鄧稀仁,黃孝天
DOI:10.3969/j.issn.1002-2694.2017.09.015
白念珠菌多藥耐藥基因CaMDR1研究進(jìn)展
鄧稀仁,黃孝天
CaMDR1是與白念珠菌(Candidaalbicans)多藥耐藥有關(guān)的基因,屬于易化載體超家族(major facilitator superfamily,MFS),能介導(dǎo)白念珠菌對苯菌靈、氟康唑等藥物的耐受。本文就白念珠菌多藥耐藥基因CaMDR1所編碼蛋白質(zhì)的結(jié)構(gòu)和功能及該基因轉(zhuǎn)錄調(diào)控機(jī)制研究進(jìn)展做一綜述。
白念珠菌;多藥耐藥;易化載體超家族;CaMDR1
白念珠菌是一種常見的條件致病性真菌,常存在于正常人皮膚和粘膜,當(dāng)機(jī)體免疫功能下降或菌群失調(diào)時,容易造成淺表性或侵入性感染。研究發(fā)現(xiàn),多種機(jī)制參與白念珠菌對抗真菌藥物耐藥性的產(chǎn)生,其中外排泵的過表達(dá)是主要的耐藥機(jī)制之一[1-2]。目前已知與白念珠菌耐藥有關(guān)的外排泵有兩類:一類是含ATP結(jié)合區(qū)的轉(zhuǎn)運(yùn)蛋白,即ABC轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette transporters,ABCT),另一類是易化載體超家族蛋白(major facilitator superfamily,MFS)。MFS家族成員包含一個跨膜孔道,以質(zhì)子動力勢作為能量來源,蛋白能以協(xié)同轉(zhuǎn)運(yùn)、反向轉(zhuǎn)運(yùn)或單向轉(zhuǎn)運(yùn)的方式發(fā)揮運(yùn)轉(zhuǎn)作用,CaMDR1(Candidaalbicansmultidrug resistance 1)是白念珠菌與多藥耐藥有關(guān)的MFS家族基因。
CaMDR1在白念珠菌6號染色體上有1個拷貝,其編碼的蛋白質(zhì)CaMdr1p由564個氨基酸組成[2-3]。1991年,F(xiàn)ling[3]等從白念珠菌全基因組文庫入手,發(fā)現(xiàn)ORF1(后來命名為BENr)與苯菌靈、氨甲葉酸耐受有關(guān)。Goldway[4]等后續(xù)研究發(fā)現(xiàn)該基因能使菌株抵抗一些在結(jié)構(gòu)上和功能上不同的藥物,基因缺失后菌株對藥物敏感性降低,于是將該基因更名為CaMDR1。有研究發(fā)現(xiàn),臨床菌株對氟康唑(fluconazole,F(xiàn)LZ)的耐受主要與CaMDR1、CDR1、CDR2和ERG11等基因有關(guān),F(xiàn)LZ敏感菌株幾乎不表達(dá)MDR1,但當(dāng)敏感菌株暴露在某種藥物壓力下時,CaMDR1能被誘導(dǎo)表達(dá),且菌株藥物敏感性的強(qiáng)弱取決于CaMDR1的表達(dá)水平[2, 5-8]。這些研究提示,CaMDR1與白念珠菌多藥耐藥有關(guān),且可能有復(fù)雜的調(diào)控模式。
2.1 CaMdr1p的結(jié)構(gòu) CaMdr1p屬于MFS中藥物/H+逆向轉(zhuǎn)運(yùn)1(drug/H+ antiporter 1,DHA1)家族,相對分子質(zhì)量大小約62.9 kDa,以質(zhì)子動力勢作為能量來源,參與藥物外排。CaMdr1p含有2個跨膜區(qū)(transmembrane domain, TMD),每個跨膜區(qū)由6個跨膜片段(transmembrane segment,TMS)構(gòu)成,并通過胞外的環(huán)(extracellular loop,ECL)和胞內(nèi)的環(huán)(intracellular loop,ICL)連接(見圖1),ICL3是關(guān)鍵結(jié)構(gòu),連接2個TMD并維持其固有結(jié)構(gòu)[9]。
Redhu等[10]研究了CaMdr1p的12個跨膜片段,發(fā)現(xiàn)帶電殘基的質(zhì)子化在質(zhì)子轉(zhuǎn)運(yùn)中是關(guān)鍵的步驟,位于TMS4帶正電荷的殘基R215對于CaMdr1p的藥物/H+轉(zhuǎn)運(yùn)來說是關(guān)鍵位點(diǎn),而酸性PH有助于R215質(zhì)子化作用,并且與中性條件相比,酸性條件有利于藥物外排。

圖1 CaMdr1p結(jié)構(gòu)模式圖Fig.1 Structure of the CaMdr1 protein
2.2 CaMdr1p的功能 CaMdr1p對多種藥物具有外排功能:唑類藥物如FLZ,其他藥物如苯菌靈、淺藍(lán)菌素、布雷菲德菌素A、氨甲葉酸和二酰胺等[2-3, 5]。不過,CaMdr1p除了外排一些藥物,還會選擇性地促進(jìn)一些特殊化合物的攝入,可利用這個特性使化合物在菌體內(nèi)蓄積從而起到抗真菌的作用[11]。
CaMdr1p與白念珠菌其他功能也有關(guān)。Watamoto等[12]研究了在藥物壓力下白念珠菌生物膜中CaMDR1表達(dá)情況,發(fā)現(xiàn)CaMDR1表達(dá)增強(qiáng),但這可能是對兩性霉素B引起的氧化損傷的一種保護(hù)性應(yīng)答,與兩性霉素B耐藥關(guān)系不大。此外,CaMdr1p可能與白念珠菌天冬氨酸蛋白酶的分泌有關(guān)[13]。
