能態;高的里德伯態由于原子半徑較大,通常不考慮超精細相互作用,只考慮低軌道角動量S,P,D等的精細結構分裂態.我們利用852 nm激光作為探測光,509 nm激光作為耦合光,實現階梯型的里德伯態EIT.當852 nm激光頻率鎖定于6S1/2→6P3/2(F′=5),509 nm激光在6P3/2→57S(D)之間掃描時,在雙光子共振處可以觀測到階梯型能級EIT透射峰.室溫原子的多普勒頻移大約在1 GHz左右,對鎖定于6S1/2→6P3/2(F′=5)的探測光,當特定速度群原子運動方向與852 nm光束的傳播方向一致時,由于多普勒效應,其感受到的探測光頻率共振于6S1/2→6P3/2(F′=3,4),當509 nm耦合光掃描到對應的頻率時,可以實現雙光子共振,觀測到EIT透射峰.同樣地,對鎖定于6S1/2→6P3/2(F′=3,4)的探測光,當特定速度群原子運動方向與852 nm光束的傳播方向相反時,由于多普勒效應,其感受到的探測光頻率共振于6S1/2→6P3/2(F′=5),當509 nm耦合光掃描到對應的頻率實現雙光子共振,同樣可以觀測到EIT透射峰.
對于與852 nm探測光同向、速度為v的原子,其相應的多普勒頻移為:?P=kPv;原子感受到反向的509 nm耦合光的頻移為:?C=?kCv,其中kP和kC分別為探測光和耦合光的波矢量.則在此三能級系統中總的頻移為?=?P+?C=(1?kC/kP)?P=?(λP/λC?1)?P=?0.67?P,(λP/λC?1)為多普勒因子[6].當掃描509 nm耦合光頻率時,若將6S1/2→6P3/2(F′=5)→57S(D)峰作為參考頻率標準,6S1/2→6P3/2(F′=3,4)→57S(D)透射峰的相對頻率移動會受多普勒匹配的影響. 峰的強度依賴于探測光的失諧量和光強,峰的間隔依賴于多普勒頻移、探測光和耦合光的頻率. 對于里德伯態的精細分裂譜線,其峰的間隔不依賴于多普勒效應造成的能級移動.即對于6S1/2→6P3/2(F′)→57D3/2和6S1/2→6P3/2(F′)→57D5/2的EIT譜線間隔,只依賴于原子能級57D3/2和57D5/2的能級差.對于速度相關的EIT,在多普勒效應范圍內,可以利用確定頻率(30 MHz)的射頻邊帶調制,獲得確定間隔的EIT信號作為頻率標準,實現對原子低激發態能級(6P3/2)的超精細分裂和里德伯態(57D)的精細分裂測量.在~GHz多普勒效應頻移范圍,這種速度選擇的射頻邊帶調制技術可以連續調諧射頻頻率,EIT頻譜的透射峰信號反映了里德伯態原子的能級間隔,依賴于多普勒匹配和雙光子共振,不敏感于單色激光頻率的絕對值.因此,這種射頻邊帶調制的方法不僅可以測量原子里德伯態的能級間隔,同樣可以測量里德伯態相互作用造成的相對能級移動.
實驗裝置如圖2所示,探測光和耦合光聚焦后在置于磁屏蔽筒中的銫原子氣室重合.原子氣室的長度為20 mm,兩束光的聚焦腰斑直徑約為100μm.探測光光源為低噪聲的852 nm外腔半導體激光器(external-cavity diode laser,ECDL),典型線寬為MHz量級.探測光經過波導型的電光調制器(EOM)實現光信號的射頻調制,信號源鎖定于銣原子鐘.耦合光的種子源為1018 nm的半導體激光器,線寬為MHz量級,波長調諧范圍為1016—1020 nm;經光纖放大器放大,最大輸出功率為5 W.1018 nm激光經四鏡環形腔倍頻系統可獲得約1 W的509 nm倍頻激光.倍頻晶體為周期極化的PPKTP晶體(1 mm×2 mm×10 mm).探測光利用銫原子飽和吸收譜(SAS)實現頻率鎖定和頻率識別;509 nm倍頻腔利用Pound-Drever-Hall(PDH)射頻邊帶調制[26]鎖定于1018 nm激光.在實驗中,調制信號(4.7 MHz)加載到1018 nm激光器的射頻調制端口,腔透射信號經混頻低通濾波解調獲得誤差信號,利用誤差信號反饋控制倍頻腔的壓電陶瓷,實現倍頻腔腔長的鎖定.

