王佺珍,劉 倩,高婭妮, 柳 旭
西北農林科技大學, 動物科技學院草業科學系, 楊凌 712100
植物對鹽堿脅迫的響應機制研究進展
王佺珍,劉 倩*,高婭妮, 柳 旭
西北農林科技大學, 動物科技學院草業科學系, 楊凌 712100
鹽堿脅迫是制約植物生長發育的主要非生物脅迫之一,也是制約農作物生產和生態環境建設的嚴峻問題。研究作物的耐鹽堿機理,對開發和有效利用鹽堿地有重要的現實意義。許多研究將鹽堿脅迫籠統稱為鹽脅迫,實際上這是兩種不同的非生物脅迫,且堿脅迫對植物的傷害要大于鹽脅迫??偨Y性闡述了鹽堿脅迫對植物的危害。從生物量、光合作用、離子平衡和膜透性等方面分析了植物對鹽堿脅迫的響應機制,并結合最新研究從多角度綜述了植物的抗鹽堿機理,包括合成滲透調節物質、提高抗氧化酶活性、對離子的選擇性吸收及pH平衡和誘導抗鹽堿相關基因表達。提出了抗鹽堿性的途徑,即外源物質的加入、與真菌的協同效應、利用生物技術手段、培育耐鹽堿品種和抗性鍛煉。最后針對植物適應鹽堿逆境方面的研究進行了展望,提出了當前研究需要解決的問題和突破口,旨在為提高植物耐鹽堿能力、增加作物產量提供一定的理論依據。
鹽堿脅迫;響應;緩解;研究進展
Abstract: Salinity-alkalinity stress (SAS) is one of the major abiotic stresses affecting the growth and development of plants and has been a severe problem that restricts crop production and even the development of the ecological environment. It is vital to understand the mechanisms behind the response to SAS in plants for effective reclamation and utilization of saline-alkali soil. Plants vary in response to salt and alkali stresses, but salt stress has generally been the focus of numerous SAS studies. In addition, alkali stress is more severe than salt stress because of the accompanying high pH stress, which can inhibit uptake of ions and disrupt the ionic balance of cells. This article briefly describes the damage caused by these stresses and interprets the mechanisms in terms of the influences on biomass, photosynthesis, ion balance, and membrane permeability using a comprehensive summary of the advances in research on the physiological and biochemical responses to SAS. We focused on the alleviating mechanisms of plants under SAS with regard to selective ion absorption and pH balance, the synthesis of osmotic regulation substances, improvement of enzymatic antioxidant capacity, and the expression of genes relevant to SAS tolerance. Furthermore, this article proposes five ways to cope with SAS, including the addition of exogenous substances, synergistic effects of fungi, use of biotechnological tools, SAS acclimation, and breeding cultivars for SAS tolerance. Significant progress has been made using traditional methods to improve SAS tolerance, although genetic tools play a major role and comprise the direction of our further research as well. There is an urgent need to select SAS-tolerant varieties through biotechnological methods. The prospects for developing SAS tolerance are also discussed, with the aim of providing a reference for improving plant resistance to stresses and increasing crop yield. 1) Although SAS limits crop growth and reduces agricultural productivity, it may also improve the quality of some fruits. It is, therefore, important to determine a balance between the yield and quality of plants. It is also necessary to determine the dominant factors in salt-alkali tolerance. Some indices have been frequently used in past studies, and a breakthrough in new indices is required. 2) The differentially expressed proteins detected in plants have not been completely understood. The revelation of useful information related to SAS tolerance will lead to some unexpected discoveries. In the near future, it is important to increase the tolerance of plants to SAS by using genetic engineering technologies. The importance of genes in negative regulation needs to be considered. High throughput analysis of the differences in SAS tolerance between salt-tolerant plants and salt-sensitive plants may aid in determining the root causes of the differences. More economic and ecological benefits can be achieved by cultivating additional SAS-tolerant plants and exploring the beneficial effect of saline-alkali tolerant plants on saline-alkali land that requires restoration and amelioration. These analyses also provided new insights into understanding the potential tolerance systems within plants.