近幾年,關(guān)于CaMDR1轉(zhuǎn)錄調(diào)控的研究進(jìn)展迅速,CaMDR1的轉(zhuǎn)錄調(diào)控可能對菌株耐藥性的產(chǎn)生起了重要作用,多個順式作用元件和反式作用因子相繼被闡明,如啟動子近端區(qū)域的順式作用元件和藥物反應(yīng)元件,反式作用因子Mrr1p、Upc2p、Cap1p等。
3.1 順式作用元件 順式作用元件是指可影響自身基因表達(dá)活性(激活或抑制)的DNA序列。Kumamoto[14]等發(fā)現(xiàn)了A型和G型2種CaMDR1啟動子區(qū)域順式作用元件,含A型啟動子的CaMDR1基因表達(dá)活性更強(qiáng),并且大多數(shù)菌株為A型。Sasse[15]等隨后發(fā)現(xiàn)轉(zhuǎn)錄因子Mrr1p和Cap1p都能激活這2種啟動子。發(fā)生在CaMDR1啟動子區(qū)域的突變可能會影響反式作用因子與其的結(jié)合,從而影響CaMDR1的表達(dá)水平。
此外,CaMDR1啟動子區(qū)域藥物反應(yīng)元件能響應(yīng)一些化合物的刺激信號。Rognon[5]等發(fā)現(xiàn)了2個分別響應(yīng)苯菌靈和過氧化氫刺激信號的藥物反應(yīng)元件:①苯菌靈反應(yīng)元件(benomyl response element,BRE),在-296至-260位點(diǎn)之間,響應(yīng)笨菌靈的刺激,使唑類藥物敏感菌株CaMDR1基因表達(dá)上調(diào),并且與耐藥菌株CaMDR1固有高表達(dá)也有關(guān);②過氧化氫反應(yīng)元件(H2O2response element,HRE),在-561至-520位點(diǎn)之間,可能含有轉(zhuǎn)錄因子Cap1p結(jié)合位點(diǎn)(TTAG/CTAA),當(dāng)Cap1p存在時才能響應(yīng)過氧化氫的刺激信號。
3.2 反式作用因子 反式作用因子是指能直接或間接地識別或結(jié)合在順式作用元件核心上參與調(diào)控靶基因轉(zhuǎn)錄效率的蛋白質(zhì)。與CaMDR1轉(zhuǎn)錄調(diào)控有關(guān)的反式作用因子主要包括鋅簇家族和堿性亮氨酸拉鏈轉(zhuǎn)錄因子等。
3.2.1 鋅簇家族轉(zhuǎn)錄因子 鋅簇家族轉(zhuǎn)錄因子是一類含有鋅指模體結(jié)構(gòu)的蛋白質(zhì),整個蛋白質(zhì)分子可含有多個鋅指重復(fù)單位,在白色念珠菌耐藥相關(guān)基因的轉(zhuǎn)錄調(diào)控中起重要作用。鋅簇家族有一個保守的DNA結(jié)合域,含有2個鋅離子和6個半胱氨酸,多位于N-端。
鋅簇家族中與CaMDR1轉(zhuǎn)錄調(diào)控相關(guān)的最主要的基因是MRR1(multidrug resisitance regular 1)[16]。MRR1參與了耐藥菌株CaMDR1的固有過表達(dá)和敏感菌株CaMDR1的藥物誘導(dǎo)表達(dá)。將藥物敏感和耐受的白念珠菌MRR1進(jìn)行序列比對分析發(fā)現(xiàn),一些發(fā)生在耐藥菌株MRR1基因的堿基置換是引起CaMDR1過表達(dá)的主要原因,這些突變稱為獲得性功能(Gain of Function,GOF)突變, Dunkel等[17]發(fā)現(xiàn)4個突變熱點(diǎn)區(qū)域分別在氨基酸序列315-381、873-896、997-998和683位點(diǎn),將GOF突變的MRR1序列引入MRR1缺失的突變株使其重新獲得了耐藥性。 這些GOF突變主要有K355N、1350L、T360I、T381I、R873T、G878E、A880E、W893R、T895I、G997V、L998F、P683H、P683S、R557K、K844E、F1032L和V887F等[16-19]。對MRR1編碼的蛋白質(zhì)Mrr1p結(jié)構(gòu)分析發(fā)現(xiàn),含有DNA結(jié)合域的N-端可能是調(diào)控MDR1表達(dá)的關(guān)鍵區(qū)域[20]。Mrr1p可與其他轉(zhuǎn)錄因子共同調(diào)控CaMDR1的表達(dá),比如Cap1p和Mcm1p。有趣的是,當(dāng)過氧化氫作為誘導(dǎo)物時,Cap1p和Mrr1p與CaMDR1的表達(dá)有關(guān),而Mcm1p并非必需,但當(dāng)Cap1p不發(fā)揮作用時,含有GOF突變的Mrr1p卻需要Mcm1p的參與來誘導(dǎo)CaMDR1的表達(dá)[20-21],說明轉(zhuǎn)錄調(diào)節(jié)因子之間存在相互作用。
此外,另一鋅簇家族成員Upc2p對CaMDR1也發(fā)揮轉(zhuǎn)錄調(diào)節(jié)作用,但Upc2p對菌株耐藥性的增強(qiáng)作用有限,研究發(fā)現(xiàn),含GOF突變的Upc2p只有在Mrr1p存在時才能輕微上調(diào)CaMDR1表達(dá)[22-23]。
3.2.2 堿性亮氨酸拉鏈轉(zhuǎn)錄因子 Cap1p是參與CaMDR1轉(zhuǎn)錄調(diào)控最主要的堿性亮氨酸拉鏈轉(zhuǎn)錄因子成員,屬于AP-1家族。CAP1與釀酒酵母中YAP1基因同源,YAP1與釀酒酵母藥物耐受和氧化應(yīng)激相關(guān),調(diào)節(jié)FLR1介導(dǎo)的對FLZ的耐藥[24]。在對氟康唑耐受的白念珠菌臨床菌株和誘導(dǎo)菌株中,CAP1基因和Cap1p蛋白都高度表達(dá)[25],但至于Cap1p是CaMDR1的激活因子還是抑制因子尚無定論。