圖2 (網刊彩色)實驗裝置示意圖 OI為光隔離器,λ/2為半波片,λ/4為四分之一波片,EOM為波導型的電光調制器,PBS為偏振分光棱鏡,SAS為飽和吸收譜實驗系統,Lens為聚焦透鏡,DM為852 nm高透509 nm高反的雙色鏡,OFA為1018 nm光纖放大器,μ-metal為納特斯拉的磁屏蔽系統,PPKTP為溫度匹配倍頻晶體,PZT為壓電陶瓷,PD為探測器,Servo system為PDH鎖頻系統Fig.2.(color online)The schematic diagram of experimental set-up:Where OI,optical isolator;λ/2,halfwave plate;λ/4,quarter-wave plate;EOM,waveguide electro-optic modulator;PBS,polarization prism;SAS,the experimental system of saturated absorption spectra;Lens,focusing lens;DM,dichroic mirror that has high transmittance at 852 nm while high re fl ectivity at 509 nm;OFA,optical fi ber ampli fi er of 1018 nm;μ-metal,magnetic shielding system;PPKTP,the crystal of second harmonic generation system;PZT,piezoelectric ceramic;PD,photoelectric detector;Servo system,the frequency locking system.
實驗中,852 nm激光運轉于6S1/2→6P3/2(F′=3,4,5)吸收峰附近;509 nm激光倍頻腔鎖定于1018 nm激光上,掃描1018 nm激光頻率,掃描頻率為12 Hz,相應的509 nm倍頻光也跟隨掃描.509 nm耦合光的功率為200 mW,852 nm探測光的功率為0.3μW.圖3為6S1/2→6P3/2(F′)→57S的EIT信號.調諧探測光共振于6S1/2→6P3/2(F′=4)躍遷,耦合光波長為509.2943 nm(對應6P3/2(F′)→57S的躍遷),PPKTP晶體匹配溫度66.48°C.掃描1018 nm激光,由于多普勒效應,可觀測到6S1/2→6P3/2(F′=3,4,5)→57S的三條譜線,譜線相對于6S1/2→6P3/2(F′=5)→57S的間隔分別為169.2 MHz和304.8 MHz,如圖3(a)所示.通過EOM對探測光進行射頻調制,調制頻率為30 MHz,每個EIT透射峰出現兩個邊帶,考慮到509 nm和852 nm的多普勒匹配,邊帶到主峰的間隔約為50 MHz,如圖3(b)所示. 以邊帶到主峰之間的頻率間隔(50 MHz)作為頻率標準可以標定光譜線的間隔.

圖3 (網刊彩色)6S1/2→6P3/2(F′)→57S的EIT信號 (a)6P3/2態的超精細分裂,圖中紅線為信號發生器掃描信號,通過(b)中的標定方式可將頻率標定,圖中以6S1/2→6P3/2(F′=4)→57S為零頻參考點;(b)透射峰頻率間隔的標定,在852 nm的探測光上施加30 MHz射頻調制,每個EIT透射峰出現兩個邊帶,由于坐標橫軸為509 nm耦合光的頻率變化,考慮多普勒匹配,邊帶到主峰的間隔約為50 MHz,由此標定透射峰之間的頻率間隔Fig.3.(color online)The EIT signal of the transition 6S1/2→ 6P3/2(F′)→ 57S:(a)The hyper fi ne splitting of 6P3/2,the red line shows the scanning signal of the function generator,the zero point frequency responds to the transition 6S1/2→ 6P3/2(F′=4)→ 57S;(b)the frequency calibration to the interval of transmission peaks,with a 30 MHz modulation to the probe laser,the peak of the EIT signal generated two sidebands,considering the Doppler matching,the interval from the main peak to its sidebands is 50 MHz;thereby we can calibrate the frequency interval between the transmission peaks.