KeyWords: salinity-alkalinity stress; response; alleviation; research progress
世界上大約有20%的灌溉土壤受到鹽度的影響,且呈不斷惡化的趨勢[1- 2]。預計到2050年,50%以上的耕地會發生鹽堿化[3],嚴重威脅著土地利用率和作物產量[4]。中國鹽堿地尤其是內陸鹽堿地多是鹽化和堿化混合,成分復雜且程度各異,使人們很容易將鹽堿混為一談,統稱其為鹽堿地[5]。實際上,土壤鹽化與堿化分別以鹽度、pH值升高為主要特點,并非兩種相同的非生物脅迫[6]。鹽化和堿化常常同時發生,這種現象在很多地區普遍存在。最近數據統計顯示,中國東北鹽堿侵害的草地面積已達70%[7], 且仍在擴大。鹽、堿對植物的危害程度從大到小依次是鹽堿脅迫、堿脅迫、鹽脅迫[8- 9]。鹽堿脅迫會降低土壤滲透勢、使離子失衡、打亂生理過程、抑制植物生長、降低作物的質量和產量。嚴重地區甚至會導致植物死亡。隨著科學技術的進步,鹽堿地在技術改良方面已經取得了很多成果,也是應該繼續努力的方向。但是,還存在著很多地域、資源、成本等限制,因而,培育耐鹽堿品種的植物,提高植物的耐鹽堿能力是緩解鹽堿地對植物影響的一個有效生物措施,同時還可以產生較好的生態和經濟效益,促進農業的可持續發展。因此,關于植物適應鹽堿逆境的研究已成為國內外專家學者們當前研究中的一個熱點。之前關于植物對鹽脅迫或堿脅迫的響應及緩解機制的研究很多,但是對混合鹽堿脅迫下所涉及的植物的生理生化反應、基因組學、分子生物學等多角度的響應及緩解機制的綜述研究卻鮮有報道。因此,本文綜合分析了植物對鹽堿響應及緩解機制的不同觀點,提出了提高植物抗鹽堿性的有效措施,最后針對植物適應鹽堿逆境方面的研究進行了展望,以期為提高植物耐鹽堿能力、增加作物產量提供科學參考和理論依據。
類似于其他非生物脅迫,植物響應鹽堿逆境過程中涉及了復雜的生理生化反應[10]。鹽堿脅迫會對植物產生很多不利的影響,包括鹽脅迫造成的滲透脅迫、離子毒害、氧化應激等,除此之外,還會由于堿脅迫下pH的升高對植物造成進一步的傷害。根系周圍土壤pH值升高時,一些金屬離子如Fe2+、Mg2+、Ca2+等沉積,伴隨著無機陰離子減少,植物對礦質營養的吸收受阻,造成嚴重營養脅迫[11- 12](圖1),進而干擾植物的各種代謝活動。這些結論大部分是在短期脅迫下研究得出的,而Munns等[10- 13]證明了在長期鹽堿脅迫下,隨著脅迫時間的延長,植物呈兩個生長階段,第一階段是其對短期脅迫的響應(由水或滲透脅迫造成的),第二階段是對長期脅迫的調整[14](由植物體內離子毒害作用造成的)。植物在鹽堿化土壤上生存,既要通過滲透調節和離子均衡來躲避滲透脅迫和離子毒害,又要維持體內的pH平衡。那么鹽堿脅迫具體是通過怎樣的生理生化過程來影響植物生長的?又可以通過什么樣的機制來緩解這種傷害的呢? 越來越多的學者開始深入地研究這些問題。

圖1 鹽堿脅迫對植物的傷害Fig.1 The harmness of salinity-alkalinity stress to plants
外部形態和生長狀況是反映植物受鹽堿傷害程度大小的最直觀表現。早期種子萌發時就會受到環境脅迫的影響。Vu等[15]研究發現草木樨(Melilotusofficinalis)種子在未發芽階段可以通過某種機制來抵抗脅迫,在萌發階段,鹽度是影響其萌發的主導因素,pH是次要因素。低濃度的鹽可以促進種子萌發,高濃度則會明顯抑制其萌發,且隨著鹽濃度的升高,抑制作用增強。類似結果在栓皮櫟(Quercusvariabilis)[16]、苜蓿(MedicagosativaL.)[17]、紅堅木(Dysoxylumspp.)[18]、非洲菊(GerberajamesoniiBolus)[19]種子等研究中均有報道,同時,渠曉霞等[20]解釋了休眠是種子抵抗鹽堿脅迫的主要策略。二型性種子在各種鹽度下的萌發策略不同。鹽脅迫下,鹽地堿蓬(SuaedasalsL.)[21-23]、藜(ChenopodiumalbumL.)[24]的棕色種子比黑色種子離子含量和萌發率更高,表現出更強的耐鹽性。外源ACC與KNO3的協同作用可以顯著提高藜黑色種子的萌發率,低濃度的CaCl2則對棕色種子有更好的緩解作用[24- 25]。GA、硫脲和硝酸鹽能緩解鹽度對蕎麥(HalopyrummucronatumL.)夏季種子的影響,GA、CTK和甜菜堿能夠減弱鹽度對冬季種子發芽的抑制[26]。此外,一些物理方法如低溫層積、松土、去除種皮通過打破休眠也可以降低鹽度對種子的傷害程度[27]。
植物對鹽堿脅迫的形態響應主要是通過地上、地下生物量的分配體現的,且地上部形態和生物量表現更顯著?;旌消}堿脅迫下,植物株高、葉片數、莖長及地上部分干物質重等均有所下降,地下部含水量和幼苗根長下降幅度相對較小,根莖莖節長度和比根長增加[28],對于一些耐鹽堿植物,低濃度鹽堿脅迫還可以促進其生長,各耐鹽指數呈正態分布,表現出低促高抑的效應[29],植株地上部分/地下部分干鮮重顯著下降[30]?;旌消}堿脅迫主要是通過影響植物對水分的吸收利用[31]、光合作用、酶代謝、氣孔因素[32]等來影響其重量的。
光合作用是植物物質能量來源的關鍵代謝過程,鹽堿脅迫下,葉片細胞結構發生顯著變化[33],光合受阻,光合速率下降。許多研究從各個角度對此做出了全面解釋。Yang等[6]實驗證明了隨著鹽度和pH的增大,苜蓿葉片中凈光合速率、氣孔導度和胞間CO2濃度下降。鹽堿脅迫中產生的離子毒害和高pH值對植物的光系統II 反應中心會造成損傷,使光合電子傳遞和PSII的光合作用活力被抑制[34]。同時,葉綠體結構損傷[35],參與光反應和卡爾文循環的酶和蛋白下調[36]。而葉片色素的含量還與植物抗鹽堿性和鹽堿的種類、濃度有關。也有研究者認為,光合作用產生的干物質主要在葉片中積累,鹽堿脅迫下葉原基的發生受到抑制,單株植物的光合面積減少,因而間接造成植物碳同化量減少使得植物生長受到影響[37]。此外,Mg2+是葉綠素合成的必要元素,而堿脅迫還會導致Mg2+沉淀,使得葉綠素合成受阻[38],含量減少,光合作用減弱。實際上,凡是涉及到能量供應的碳水化合物代謝、光合作用、TCA循環都會受到鹽堿脅迫的抑制,且堿脅迫的抑制程度大于鹽脅迫,高豐度的單糖和TCA循環中間體的積累提供了更多的能量來源[39]。
離子在植物正常生長過程中起著重要的作用,土壤鹽堿化會打破植物體內的離子的動態平衡[40]。特別是堿脅迫下pH的升高會破壞根系離子的吸收運輸。Shaheen[41]等研究發現羊草的根莖和葉片中,Na+含量隨著土壤鹽堿程度的增大顯著增加,而K+含量則明顯減少。在禾本科鹽生互米花草(Spartinaalterniflora)[42]、甜高粱(Sorghumbicolor)[43]、玉米(ZeamaizeL.)[44]中也得到了相似的結論。同時,H+-ATP酶活性增強,Na+/ K+交換活動顯著上調,而H+-PPase活性則有所下降。這也說明了H+-ATP酶和Na+/K+的平衡在植物抗鹽堿脅迫中發揮著重要作用。根部K+外流引起的K+-Na+不平衡還會使氣孔導度變小,氣孔的長度、寬度和氣孔孔徑寬度均隨鹽堿濃度的增加而降低[45]。Wang等[9]發現限制向日葵離子運輸的主要部位是子葉節區。不同濃度的鹽堿脅迫對抗逆性不同的植物影響有所差異,但高濃度的鹽堿脅迫會普遍對離子平衡產生不利影響。