人們預(yù)想在白念珠菌中Cap1p是CaMDR1激活因子,然而以CAI4為親本菌構(gòu)建基因缺失突變株,發(fā)現(xiàn)CAP1缺失沒有影響菌株對FLZ、淺藍(lán)菌素、布雷菲德菌素A和二酰胺的敏感性,只是對鎘、硝基喹啉、鄰二氮菲和過氧化氫的敏感性增加[24]。將C-端區(qū)域缺失的CAP1基因引入突變株后,菌株便對上述化合物(除過氧化氫外)高度耐受[24],Sasse[15]等人也有類似的報道,他們發(fā)現(xiàn)C-端缺失的Cap1p能激活CaMDR1的表達(dá)。更有趣但難以解釋的是,以CaMDR1基因高表達(dá)的白念珠菌FR2為親本菌構(gòu)建CAP1基因中斷突變株,發(fā)現(xiàn)突變株有更高的CaMDR1表達(dá)水平[24],Cap1p似乎是CaMDR1負(fù)調(diào)節(jié)因子。而近來的報道又有所不同,Ramírez-Zavala[26]等發(fā)現(xiàn),Cap1p使Ada2(一種SAGA/ADA轉(zhuǎn)錄輔助激活劑)結(jié)合在CaMDR1啟動子從而誘導(dǎo)CaMDR1的表達(dá),這與Znaidi[27]等關(guān)于Cap1p對CaMDR1的表達(dá)似乎是強(qiáng)效活化因子的報道類似。總的說來,Cap1p通過轉(zhuǎn)錄調(diào)控參與了CaMDR1的表達(dá),確定Cap1p如何參與CaMDR1的轉(zhuǎn)錄調(diào)控以及與其他轉(zhuǎn)錄調(diào)控因子的相互作用將是研究的重點(diǎn)。
3.2.3 其他 還有一些與CaMDR1表達(dá)有關(guān)的轉(zhuǎn)錄因子的研究,不過具體調(diào)控機(jī)制尚不是很透徹。Lo等[28]發(fā)現(xiàn),Rep1p可負(fù)向調(diào)節(jié)CaMDR1的表達(dá)而影響菌株藥物敏感性,在釀酒酵母中表達(dá)白念珠菌REP1基因增強(qiáng)了菌株對FLZ的敏感性,而將白念珠菌REP1基因進(jìn)行無效突變后發(fā)現(xiàn)其藥物敏感性降低且CaMDR1表達(dá)增強(qiáng)。類似的還有CPH1基因,其編碼的蛋白質(zhì)與信息素響應(yīng)元件結(jié)合,參與菌體繁殖和菌絲生長,CPH1也對CaMDR1起負(fù)調(diào)控作用,將CPH1無效突變后MDR1的表達(dá)增強(qiáng)了,且菌株對藥物的敏感性降低,而CPH1過量表達(dá)將增加菌體對藥物的敏感性[29]。
白念珠菌CaMDR1的轉(zhuǎn)錄調(diào)控是個較為復(fù)雜的過程,是順式作用元件和反式調(diào)節(jié)因子相互影響、共同作用的結(jié)果,具體機(jī)制至今尚未完全闡明,并且還可能通過調(diào)控具有不同功能的靶基因(比如藥物外排、氧化應(yīng)激相關(guān)基因)的表達(dá)而發(fā)揮不同的作用,明確其調(diào)控的靶基因有可能為抗真菌藥物的研制提供新思路,為探索白念珠菌耐藥機(jī)制開辟新的方向。
研究CaMDR1所編碼蛋白質(zhì)的結(jié)構(gòu)、功能及該基因的轉(zhuǎn)錄調(diào)控機(jī)制,對于闡明MDR1介導(dǎo)的耐藥機(jī)制有重要意義,同時對于抗真菌藥物的開發(fā)也具有指導(dǎo)作用。各種轉(zhuǎn)錄調(diào)節(jié)因子之間是否有相互作用,是否共同調(diào)節(jié)了CaMDR1基因的表達(dá),值得深入研究,揭示其內(nèi)在聯(lián)系,發(fā)現(xiàn)共有的調(diào)控途徑,尋找關(guān)鍵步驟能為研發(fā)抗真菌藥物提供新的靶點(diǎn)和思路,有望控制多重耐藥。另外,通過抑制或者失活白念珠菌CaMdr1p外排作用而使抗真菌藥物在菌體內(nèi)有效蓄積或影響其他生命活動,從而發(fā)揮抗真菌作用,也是一種有意義的新策略。比如單萜類藥物能逆轉(zhuǎn)外排泵基因(如CaMDR1)的表達(dá)從而起到抗真菌的作用[30]。
[1] Liu J, Shi C, Wang Y, et al. Mechanisms of azole resistance inCandidaalbicansclinical isolates from Shanghai, China[J]. Res Microbiol, 2015, 166(3): 153-161. DOI: 10.1016/j.resmic.2015.02.009
[2] Wirsching S, Michel S, Morschh user J. Targeted gene disruption inCandidaalbicanswild-type strains: the role of the MDR1 gene in fluconazole resistance of clinicalCandidaalbicansisolates[J]. Mol Microbiol, 2000, 36(4): 856-865. DOI: 10.1046/j.1365-2958.2000.01899.x