圖4 (網刊彩色)6S1/2→6P3/2(F′)→57D的EIT信號 (a)6P3/2的超精細分裂和57D態的精細分裂.圖中紅線為信號發生器掃描信號,由于多普勒效應,掃描耦合光會產生6S1/2→6P3/2(F′=3,4,5)→57D5/2(圖中透射峰4,5,6)和6S1/2→6P3/2(F′=3,4,5)→57D3/2(圖中1,2,3)的透射峰,圖中透射峰3和6(或1和4,2和5)的間隔即為57D3/2和57D5/2的能級間隔;(b)透射峰間隔的標定,如圖3(b)中所示,在852 nm探測光上施加30 MHz的頻率調制,通過EIT標定了耦合光掃描的相對頻率及透射峰的間隔Fig.4.(color online)The EIT signal of the transition 6S1/2→ 6P3/2(F′)→ 57D:(a)The hyper fi ne splitting of the state 6P3/2and the fi ne splitting of the Rydberg state 57D,the red line shows the scanning signal of the function generator,because of Doppler e ff ect,the spectra of 6S1/2→ 6P3/2(F′)→ 57D transition can be observed,the transmission peaks 1,2,3 corresponding to the transition 6S1/2→ 6P3/2(F′)→ 57D3/2 and 4,5,6 corresponding to the transition 6S1/2→ 6P3/2(F′)→ 57D5/2,the interval between transmission 3 and 6(1 and 4 or 2 and 5)is the splitting of 57D3/2and 57D5/2;(b)the frequency calibration to the interval of transmission peaks.

表1 57D態精細分裂實驗結果Table 1.The experimental results of the 57D fi ne splitting.
調諧耦合光波長至509.23625nm或509.23655 nm,對應于6P3/2(F′)→57D5/2(D3/2)躍遷,晶體匹配溫度為63.85°,觀察到6S1/2→6P3/2(F′)→57D的光譜,如圖4所示.圖4(a)為中間態的超精細分裂和里德伯態的精細分裂.峰1,2,3和4,5,6分別為6S1/2→6P3/2(F′)→57D3/2和6S1/2→6P3/2(F′)→57D5/2的EIT透射峰.對于每個里德伯態的精細結構,由于多普勒效應,可觀測到6S1/2→6P3/2(F′=3,4,5)→57D三條譜線,譜線相對于6S1/2→6P3/2(F′=5)→57D的間隔分別為169.2 MHz(F′=4)和304.8 MHz(F′=3).圖4(b)為射頻調制的EIT譜線,852 nm激光所加調制頻率為30 MHz.
利用邊帶標定的方法測量了6P3/2態的超精細分裂(譜線間隔與多普勒效應有關)和57D態的精細分裂(譜線間隔與多普勒效應無關),結果如表1所列.其中躍遷能級為EIT譜線各透射峰對應的躍遷線;?P為各EIT透射峰對應探測光相對于6S1/2(F=4)→6P3/2(F′=5)失諧量的理論值;?C為對應的耦合光失諧量,由?C=?kCv=?(kC/kP)?P=?(λP/λC)?P式得出;EIT譜線分裂計算值為計算得到的EIT透射峰的間隔,其中6S1/2(F=4)→6P3/2(F′=5)→57D3/2的計算值為由量子虧損理論計算得出的57D5/2和57D3/2態的能級差,即57D5/2和57D3/2的精細分裂間隔,具體計算由Rydberg-Ritz方程[27,28]:

給出,其中n,l,j分別為主量子數、軌道角動量量子數和總角動量量子數;E∞和E(n,l,j)分別為銫原子的電離能和相應能級的能量;δn,l,j為量子虧損數;數據參考文獻[27,28],計算可得57D態的精細分裂為346.8 MHz,其他值根據?=?P+?C=(1?kC/kP)?P及57D5/2和57D3/2態的能級差計算得出各EIT譜線對應于6S1/2(F=4)→6P3/2(F′=5)→57D3/2躍遷的頻率間隔;測量值為實驗標定后得到的各EIT譜線間隔,最終給出了各譜線間隔測量值與理論計算值的偏差.測量得到的57D5/2和57D3/2的EIT光譜間隔為(354.7±2.5)MHz,與理論計算的結果346.8 MHz(由6P3/2(F′)→57D5/2和6P3/2(F′)→57D3/2躍遷的激光頻率差給出)基本一致,測量精度主要受EIT的線寬和耦合光頻率掃描的非線性影響.如圖3和圖4中所示,6S1/2→6P3/2(F′=5)→57D躍遷對應的EIT譜線線寬約為13 MHz,這主要是由于其自然線寬(5.2 MHz)受多普勒效應影響加寬,探測光和耦合光的功率展寬及原子的碰撞展寬.EIT透射峰的線寬加寬會導致峰值處的測量精度降低.耦合光頻率掃描的非線性會使頻率標定產生偏差,從而影響測量的精度.測量誤差主要來源于1018 nm激光器壓電陶瓷電致伸縮的非線性導致的激光頻率的非線性掃描.