細胞膜是使細胞維持穩定胞內代謝環境的必要屏障,其具有的選擇透過性可以調節和選擇物質進出。在鹽堿脅迫中,植物首先受到傷害的是細胞膜的結構和功能,引起質膜透性增大。一方面植物體內滲透勢升高,使植物的各種膜系統產生滲透脅迫。另一方面,由于帶電單價離子濃度的升高對細胞產生專性毒害作用,使一些生物大分子如酶、蛋白質以及膜結構的穩定性被破壞[46]。植物葉片質膜受傷害程度隨鹽堿濃度的增大而增加,高鹽濃度下,膜的選擇透過性被破壞,大量電解質外滲。
生物膜的破壞主要是由膜質過氧化造成的,質膜的破壞程度可以用細胞質膜透性的變化和丙二醛(malondialdehyde,MDA) 的含量來反映[47]。具有細胞毒性的膜脂過氧化產物丙二醛,會引起生物大分子如蛋白質、核酸等的交聯聚合。它與質膜透性的變化規律相同[48],兩者顯著正相關,Li等[49]發現在輕度和中度鹽堿脅迫下,歐李(Cerasushumilis(Bge.) Sok.)葉片中MDA含量的變化趨勢與CK類似,而在重度脅迫下MDA在葉片中的含量從一開始就急劇增加。這在白刺[50]、水稻(Oryzasativa)[51]中都得到了驗證。因此,細胞膜透性的變化反應了外部不良環境對植物細胞的傷害程度,同時細胞膜在逆境下的穩定性也反映了植物抗逆性的高低。
鹽堿逆境下,植物主要通過合成滲透調節物質、提高酶的抗氧化能力、對離子選擇性吸收、營養平衡、改變代謝類型、調整生物量的分配等方法來減輕不良環境對其生長發育造成的傷害。其中,植物體根的代謝調控發揮著重要作用[52-53],是植物應對鹽堿脅迫的第一道屏障,積累溶質來進行滲透調節是緩解鹽堿脅迫的主要途徑。
參與植物抗鹽堿過程的滲透調節物質主要包括兩大類:(1) 從外界環境進入植物細胞的無機離子,如K+、NO-3、Cl-和無機酸鹽等。(2) 細胞內合成的有機溶質,如脯氨酸、甜菜堿、膽堿、有機酸等,還包括一些代謝中間產物如糖類及其衍生物等。這兩類滲透調節物質在植物抵抗鹽堿脅迫中都發揮著重要作用。
Ranganayakulu等[54]發現高濃度鹽、堿脅迫下,花生(ArachishypogaeaL.)莖葉中甜菜堿大量積累。外源甜菜堿可以明顯提高萵苣(LactucasativaL.)[55]的生長。甜菜堿不僅參與細胞的滲透調節還在植物氣孔運動、穩定生物大分子、呼吸作用等過程中發揮著重要作用。噴施外源甜菜堿,可以提高作物的滲透調節能力,減輕逆境對其的傷害[56]。
游離狀態的脯氨酸在植物體內廣泛分布,是主要的有機滲透調節物質。在穩定生物大分子結構、解除氨毒及作為能量庫調節細胞氧化還原勢等方面也起著重要作用。脯氨酸的積累是植物在鹽堿脅迫下自身出現的一種防御性行為,也是其遭受逆境脅迫的一種信號[57]。葉面噴施脯氨酸可以刺激莖葉和根部的生長,對提高植物干鮮重、光合速率、抗氧化酶活性等都有貢獻[58]。
可溶性糖不僅可以為有機物的合成提供物質和能量,還作為一種滲透調節物質在植物的生長發育起著重要作用,隨著鹽堿濃度的增大,植物可溶性糖含量呈先增多后減少的趨勢[59],耐鹽性強的在較高鹽堿濃度下可溶性糖含量仍顯著增加。在鷹嘴豆生殖生長期輸入蔗糖,可以增加不同組織中的總糖和緩解鹽誘導的繁殖障礙,增強其耐鹽性[60]。
有機酸可以清除單態氧和包含OH-的自由基,在離子平衡和酸堿調節中發揮作用。燕麥幼苗在鹽脅迫和堿脅迫下的生理響應機制是不同的,鹽脅迫下以積累Cl-為主,堿脅迫下以積累有機酸為主[31]。Guo等[61]發現星星草(Puccinelliatenuiflora)在響應堿脅迫中起關鍵作用的是根際有機酸(主要是檸檬酸)的積累,同時還發現甜菜堿、膽堿在鹽脅迫和堿脅迫下都對滲透調節的影響是微不足道的。這與大多數研究者的結論略有差異,其中特殊的機理還有待進一步探討。此外,在鹽堿脅迫下,羊草中主要積累檸檬酸,蓼科中主要積累草酸[62-63],說明不同植物在緩解鹽堿對其造成的傷害中有機酸代謝調節不同。隨著脅迫時間的延長,有機酸含量下降[64],但是尚不明確這是由于其中的鹽離子及pH引起的還是合成代謝被抑制導致的。
植物體內的抗氧化酶包括超氧化物歧化酶(SOD)、過氧化物酶(POD)、過氧化氫酶(CAT)和抗壞血酸過氧化物酶(APX)等。它們主要通過清除體內的活性氧來保護酶系統,還參與細胞的光合、呼吸、木質素的形成等,在葉綠體、線粒體、細胞質中發揮作用。這些酶的活性可以反應植物體內代謝和抗逆性的變化。滲透調節能力越強,保護酶活性越高的植物,對鹽堿逆境能表現出更好的適應性[65-66]。


圖2 鹽脅迫信號轉導過程(參考郭文芳(2015)[80]改匯) Fig.2 Signal Transduction Pathways in Response to Salt Stress in Plants
在鹽堿脅迫下,Na+的積累會使細胞的膜系統受損,而K+作為一種重要的無機溶質,對降低植物細胞滲透勢和維持水分平衡至關重要。植物通過限制Na+進入細胞,并選擇性吸收K+來維持組織細胞的高K+/Na+值以保證的正常生理代謝[72]。在植物抗鹽堿中,這種離子選擇性吸收和離子平衡比滲透調節物脯氨酸發揮著更大的作用[73]。
植物鹽脅迫信號轉導途徑主要有蛋白激酶途徑、ABA途徑(依賴ABA途徑、不依賴ABA途徑)、SOS途徑(圖2)。Ca2+作為第二信使與堿脅迫顯著正相關,高濃度的鈣會立即觸發SOS[74]鈉排除系統來減輕鈉的傷害[75-76],還可以誘導合成新的脅迫蛋白。研究發現,在鹽堿脅迫下鈣離子含量的增加有利于提高大米[77]、小麥[78]、番茄(LycopersiconesculentumMill.)[79]等的耐鹽堿能力。因此,植物可以通過增強對鈣的吸收來緩解鹽堿脅迫。最新研究還發現,高鹽脅迫下,胡楊釋放的胞內Ca2+和H2O2會介導產生胞外ATP (eATP)信號[69],該物質不僅可以調節植物的生長和抗氧化防御,還能間接調節其耐鹽性。
Mg2+是葉綠素形成必不可少的元素,在光合和呼吸作用中的某些酶也需要有Mg2+的激活才能發揮作用,此外,它還可以調節氣孔關閉,影響離子平衡。Rubio 等[81]報道提高鹽堿處理液中Ca2+的含量后,胡椒(PipernigrumL.)的蒴果產量增加。鹽堿脅迫下植物會吸收這些對自身有利的離子,排出有害離子。同時,植物還可以通過提高對微量元素的吸收及分配能力來保持體內營養均衡[82],更好地適應鹽堿脅迫。
在調節植物體pH平衡中,起主導作用的是有機酸和無機陰離子,鹽脅迫下細胞內有機酸變化幅度較小,而在堿脅迫下會顯著增加來補充體內的陰離子保證細胞pH穩定。
鹽堿脅迫會抑制一些正?;虻谋磉_,而加強與抗脅迫相關基因的表達。植物的耐鹽堿性不是由單個基因決定的,是多個抗逆基因共同表達調控的。 擬南芥中PutAPX超表達提高葉綠素含量、降低膜脂過氧化程度[83];GmST1增加對ABA的敏感性,減少活性氧的產生[84];AtHD2D[85]增加根冠比、減少MAD含量。不同的基因通過調控不同的代謝途徑都可以提高其耐鹽堿性,這些耐鹽堿基因主要包括四大類:(1)合成滲透保護物質的相關基因(2)離子轉運蛋白基因(3)抗氧化相關基因(4)信號轉導相關基因。PEAMT基因催化產生磷酸膽堿提高遼寧堿蓬抗鹽性[86]、McNHX2表達產物NHX逆向轉運蛋白作為離子轉運體通過調節Na+濃度維持冰花(Mesembryanthemumcrystallinum)細胞內離子穩態提高其耐鹽性[87]。SlSAMS1在番茄中過表達可促進多胺的積累,而多胺可以提高H2O2酶的活性,從而減緩細胞氧化損傷增強其抗鹽堿性[8]。煙草中NtABF及RrANR對ROS的清除和ABA信號途徑的正調控可使植物免受高鹽堿危害[88]。這些不同類型的基因共同協作幫助植物度過鹽堿逆境。