[3] Fling MF, Kopf J, Tamarkin A, et al. Analysis of aCandidaabicansgene that encodes a novel mechanism for resistance to benomyl and methotrexate[J]. Mol Gen Genet, 1991(227): 318-329. DOI: 10.1007/BF00259685
[4] Goldway M, Teff D, Schmidt R, et al. Multidrug resistance inCandidaalbicans: disruption of the BENr gene[J]. Antimicrob Agents Chemother, 1995, 39(2): 422-426. DOI: 10.1128/AAC.39.2.422
[5] Rognon B, Kozovska Z, Coste AT, et al. Identification of promoter elements responsible for the regulation of MDR1 fromCandidaalbicans, a major facilitator transporter involved in azole resistance[J]. Microbiology, 2006, 152(12): 3701-3722. DOI: 10.1099/mic.0.29277-0
[6] Wirsching S, Michel S, Ko Hler G, et al. Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinicalCandidaalbicansstrains is caused by mutations in a trans-regulatory factor[J]. J Bacteriol, 2000, 182(2): 400-404. DOI: 10.1128/JB.182.2.400-404.2000
[7] Hiller D, Sanglard D, Morschha User J. Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds inCandidaalbicans[J]. Antimicrob Agents Chemother, 2006, 50(4): 1365-1371. DOI: 10.1128/AAC.50.4.1365[8] Ying Y, Zhao Y, Hu X, et al. In vitro fluconazole susceptibility of 1,903 clinical isolates ofCandidaalbicansand the identification of ERG11 mutations[J]. Microbial Drug Resist, 2013, 19(4): 266-273. DOI: 10.1089/mdr.2012.0204
[9] Mandal A, Kumar A, Singh A, et al. A key structural domain of theCandidaalbicansMdr1 protein[J]. Biochemical J, 2012, 445(3): 313-322. DOI: 10.1042/BJ20120190
[10] Redhu AK, Khandelwal NK, Banerjee A, et al. pHluorin enables insights into the transport mechanism of antiporter Mdr1: R215 is critical for drug/H+ antiport[J]. Biochemical J, 2016, 473(19): 3127-3145. DOI: 10.1042/BCJ20160407
[11] Sun N, Li D, Fonzi W, et al. Multidrug-resistant transporter Mdr1p-mediated uptake of a novel antifungal compound[J]. Antimicrobial Agents Chemother, 2013, 57(12): 5931-5939. DOI: 10.1128/AAC.01504-13
[12] Watamoto T, Samaranayake LP, Egusa H, et al. Transcriptional regulation of drug-resistance genes inCandidaalbicansbiofilms in response to antifungals[J]. J Medical Microbiol, 2011, (60): 1241-1247. DOI: 10.1099/jmm.0.030692-0
[13] Feng W, Yang J, Pan Y, et al. The correlation of virulence, pathogenicity, and itraconazole resistance with SAP activity inCandidaalbicansstrains[J]. Canadian J Microbiol, 2016, 62(2): 173-178. DOI: 10.1139/cjm-2015-0457