通過四鏡環形腔倍頻獲得了瓦級509 nm激光,基于509 nm激光和852 nm激光的雙光子激發過程實現了133Cs里德伯態制備,基于階梯型能級的EIT獲得了里德伯態光譜.基于速度選擇的射頻邊帶調制技術,我們測得主量子數n=57的里德伯態原子的57D5/2和57D3/2的精細結構分裂為(354.7±2.5)MHz,與理論計算值的偏差為2.3%.基于該實驗技術的光譜間隔測量,目前的測量精度主要受EIT的線寬和耦合光頻率掃描的非線性影響.該方案不僅可以用于里德伯態能級的精密測量,也可以用來測量里德伯原子之間的強相互作用導致的相對能級移動.
[1]Gallagher T F 1994Rydberg Atoms(Cambridge:Cambridge University Press)p1
[2]Sedlacek J A,Schwettmann A,Kubler H,Low R,Pfau T,Sha ff er J P 2012Nature Phys.8 819
[3]Bason M G,Tanasittikosol M T,Sargsyan A,Mohapatra A K,Sarkisyan D,Potvliege R M,Adams C S 2010New J.Phys.12 065015
[4]Barredo D,Kubler H,Daschner R,L?w R,Pfau T 2013Phys.Rev.Lett.110 123002
[5]Miller S A,Anderson D A,Raithel G 2016New J.Phys.18 053017
[6]Jiao Y C,Han X X,Yang Z W,Li J K,Raithel G,Zhao J M,Jia S T 2016Phys.Rev.A94 023832
[7]Pritchard J D,Maxwell D,Gauguet A,Weatherill K J,Jones M P A,Adams C S 2010Phys.Rev.Lett.105 193603
[8]Dudin Y O,Kuzmich A 2012Science336 887
[9]Maxwell D,Szwer D J,Paredes-Barato D,Busche H,Pritchard J D,Gauguet A,Weatherill K J,Jones M P A,Adams C S 2013Phys.Rev.Lett.110 103001
[10]Peyronel T,Firstenberg O,Liang Q Y,Ho ff erberth S,Gorshkov A V,Pohl T,Lukin M D,Vuleti? V 2012Nature488 57
[11]Sa ff man M,Walker T G,M?lmer K 2010Rev.Mod.Phys.82 2313
[12]Isenhower L,Urban E,Zhang X L,Gill A T,Henage T,Johnson T A,Walker T G,Sa ff man M 2010Phys.Rev.Lett.104 010503
[13]Dudin Y O,Kuzmich A 2012Science336 887
[14]Tong D,Farooqi S M,Stanojevic J,Krishnan S,Zhang Y P,C?té R,Eyler E E,Gould P L 2004Phys.Rev.Lett.93 6
[15]Mohapatra A K,Jackson T R,Adams C S 2007Phys.Rev.Lett.98 113003
[16]Carr C,Tanasittikosol M,Sargsyan A,Sarkisyan D,Adams C S,Weatherill K J 2012Opt.Lett.37 3858
[17]Harris S E 1989Phys.Rev.Lett.62 1033
[18]Li Y Q,Xiao M 1995Phys.Rev.A51 4959
[19]Fano U 1961Phys.Rev.124 1866
[20]Zhao J M,Zhu X B,Zhang L J,Feng Z G,Li C Y,Jia S T 2009Opt.Express17 15821
[21]Kübler H,Sha ff er J P,Baluktsian T,L?w R,Pfau T 2010Nature Photon.4 112
[22]Huber B,Baluktsian T,Schlagmuller M,Kolle A,Kübler H,L?w R,Pfau T 2011Phys.Rev.Lett.107 243001
[23]Xu W,DeMarco B 2016Phys.Rev.A93 011801
[24]Bao S X,Zhang H,Zhou J,Zhang L J,Zhao J M,Xiao L T,Jia S T 2016Phys.Rev.A94 043822
[25]Li G,Li S K,Wang X C,Zhang P F,Zhang T C 2017Appl.Opt.56 55
[26]Black E D 2001Am.J.Phys.69 79
[27]Weber K H,Sansonetti C J 1987Phys.Rev.A35 4650
[28]Goy P,Raimond J M,Vitrant G,Haroche S 1982Phys.Rev.A26 2733
Measurement of the fi ne structure of cesium Rydberg state?