隨著鹽堿脅迫的增加,總糖含量和可溶性蛋白質也會增加。張建秋等[89]在鹽堿脅迫下用雙向電泳技術分析白刺中蛋白表達情況時發現,其葉片中蛋白總量無顯著變化,但對鹽堿脅迫有正貢獻的特異蛋白表達如66, 28kD蛋白明顯增多。近年來,越來越多的研究發現,鐵蛋白的mRNA和蛋白質也會在逆境脅迫下顯著增加,鐵蛋白通過貯藏鐵離子來幫助植物抵御氧化脅迫[90]。有報道顯示,轉基因煙草(NicotianatabacumL.)過表達鐵蛋白后,植株對活性氧的脅迫耐受性顯著提高[91]。野大豆(Glycinegracilis)的根系可以依賴特定的轉錄因子和氧化還原相關基因來響應鹽堿脅迫[92],越來越多的耐鹽堿相關蛋白如SGF14c蛋白[93]、GsSKP21蛋白[94]、GmbZIP110[95]等在大豆中被發現。此外,SAM合成酶[96]、 MdSOS2L1蛋白激酶[97]等通過多胺代謝也能提高番茄的抗鹽堿能力。半胱氨酸蛋白酶抑制劑GsCPI14與鈣/鈣調素結合的受體樣蛋白激酶GsCBRLK相互作用幫助大豆抵御鹽堿脅迫[98]。由此可見,植物通過抗逆基因的選擇性表達,產生一些抗鹽堿相關蛋白也是植物抵抗鹽脅迫的一種有效方式,而這些蛋白究竟是通過怎樣的機理來幫助植物抵抗鹽堿脅迫的還有待進一步研究。
施加外源物質是緩解鹽堿脅迫的一種有效抗鹽方式,現在已經有越來越多對鹽堿脅迫下幼苗生長有緩解作用的外源物質被發現。較常用的外源添加物主要包括四大類,一是滲透調節物質如甜菜堿、糖類[99]、有機酸等;二是與降低膜透性有關的物質如水楊酸、腐殖酸、Ca2+等;三是可以提高植物抗氧化能力的物質如硒、硅[100-101]、NO[102]、γ-氨基丁酸[103]等,四是植物生長調節劑如茉莉酸[104]、CTK[105]、IAA等,此外還有一些其他物質如鑭[106]、降黑素[107]等也可以提高植物的抗鹽堿性。當然,還有很多外源物質尚未發現,需要我們深入研究發現更多可以提高植物抗鹽堿性的外源物質。張毅等[108-109]研究發現葉面噴施亞精胺(Spd)會明顯促進番茄生長,提高其耐鹽堿性,并證實了這與Spd對光合機構的保護效應和參與氮代謝提高營養平衡密切相關。此外該物質還可以減輕對番茄根系線粒體的傷害[110]。Chunthaburee等[111]補充Spd還可以通過增強花青素,酚類物質含量和抗氧化能力提高水稻的耐鹽堿性。因此,作為一種低成本的抗鹽堿方式,外源物質緩解逆境脅迫成為研究中的熱點。
內生菌可以通過參與滲透調節[112]、光合作用、提高植物營養[113]、增強抗氧化系統等方面來緩解鹽堿脅迫對植物的傷害。Herriel等[114]報道,在NaCl脅迫下接2 種AMF對辣椒(Capsicumannuum)和洋蔥(Alliumcepa)的生長都有促進作用,能明顯提高這兩種作物的抗鹽堿性。Zarea等[115]研究發現在小麥上接種內生菌可以通過提高葉綠素含量,促進光合作用來提高植物的抗鹽堿性。用菌根真菌既可以提高植物的抗鹽堿性又可以減少化學制劑的使用,減輕環境壓力。在這方面的研究也可以挖掘更多的思路。
轉基因技術一直是學術研究中的熱點,其安全性也是一個備受爭議的話題。轉OsCYP2基因水稻在苗期的抗鹽堿能力要高于對照[116]。野生大豆中分離出的基因GsJAZ2[117]、新型混合富含脯氨酸型基因GsEARLI17[118];甜高粱中的SbCIPKs基因[119];苜蓿中的MtWRKY76[120]、GsGSTU13[121]等都對植物耐鹽堿脅迫起著正調控作用。用攜帶小麥TaNHX2基因的根癌農桿菌LBA4404侵染辣椒(CapsicumannuumL.),發現轉基因辣椒的脯氨酸、葉綠素、SOD、APX、相對含水量水平都增強、并減少H2O2、丙二醛含量[122]。此外,有研究報道相同條件下種植轉SOS基因高羊茅會減低土壤pH和鹽堿度。但是還沒有探明到底是哪種差異引起的。雖然現在在轉基因技術方面的研究越來越熱,但是相比于其他方法,這方面的研究成果相對較少,還有很大的提升的空間。
與生物技術手段相結合,對植物基因進行修飾改造實現抗鹽堿基因的轉移;品種間雜交;對現有植物進行耐鹽堿篩選等都是培育耐鹽堿品種的有效途徑。如擬南芥中多胺氧化酶5的功能缺失突變[123]、二倍體野生西方白三葉和普通白三葉回交[124]都可以選育出耐鹽堿品種。還要大量培育像沙棘、甜高粱、結縷草等這樣本身有較強耐鹽堿性的植物。此外,抗鹽堿性差異較大的兩種植物還可以通過嫁接[125]提高抗性。
抗鹽堿鍛煉可以提高植物的抗鹽堿性。高等植物會有一些“脅迫記憶”或“脅迫印記”,植物首次受到的脅迫可以通過適應性響應的誘導增強植物的抗逆性[126]。一般植物在幼苗時期對鹽堿最為敏感,播種前用不同梯度的鹽堿溶液浸泡種子一段時間,吸水膨脹后再進行萌發,可以提高植物的耐鹽堿性。擬南芥種子用甲萘醌亞硫酸氫鈉(MSB)浸種后發現對種子萌發并沒有影響,但是卻會使擬南芥生長更快,積累更多的脯氨酸,表現出更高的耐鹽堿性[127]。
在鹽堿脅迫方面,關于植物對鹽脅迫的響應機制是研究最多的,在堿脅迫和混合鹽堿脅迫方面的研究的相對較少,而且很多研究中將鹽堿脅迫籠統的稱為鹽脅迫,缺乏科學性。鹽化與堿化常常同時發生,存在相互影響的交互作用。因此,研究混合鹽堿脅迫對提高作物產量和環境建設的影響有重要的現實意義。
(1) 找到平衡點,確定主導影響因子 鹽堿脅迫雖會降低植物產量,但也會提高一些植物果實的質量,如小麥[1]、番茄[128]、燕麥[129]等,因此,確定能使植物產量和質量達到最優的鹽濃度平衡閾值,是今后研究的一個新的突破口。目前,大多數研究多集中在種子萌發過程和植物幼苗時期,對植物整個生命過程的系統綜合研究較少,從植物生長的不同時期不同部位進行探討比較各指標的動態變化和具體的信號轉導過程或許會有新的發現。此外,各生理過程受到不同離子、蛋白、次級代謝產物等交互作用的影響,發現新指標、確定不同時期影響植物不同部位的主導因素以及植物耐鹽堿主導因子也是必要的。
(2) 篩選抗性基因,全面解釋機制 目前,植物對鹽堿脅迫響應的分子機制研究還處于初級階段,篩選耐鹽堿相關基因、對基因家族進行轉錄組測序、系統發育分析、亞細胞定位及利用蛋白質互作和表達譜信息對基因功能深層預測是當前研究的重中之重。同時,也不能忽視對植物抗性有負調控作用的基因改造研究,如擬南芥中的AtRNP1[130]。植物抗鹽堿性是由多個基因共同調控的一個復雜過程,從耐鹽植物和敏鹽植物之間在抗鹽堿方面差異的角度開展高通量差異數據分析,進而找出造成差異的根本原因,發揮蛋白質和基因組學的優勢,利用cDNA芯片、雙向電泳技術、農桿菌介導法等對植物耐鹽堿基因進行生物學鑒定,實現抗鹽堿基因的轉移,從植物生理學、基因組學、分子生物學、蛋白組學等不同學科綜合系統地挖掘和解釋植物的抗鹽堿機制對于改良作物具有重要的意義,也將是今后研究的熱門課題。此外,很多植物中檢測到差異表達蛋白中超過一半的蛋白質信息是未知信息,這些未知信息里必定蘊藏著與抗鹽堿相關的有用信息,這些信息的揭示必將在植物抗鹽堿研究中有重大突破。改造并篩選得到越來越多耐鹽堿的修復植物必將帶來更大的生態和經濟效益,這種環境友好型的生物手段無疑具有很大的潛在優勢和發展前景。
[1] Zhang X X, Shi Z Q, Tian Y J, Zhou Q, Cai J, Dai T B, Cao W X, Pu H C, Jiang D. Salt stress increases content and size of glutenin macropolymers in wheat grain. Food Chemistry, 2016, 197: 516- 521.