[14] Bruzual I, Kumamoto CA. An MDR1 promoter allele with higher promoter activity is common in clinically isolated strains ofCandidaalbicans[J]. Mol Genet Genomics, 2011, 286(5/6):347-357. DOI: 10.1007/s00438-011-0650-z
[15] Sasse C, Schillig R, Reimund A, et al. Inducible and constitutive activation of two polymorphic promoter alleles of theCandidaalbicansmultidrug efflux pump MDR1[J]. Antimicrob Agents Chemother, 2012, 56(8): 4490-4494. DOI: 10.1128/AAC.00264-12
[16] Morschh user M, Barker KS, Liu TT, et al. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance inCandidaalbicans[J]. PLoS Pathog, 2007, 3(11): e164. DOI: 10.1371/journal.ppat.0030164
[17] Dunkel N, Bla J, Rogers PD, et al. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistantCandidaalbicansstrains[J]. Mol Microbiol, 2008, 69(4): 827-840. DOI: 10.1111/j.1365-2958.2008.06309.x
[18] Eddouzi J, Parker JE, Vale-Silva LA, et al. Molecular mechanisms of drug resistance in clinicalCandidaspecies isolated from Tunisian hospitals[J]. Antimicrob Agents Chemother, 2013, 57(7): 3182-3193. DOI: 10.1128/AAC.00555-13
[19] Morio F, Pagniez F, Besse M, et al. Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates ofCandidaalbicans[J]. Intl J Antimicrob Agents, 2013, 42(5): 410-415. DOI: 10.1016/j.ijantimicag.2013.07.013
[20] Schubert S, Popp C, Rogers PD, et al. Functional dissection of aCandidaalbicanszinc cluster transcription factor, the multidrug resistance regulator Mrr1[J]. Eukaryotic Cell, 2011, 10(8): 1110-1121. DOI: 10.1128/EC.05100-11
[21] Mogavero S, Tavanti A, Senesi S, et al. Differential requirement of the transcription factor Mcm1 for activation of theCandidaalbicansmultidrug efflux pump MDR1 by its regulators Mrr1 and Cap1[J]. Antimicrob Agents Chemother, 2011, 55(5): 2061-2066. DOI: 10.1128/AAC.01467-10
[22] Dunkel N, Liu TT, Barker KS, et al. A Gain-of-Function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinicalCandidaalbicansisolate[J]. Eukaryotic Cell, 2008, 7(7): 1180-1190. DOI: 10.1128/EC.00103-08
[23] Schubert S, Barker KS, Znaidi S, et al. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 inCandidaalbicans[J]. Antimicrob Agents Chemother, 2011, 55(5): 2212-2223. DOI: 10.1128/AAC.01343-10
[24] Alarco A M, Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response inCandidaalbicans[J]. J Bacteriol, 1999, 181(3): 700-708.