Pei Dong-Liang1)2)He Jun1)2)3)?Wang Jie-Ying1)2)Wang Jia-Chao1)2)Wang Jun-Min1)2)3)?
1)(Institute of Opto-Electronics,Shanxi University,Taiyuan 030006,China)
2)(State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,Taiyuan 030006,China)
3)(Collaborative Innovation Center of Extreme Optics,Taiyuan 030006,China)
The spectra of Rydberg atoms are of great signi fi cance for studying the energy levels of Rydberg atoms and the interaction between neutral atoms,especially,the high-precision spectra of Rydberg atoms can be used to measure the energy level shifts of Rydberg atoms resulting from the dipole-dipole interactions in room-temperature vapor cells.In this paper we report the preparation of cesium Rydberg states based on the cascaded two-photon excitation of 509 nm laser and 852 nm laser in opposite,and the measurements of the fi ne structure of cesium Rydberg states.In this experiment,the 509 nm laser is generated by the cavity-enhanced second-harmonic generation from 1018 nm laser with a periodicallypoled KTP crystal and has a maximum power of about 1 W,and the 852 nm probe laser is provided by an external-cavity diode laser with a maximum output power of 5 mW and a typical linewidth of 1 MHz.By scanning the frequency of 509 nm coupling laser,it is presented that the Doppler-free spectra based on electromagnetically-induced transparency(EIT)of 509 nm coupling laser and 852 nm probe laser.The velocity-selective EIT spectra are used to study the spectral splitting of 6S1/2—6P3/2—57S(D)ladder-type system of cesium Rydberg atoms in a room-temperature vapor cell.The powers of 852 nm probe laser and 509 nm coupling laser are 0.3μW and 200 mW,respectively.Their waist radii are both approximately 50 μm.The intervals of hyper fi ne splitting of the intermediate state 6P3/2(F′=3,4,5)and fi ne splitting of 57D3/2and 57D5/2Rydberg states are measured by a frequency calibrating.Concretely,the velocity-selective spectrum with a radio frequency(RF)modulation of 30 MHz is used as a reference to calibrate the Rydberg fi ne-structure states in the hot vapor cell,where the RF frequency precision is smaller than a hertz on long time scales and the EIT linewidth is smaller than 13 MHz.The experimental value of the fi ne structure splitting of 57D3/2and 57D5/2Rydberg states is(354.7±2.5)MHz,that is in consistence with the value of 346.8 MHz calculated by Rydberg-Ritz equation and quantum defects of 57D3/2and 57D5/2Rydberg states.The experimental values of hyper fi ne splitting of intermediate state 6P3/2(F′=3,4,5)are also coincident with the theoretical calculated values.The dominant discrepancy existing between the experimental and calculated results may arise from the nonlinear correspondence of the PZT while the 509 nm wavelength cavity is scanned,and the measurement accuracy in fl uenced by the spectral linewidth.The velocityselective spectroscopy technique can also be used to measure the energy level shifts caused by the interactions of Rydberg atoms.
Rydberg state,electromagnetically induced transparency, fi ne structure,hyper fi ne structure
20 April 2017;revised manuscript
6 July 2017)
(2017年4月20日收到;2017年7月6日收到修改稿)
10.7498/aps.66.193701
?國家自然科學基金(批準號:61475091,61227902)、國家重點研發計劃(批準號:2017YFA0304502)和山西省高等學校科技創新項目(批準號:2017101)資助的課題.
?通信作者.E-mail:hejun@sxu.edu.cn
?通信作者.E-mail:wwjjmm@sxu.edu.cn
?2017中國物理學會Chinese Physical Society
PACS:37.10.–x,32.80.–t,42.50.Hz
10.7498/aps.66.193701
*Project supported by the National Nature Science Foundation of China(Grant Nos.61475091,61227902),the National Key Research and Development Program of China(Grant No.2017YFA0304502),and the Scienti fi c and Technological Innovation Programs of Higher Education Institutions in Shanxi Province,China(Grant No.2017101).
?Corresponding author.E-mail:hejun@sxu.edu.cn
?Corresponding author.E-mail:wwjjmm@sxu.edu.cn