[2] Zhao X Y, Bian X Y, Li Z X, Wang X W, Yang C J, Liu G F, Jiang J, Kentbayev Y, Kentbayeva B, Yang C P. Genetic stability analysis of introducedBetulapendula,Betulakirghisorum, andBetulapubescensfamilies in saline-alkali soil of northeastern China. Scandinavian Journal of Forest Research, 2014, 29(7): 639- 649.
[3] Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 1- 14.
[4] Wang J C, Yao L R, Li B C, Meng Y X, Ma X L, Lai Y, Si E J, Ren P R, Yang K, Shang X W, Wang H J. Comparative proteomic analysis of cultured suspension cells of the halophyteHalogetonglomeratusby iTRAQ provides insights into response mechanisms to salt stress. Frontiers in Plant Science, 2016, 7(30):1-12.
[5] Shi D C, Yin S J, Yang G H, Zhao K F. Citric acid accumulation in an alkali-tolerant plant Puccinelliatenuifloraunder alkaline stress. Acta Botanica Sinica, 2002, 44(5): 537- 540.
[6] Yang J Y, Zheng W, Tian Y, Wu Y, Zhou D W. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations ofMedicagoruthenicaseedlings. Photosynthetica, 2011, 49(2): 275- 284.
[7] Shi D C, Wang D L. Effects of various salt-alkali mixed stresses onAneurolepidiumchinense(Trin.) Kitag. Plant Soil, 2005, 271(1/2): 15- 26.
[8] Gong B, Wang X F, Wei M, Yang F J, Li Y, Shi Q H. Overexpression ofS-adenosylmethioninesynthetase1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell,Tissue and Organ Culture, 2016, 124(2): 377- 391.
[9] Wang X P, Jiang P, Ma Y, Geng S J, Wang S C, Shi D C. Physiological strategies of sunflower exposed to salt or alkali stresses: restriction of ion transport in the cotyledon node zone and solute accumulation. Agronomy Journal, 2015, 107(6): 2181- 2192.
[10] Chen L, Wang R Z. Anatomical and physiological divergences and compensatory effects in twoLeymuschinensis(Poaceae) ecotypes in Northeast China. Agriculture, Ecosystems & Environment, 2009, 134(1/2): 46- 52.
[11] 郭瑞, 李峰, 周際, 李昊儒, 夏旭, 劉琪. 亞麻響應鹽、堿脅迫的生理特征. 植物生態學報, 2016, 40(1): 69- 79.
[12] Capula-Rodríguez R, Valdez-Aguilara L A, Cartmill D L, Cartmill A D, Alia-Tejacalc I. Supplementary calcium and potassium improve the response of tomato (SolanumlycopersicumL.) to simultaneous alkalinity, salinity, and boron stress. Communications in Soil Science and Plant Analysis, 2016, 47(4): 505- 511.
[13] Munns R. Comparative physiology of salt and water stress. Plant, Cell & Environment, 2002, 25(2): 239- 250.
[14] Wang L X, Fang C, Wang K. Physiological responses ofLeymuschinensisto long-term salt, alkali and mixed salt-alkali stresses. Journal of Plant Nutrition, 2015, 38(4): 526- 540.
[15] Vu T S, Zhang D W, Xiao W H, Chi C Y, Xing Y, Fu D D, Yuan Z N. Mechanisms of combined effects of salt and alkaline stresses on seed germination and seedlings ofMelilotusOfficinalis(Fabaceae) in Northeast of China. Pakistan Journal of Botany, 2015, 47(5): 1603- 1611.
[16] 李志萍, 張文輝, 崔豫川. NaCl和Na2CO3脅迫對栓皮櫟種子萌發及幼苗生長的影響. 生態學報, 2015, 35(3): 742- 751.
[17] Gao Z W, Zhu H, Gao J C, Yang C W, Mu C S, Wang D L. Germination responses of Alfalfa (MedicagosativaL.) seeds to various salt-alkaline mixed stress. African Journal of Agricultural Research, 2011, 6(16): 3793- 3803.
[18] Meloni D A, Gulotta M R, Martinez C A. Salinity tolerance inSchinopsisquebrachocolorado: Seed germination, growth, ion relations and metabolic responses. Journal of Arid Environments, 2008, 72(10): 1785- 1792.
[19] Tavakkoli M M, Roosta H R, Hamidpour M. Effects of alkali stress and growing media on growth and physiological characteristics of gerbera plants. Journal of Agricultural Science and Technology, 2016, 18(2): 453- 466.
[20] 渠曉霞, 黃振英. 鹽生植物種子萌發對環境的適應對策. 生態學報, 2005, 25(9): 2389- 2398.
[21] 劉艷, 周家超, 張曉東, 李欣, 范海, 王寶山, 宋杰. 鹽地堿蓬二型性種子及其幼苗對鹽漬環境的適應性. 生態學報, 2013, 33(17): 5162- 5168.
[22] 史功偉, 宋杰, 高奔, 楊青, 范海, 王寶山, 趙可夫. 不同生境鹽地堿蓬出苗及幼苗抗鹽性比較. 生態學報, 2009, 29(1): 138- 143.
[23] Li W Q, Liu X J, Khan M A, Yamaguchi S. The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds ofSuaedasalsaunder saline conditions. Journal of Plant Research, 2005, 118(3): 207- 214.
[24] Yao S X, Chen S S, Zhao J, Xu D S, Lan H Y, Zhang F C. Effect of three salts on germination and seedling survival of dimorphic seeds ofChenopodiumalbum. Botanique, 2010, 88(9): 821- 828.
[25] Faiza S, Bilquess G, Li W Q, Liu X J, Ajmal K M. Effect of calcium and light on the germination ofUrochondrasetulosaunder different salts. Journal of Zhejiang University Science B, 2007, 8(1): 20- 26.
[26] Khan M A, Ungar I A. Alleviation of salinity stress and the response to temperature in two seed morphs ofHalopyrummucronatum(Poaceae). Australian Journal of Botany, 2001, 49(6): 777- 783.
[27] Wang L, Huang Z Y, Baskin C C, Baskin J M, Dong M. Germination of dimorphic seeds of the desert annual halophyteSuaedaaralocaspica(Chenopodiaceae), a C4plant without kranz anatomy. Annals of Botany, 2008, 102(5): 757- 769.
[28] Liu B S, Kang C L, Wang X, Bao G Z. Physiological and morphological responses ofLeymuschinensisto saline-alkali stress. Grassland Science, 2015, 61(4): 217- 226.
[29] 慈敦偉, 張智猛, 丁紅, 宋文武, 符方平, 康濤, 戴良香. 花生苗期耐鹽性評價及耐鹽指標篩選. 生態學報, 2015, 35(3): 805- 814.
[30] 李曉榮, 姚世響, 陳莎莎, 蘭海燕. 藜異型性種子后代植株鹽響應生理機制. 生態學報, 2015, 35(24): 8139- 8147.
[31] Gao Z W, Han J Y, Mu C S, Lin J X, Li X Y, Lin L D, Sun S N. Effects of saline and alkaline stresses on growth and physiological changes in oat (AvenasativaL.) seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42(2): 357- 362.
[32] 趙春橋, 李繼偉, 范希峰, 侯新村, 武菊英, 胡躍高, 劉吉利. 不同鹽脅迫對柳枝稷生物量、品質和光合生理的影響. 生態學報, 2015, 35(19): 6489- 6495.
[33] 李學孚, 倪智敏, 吳月燕, 李美芹, 劉蓉, 饒慧云. 鹽脅迫對‘鄞紅’葡萄光合特性及葉片細胞結構的影響. 生態學報, 2015, 35(13): 4436- 4444.
[34] Kalaji H M, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I A, Cetner M D, Lukasik I, Goltsev V, Ladle R J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 2016, 38: 102.
[35] 劉衛國, 丁俊祥, 鄒杰, 林喆, 唐立松. NaCl對齒肋赤蘚葉肉細胞超微結構的影響. 生態學報, 2016, 36(12), doi: 10.5846/stxb201410122011.
[36] Cheng T L, Chen J H, Zhang J B, Shi S Q, Zhou Y W, Lu L, Wang P K, Jiang Z P, Yang J C, Zhang S G, Shi J S. Physiological and proteomic analyses of leaves from the halophyteTangutNitrariareveals diverse response pathways critical for high salinity tolerance. Frontiers in Plant Science, 2015, 6: 30.
[37] Grieve C M, Lesch S M, Mass E V, Francois L E. Leaf and spikelet primordia initiation in salt-stressed wheat. Crop Science, 1992, 33(6): 1286- 1294.
[38] Lu N W, Duan B L, Li C Y. Physiological responses to drought and enhanced UV-B radiation in two contrasting. Picea asperata populations, 2007, 37(7): 1253- 1262.
[39] Pang Q Y, Zhang A Q, Zang W, Yan X F. Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata. Plant and Soil, 2016, 402(1/2): 379- 394.
[40] Ruiz K B, Biondi S, Martinez E A, Orsini F, Antognoni F, Jacobsen S E. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems, 2016, 150(2): 357- 371.
[41] Shaheen H L, Iqbal M, Azeem M, Shahbaz M, Shehzadi M. K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypiumhirsutum) seedlings. Archives of Agronomy and Soil Science, 2016, 62(6): 759- 768.
[42] Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyteSpartinaalterniflora(Poaceae). Environmental and Experimental Botany, 2010, 68(1): 66- 74.
[43] Dai Y L, Zhang L J, Jang S J, Yin K D. Saline and alkaline stress genotypic tolerance in sweet sorghum is linked to sodium distribution. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2014, 64(6): 471- 481.
[44] Abdel A A L, Tran L S P. Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress. Frontiers in Plant Science, 2016, 7: 243.
[45] Guo P, Wei H X, Zhang W J, Bao Y J. Physiological responses of alfalfa to high-level salt stress: root ion flux and stomatal characteristics. International Journal of Agriculture and Biology. 2016, 18(1): 125- 133.
[46] Dinneny J R. Traversing organizational scales in plant salt-stress responses. Current Opinion in Plant Biology, 2015, 23: 70- 75.
[47] Liu J, Cai H, Liu Y, Zhu Y M, Ji W, Bai X. A study on physiological characteristics and cmparison of salt resistance of twoMedicagosativaat the seedling stage. Acta Prataculturae Sinica, 2015, 22(3): 250- 256.
[48] 曹齊衛, 李利斌, 孔素萍, 邱岸, 陳偉, 張允楠, 孫小鐳. 不同黃瓜品種幼苗對等滲Mg(NO3)2和NaCl脅迫的生理響應. 應用生態學報, 2015, 26(4): 1171- 1178.
[49] Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, Mcdonald G K. Additive effects of Na+and Cl-ions on barley growth under salinity stress. Journal of Experimental Botany, 2011, 62(6): 2189- 2203.
[50] 閆永慶, 劉興亮, 王崑, 樊金萍, 石溪嬋. 白刺對不同濃度混合鹽堿脅迫的生理響應. 植物生態學報, 2010, 34(10): 1213- 1219.
[51] Hazman M, Hause B, Eiche E, Nick P, Riemann M. Increased tolerance to salt stress in OPDA-deficient riceALLENEOXIDECYCLASEmutants is linked to an increased ROS-scavenging activity. Journal of Experimental Botany, 2015, 66(11): 3339- 3352.
[52] Wang H, Lin X, Cao S, Wu Z. Alkali tolerance in rice (OryzasativaL.): growth, photosynthesis, nitrogen metabolism, and ion homeostasis. Photosynthetica, 2015, 53(1): 55- 65.
[53] Gong B, Wen D, Bloszies S, Li X, Wei M, Yang F J, Shi Q H, Wang X F. Comparative effects of NaCl and NaHCO3stresses on respiratory metabolism, antioxidant system, nutritional status, and organic acid metabolism in tomato roots. Acta Physiologiae Plantarum, 2014, 36(8): 2167- 2181.
[54] Ranganayakulu G, Veeranagamallaiah G, Sudhakar C. Effect of salt stress on osmolyte accumulation in two groundnut cultivars (ArachishypogaeaL.) with contrasting salt tolerance. African Journal of Plant science, 2013, 7(12): 586- 592.
[55] Yildirim E, Ekinici M, Turan M, Dursun A, Kul R, Parlakova F. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (LactucasativaL.). Archives of Agronomy and Soil Science, 2015, 61(12): 1673- 1689.
[56] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59(2): 206- 216.
[57] 劉鐸, 叢日春, 黨宏忠, 李慶梅, 劉德璽, 楊慶山. 柳樹幼苗滲透調節物質對中、堿性鈉鹽響應的差異性. 生態環境學報, 2014, 23(9): 1531- 1535.
[58] Butt M, Ayyub C M. Amjad M, Ahmad R. Proline application enhances growth of chilli by improving physiological and biochemical attributes under salt stress. Pakistan Journal of Agricultural Sciences, 2016, 53(1): 43- 49.
[59] Adams P, Thomas J C, Vernon D M, Bohnert H J, Jensen R G. Distinct cellular and organismic responses to salt stress. Plant & Cell Physiology, 1992, 33(8): 1215- 1223.
[60] Khan H A, Siddique K H M, Colmer T D. Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. Journal of Experimental Botany, 2016, doi: 10.1093/jxb/erw177.
[61] Guo L Q, Shi D C, Wang D L. The Key Physiological response to alkali stress by the alkali-resistant halophytePuccinelliatenuiflorais the accumulation of large quantities of organic acids and into the rhyzosphere. Journal of Agronomy and Crop Science, 2010, 196(2): 123- 135.
[62] 劉濱碩, 康春莉, 王鑫, 包國章. 羊草對鹽堿脅迫的生理生化響應特征. 農業工程學報, 2014, 30(23): 166- 173.
[63] Chen W C, Cui P J, Sun H Y, Guo W Q, Yang C W, Jin H, Fang B, Shi D C. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (HippophaerhamnoidesL.). Industrial Crops and Products, 2009, 30(3): 351- 358.
[64] 戴凌燕, 唐呈瑞, 殷奎德, 阮燕曄, 張立軍. 蘇打鹽堿脅迫對甜高粱植株有機酸含量的影響. 生態學雜志, 2015, 34(3): 681- 687.
[65] 羅青紅, 寇云玲, 史彥江, 宋鋒惠, 韓強. 6種雜交榛對新疆鹽堿土的生理適應性研究. 西北植物學報, 2013, 33(9): 1867- 1873.
[66] Rangani J, Parida A K, Panda A, Kumari A. Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme Halophytesalvadorapersica L. Frontiers in Plant Science, 2016, 7(537): 1-18.
[67] Singh N, Bhatla S C. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons. Nitric Oxide, 2016, 53: 54- 64.
[68] 郭楠楠, 陳學林, 張繼, 陳金元, 朱愿軍, 丁映童. 檉柳組培苗抗氧化酶及滲透調節物質對NaCl脅迫的響應. 西北植物學報, 2015, 35(8): 1620- 1625.
[69] 王鑫, 朱悅, 劉濱碩, 包國章. 鹽堿脅迫下羊草抗氧化酶活性的變化. 江蘇農業科學, 2015, 43(5): 209- 211.
[70] Scott M D, Meshnick S R, Eaton J W. Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. The Journal of Biological Chemistry, 1987, 262(8): 3640- 3645.
[71] 喬楓, 耿貴工. 鹽堿脅迫對沙棘種子萌發及幼苗抗氧化酶活性的影響. 東北林業大學學報, 2012, 40(2): 17- 19.
[72] Kopittke P M. Interactions between Ca, Mg, Na and K: Alleviation of toxicity in saline solutions. Plant and Soil, 2012, 352(1/2): 353- 362.
[73] Abbas Z K, Mobin M. Comparative growth and physiological responses of two wheat (TriticumaestivumL.) cultivars differing in salt tolerance to salinity and cyclic drought stress. Archives of Agronomy and Soil Science, 2016, 62(6): 745- 758.
[74] Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z F. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 2012, 39(2): 969- 987.
[75] Guo R, Yang Z Z, Li F, Yan C R, Zhong X L, Liu Q, Xia X, Li H R, Zhao L. Comparative metabolic responses and adaptive strategies of wheat (Triticumaestivum) to salt and alkali stress. BMC Plant Biology, 2015, 15(70):1-13.
[76] Sun J, Zhang X, Deng S R, Zhang C L, Wang M J, Ding M Q, Zhao R, Shen X, Zhou X Y, Lu C F, Chen S L. Extracellular ATP signaling is mediated by H2O2and Cytosolic Ca2+in the Salt Response ofPopuluseuphraticaCells. PLoS One, 2012, 7(12): 1-15.
[77] Abdula S E, Lee H J, Ryu H, Kang K K, Nou I, Sorrells M E, Cho Y G. Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice. Plant Molecular Biology Reporter, 2016, 34(2): 501- 511.
[78] Tian X Y, He M R, Wang Z L, Zhang J W, Song Y L, He Z L, Dong Y J. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regulation, 2015, 77(3): 343- 356.
[79] Wang X P, Geng S J, Ma Y Q, Shi D C, Yang C W, Wang H. Growth, photosynthesis, solute accumulation, and ion balance of tomato plant under sodium-or potassium-salt stress and alkali stress. Agronomy Journal, 2015, 107(2): 651- 661.
[80] 郭文芳, 農萬廷, 李剛強, 劉德虎. 植物耐鹽堿基因工程研究進展. 生物技術通報, 2015, 31(7): 11- 17.
[81] Rubio J S, García-Sánchez F, Rubio F, Martinez V. Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+and Ca2+fertilization. Scientia Horticulturae, 2009, 119(2): 79- 87.
[82] Han Y, Yin S Y, Huang L. Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regulation, 2015, 76(1): 13- 23.
[83] Guan Q J, Wang Z J, Wang X H, Takano T, Liu S K. A peroxisomal APX fromPuccinelliatenuifloraimproves the abiotic stress tolerance of transgenicArabidopsisthalianathrough decreasing of H2O2accumulation. Journal of Plant Physiology, 2015, 175: 183- 191.
[84] Ren S X, Lyle C, Jiang G L, Penumala A. Soybean salt tolerance 1 (GmST1) reduces ros production, enhances aba sensitivity, and abiotic stress tolerance inArabidopsisthaliana. Frontiers in Plant Science, 2016, 7: 445.
[85] Han Z F, Yu H M, Zhao Z, Hunter D, Luo X J, Duan J, Tian L N.AtHD2Dgene plays a role in plant growth, development, and response to abiotic stresses inArabidopsisthaliana. Frontiers in Plant Science, 2016, 7: 310.
[86] Li L Q, Xie J H, Ma X Q, Li D. Molecular cloning of PhosphoethanolamineN-methyltransferase (PEAMT) gene and its promoter from the halophyteSuaedaliaotungensisand their response to salt stress. Acta Physiologiae Plantarum, 2016, 38(2): 39.
[88] Luo P, Shen Y X, Jin S X, Huang S S, Cheng X, Wang Z, Li P L, Zhao J, Bao M Z, Ning G G. Overexpression ofRosarugosaanthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling. Plant Science, 2016, 245: 35- 49.
[89] 張建秋, 陸海, 王智, 杜希華, 張玉玲. 雙向電泳技術分析白刺鹽脅迫蛋白的表達. 吉林農業大學學報, 2004, 26(5): 511- 514.
[90] Carrondo M A. Ferritins, Iron uptake and storage from the bacterioferritin viewpoint. New EMBO Member′s Review, 2003, 22(9): 1959- 1968.
[91] Hegedüs A, Janda T, Horváth G V, Dudits D. Accumulation of overproduced ferritin in the chloroplast provides protection against photoinhibition induced by low temperature in tobacco plants. Journal of Plant Physiology, 2008, 165(15): 1647- 1651.
[92] DuanMu H Z, Wang Y, Bai X, Cheng S F, Deyholos M K, Wong G K S, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu Y M. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Functional & Integrative Genomics, 2015, 15(6): 651- 660.
[93] Qiu Y W, Wen H T, Ao J X, Zhang M H, Li F L. Soy 14- 3- 3 protein SGF14c, a new regulator of tolerance to salt-alkali stress. Plant Biotechnology Reports, 2015, 9(6): 369- 377.
[94] Liu A L, Yu Y, Duan X B, Sun X L, Duanmu H Z, Zhu Y M.GsSKP21,aGlycinesojaS-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity. Plant Molecular Biology, 2015, 87(1/2): 111- 124.
[95] Xu Z L, Ali Z, Xu L, He X L, Huang Y H, Yi J X, Shao H B, Ma H X, Zhang D Y. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean. Scientific Reports, 2016, 6: 1-12.
[96] Gong B, Li X, VandenLangenberg K M, Wen D, Sun S S, Wei M, Li Y, Yang F J, Shi Q H, Wang X F. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnology Journal, 2014, 12(6): 694- 708.
[97] Hu D G, Ma Q J, Sun C H, Sun M H, You C X, Hao Y J. Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiologia Plantarum, 2016, 156(2): 201- 214.
[98] Sun X L, Yang S S, Sun M Z, Wang S T, Ding X D, Zhu D, Ji W, Cai H, Zhao C Y, Wang X D, Zhu Y M. A novelGlycinesojacysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. Plant Molecular Biology, 2014, 85(1/2): 33- 48.
[99] 趙瑩, 楊克軍, 李佐同, 趙長江, 徐晶宇, 胡雪微, 石新新, 馬麗峰. 外源糖浸種緩解鹽脅迫下玉米種子萌發. 應用生態學報, 2015, 26(9): 2735- 2742.
[100] Liang X L, Fang S M, Ji W B, Zheng D F. The positive effects of silicon on rice seedlings under saline-alkali mixed stress. Communications in Soil Science and Plant Analysis, 2015, 46(17): 2127- 2138.
[101] Li Y T, Zhang W J, Cui J J, Lang D Y, Li M, Zhao Q P, Zhang X H. Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress. Acta Physiologiae Plantarum, 2016, 38: 96.
[102] 周萬海, 馮瑞章, 師尚禮, 寇江濤. NO對鹽脅迫下苜蓿根系生長抑制及氧化損傷的緩解效應. 生態學報, 2015, 35(11): 3606- 3614.
[103] 向麗霞, 胡立盼, 胡曉輝, 潘雄波, 任文奇. 外源γ-氨基丁酸調控甜瓜葉綠體活性氧代謝應對短期鹽堿脅迫. 應用生態學報, 2015, 26(12): 3746- 3752.
[104] Ding H, Lai J B, Wu Q, Zhang S C, Chen L, Dai Y S, Wang C F, Du J J, Xiao S, Yang C W. Jasmonate complements the function ofArabidopsislipoxygenase 3 in salinity stress response. Plant Science, 2016, 244: 1- 7.
[105] Me X Q, Zhang J, Huang B R. Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany, 2016, 125: 1- 11.
[106] Liu R Q, Xu X J, Wang S, Shan C J. Lanthanum improves salt tolerance of maize seedlings. Photosynthetica, 2016, 54(1): 148- 151.
[107] Jiang C Q, Cui Q R, Feng K, Xu D F, Li C F, Zheng Q S. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiologiae Plantarum, 2016, 38(4):82.
[108] 張毅, 石玉, 胡曉輝. 外源亞精胺對鹽堿脅迫下番茄幼苗光合特性的影響. 西北農林科技大學學報: 自然科學版, 2016, 44(2): 144- 150.
[109] 張毅, 石玉, 胡曉輝, 鄒志榮, 曹凱, 張浩. 外源Spd對鹽堿脅迫下番茄幼苗氮代謝及主要礦質元素含量的影響. 應用生態學報, 2013, 24(5): 1401- 1408.
[110] 潘雄波, 向麗霞, 胡曉輝, 任文奇, 張麗, 倪新欣. 外源亞精胺對鹽堿脅迫下番茄幼苗根系線粒體功能的影響. 應用生態學報, 2016, 27(2): 491- 498.
[111] Chunthaburee S, Sanitchon J, Pattanagul W, Theerakulpisut P. Application of exogenous spermidine (Spd) improved salt tolerance of rice at the seedling and reproductive stages. Procedia Environmental Sciences, 2015, 29: 134.
[112] 張義飛, 王平, 畢琪, 張忠輝, 楊允菲. 不同強度鹽脅迫下AM真菌對羊草生長的影響. 生態學報, 2016, 36(17):1-10
[113] Porcel R, Aroca R, Ruiz-Lozano J M. Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. Agronomy for Sustainable Development, 2012, 32(1): 181- 200.
[114] Al-Karaki G N, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 2001, 11(1): 43- 47.
[115] Zarea M J, Karimi N, Goltapeh E M, Ghalavand A. Effect of cropping systems and arbuscular mycorrhizal fungi on soil microbial activity and root nodule nitrogenase. Journal of the Saudi Society of Agricultural Sciences, 2011, 10(2): 109- 120.
[116] 郭伶娜, 劉建文, 麻冬梅, 許興. 高羊茅轉基因植株的耐鹽性鑒定. 中國草地學報, 2015, 37(1): 116- 120.
[117] Zhu D, Cai H, Luo X, Bai X, Deyholos M K, Chen Q, Chen C, Ji W, Zhu Y M. Over-expression of a novel JAZ family gene fromGlycinesoja, increases salt and alkali stress tolerance. Biochemical and Biophysical Research Communications, 2012, 426(2): 273- 279.
[118] Liu A L, Yu Y, Li R T, Duan X B, Zhu D, Sun X L, Duanmu H Z, Zhu Y M. A novel hybrid proline-rich type geneGsEARLI17 fromGlycinesojaparticipated in leaf cuticle synthesis and plant tolerance to salt and alkali stresses. Plant Cell, Tissue and Organ Culture, 2015, 121(3): 633- 646.
[119] Guo M, Liu Q, Yu H, Zhou T T, Zou J, Zhang H, Bian M D, Liu X M. Characterization of alkali stress-responsive genes of theCIPKfamily in sweet sorghum[Sorghumbicolor(L.) Moench]. Crop Science, 2015, 55(3): 1254- 1263.
[120] Liu L P, Zhang Z Q, Dong J L, Wang T. Overexpression ofMtWRKY76 increases both salt and drought tolerance inMedicagotruncatula. Environmental and Experimental Botany, 2016, 123: 50- 58.
[121] Jia B W, Sun M Z, Sun X L, Li R T, Wang Z Y, Wu J, Wei Z W, DuanMu H Z, Xiao J L, Zhu Y M. Overexpression ofGsGSTU13 andSCMRPinMedicagosativaconfers increased salt-alkaline tolerance and methionine content. Physiologia Plantarum, 2016, 156(2): 176- 189.
[122] Bulle M, Yarra R, Abbagani S. Enhanced salinity stress tolerance in transgenic chilli pepper (CapsicumannuumL.) plants overexpressing the wheat antiporter (TaNHX2) gene. Molecular Breeding, 2016, 36: 36.
[123] Zarza X, Atanasov K E, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio A F, Alcázar R.Polyamineoxidase5 loss-of-function mutations inArabidopsisthalianatriggermetabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell & Environment, 2016, doi: 10.1111/pce.12714.
[124] Hussain S W, Williams W M. Chromosome pairing and fertility of interspecific hybrids betweenTrifoliumrepensL. andT.occidentaleCoombe. Plant Breeding, 2016, 135(2): 239- 245.
[125] Mohsenian Y, Roosta H R. Effects of grafting on alkali stress in tomato plants: Datura rootstock improve alkalinity tolerance of tomato plants. Journal of Plant Nutrition, 2015, 38(1): 51- 72.
[126] Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V. Primed plants do not forget. Environmental and Experimental Botany, 2013, 94: 46- 56.
[127] Jiménez-Arias D, Pérez J A, Luis J C, Martín-Rodríguez V, Valdés-González F, Borges A A. Treating seeds in menadione sodium bisulphite primes salt tolerance in Arabidopsis by inducing an earlier plant adaptation. Environmental and Experimental Botany, 2015, 109: 23- 30.
[128] Jan N E, Din J U, Kawabata S. Impact of saline-alkalistress on the accumulation of solids in tomato fruits. Pakistan Journal of Botany, 2014, 46(1): 161- 166.
[129] Bai J H, Liu J H, Zhang N, Yang J H, Sa R L, Wu L. Effect of Alkali Stress on Soluble Sugar, Antioxidant Enzymes and Yield of Oat. Journal of Integrative Agriculture, 2013, 12(8): 1441- 1449.
[130] Wang Z Y, Zhao X Y, Wang B, Liu E L, Chen N, Zhang W, Liu H. Overexpression of anArabidopsisheterogeneousnuclear ribonucleoprotein gene,AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses. Biochemical and Biophysical Research Communications, 2016, 472(2): 353- 359.
Reviewonthemechanismsoftheresponsetosalinity-alkalinitystressinplants
WANG Quanzhen,LIU Qian*, GAO Yani, LIU Xu
DepartmentofGrasslandScience,CollegeofAnimalsScienceandTechnology,NorthwestAgricultureandForestryUniversity,Yangling712100,China
國家自然科學基金項目(31472138)
2016- 05- 16; < class="emphasis_bold">網絡出版日期
日期:2017- 03- 25
*通訊作者Corresponding author.E-mail: 1033820376@qq.com
10.5846/stxb201605160941
王佺珍,劉倩,高婭妮, 柳旭.植物對鹽堿脅迫的響應機制研究進展.生態學報,2017,37(16):5565- 5577.
Wang Q Z, Liu Q, Gao Y N, Liu X.Review on the mechanisms of the response to salinity-alkalinity stress in plants.Acta Ecologica Sinica,2017,37(16):5565- 5577.