[25] Tan PL, Wang ZJ, Zhao JF. Resistance ofCandidaalbicansisolates against fluconazole and the resistance correlation withCAP1 gene[J]. Chin J Zoonoses, 2015, 3(4): 325-329. DOI: 10.3969/cjz.j.issn.1002-2694.2015.04.007 (in Chinese)談潘莉, 汪浙炯, 趙金方. 白假絲酵母菌臨床菌株對氟康唑耐藥性及其與CAP1基因相關(guān)性研究[J]. 中國人獸共患病學(xué)報, 2015, 3(4): 325-329.
[26] Ramirez-Zavala B, Mogavero S, Scholler E, et al. SAGA/ADA complex subunit Ada2 is required for Cap1- but not Mrr1-mediated upregulation of theCandidaalbicansmultidrug efflux pump MDR1[J]. Antimicrob Agents Chemother, 2014, 58(9): 5102-5110. DOI: 10.1128/AAC.03065-14
[27] Znaidi S, Barker KS, Weber S, et al. Identification of theCandidaalbicansCap1p regulon[J]. Eukaryotic Cell, 2009, 8(6): 806-820. DOI: 10.1128/EC.00002-09
[28] Chen C, Yang Y, Tseng K, et al. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance inCandidaalbicans[J]. Fungal Genetics Biol, 2009, 46(9): 714-720. DOI: 10.1016/j.fgb.2009.06.003
[29] Lo H, Tseng K, Kao Y, et al. Cph1p negatively regulates MDR1 involved in drug resistance inCandidaalbicans[J]. Intl J Antimicrob Agents, 2015, 45(6): 617-621. DOI: 10.1016/j.ijantimicag.2015.01.017
[30] Ahmad A, Khan A, Manzoor N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole[J]. Europ J Pharmaceutic Sci, 2013, 48(1-2): 80-86. DOI: 10.1016/j.ejps.2012.09.016
ProgressingeneCaMDR1mediatingmultidrugresistanceofCandidaalbicans
DENG Xi-ren, HUANG Xiao-tian
(DepartmentofMedicalMicrobiology,MedicalCollege,NanchangUniversity,Nanchang330006,China)
GeneCaMDR1 is a member of the major facilitator superfamily (MFS), mediating multidrug resistance ofCandidaalbicans, and can confer resistance to benomyl, fluconazole and so forth. In this review, the progress in structure and function of the protein code by geneCaMDR1 and the transcriptional regulation mechanisms ofCaMDR1 are summarized.
Candidaalbicans; multidrug resistance; major facilitator superfamily;CaMDR1
Huang Xiao-tian, Email: xthuang@ncu.edu.cn
國家自然科學(xué)基金(No. 31660035, No. 81460300),江西省自然科學(xué)基金項(xiàng)目(No. 20142BAB215053,No.20171ACB20003),南昌大學(xué)研究生創(chuàng)新專項(xiàng)資金項(xiàng)目(No. cx2016360)聯(lián)合資助
黃孝天,Email:xthuang@ncu.edu.cn
南昌大學(xué)醫(yī)學(xué)部微生物學(xué)教研室,南昌 330006
R379.4
:A
:1002-2694(2017)09-0837-04
2017-02-20編輯:梁小潔
Supported by the National Natural Science Foundation of China (Nos. 31660035 and 81460300), the Science and Technology Foundation of Jiangxi Province (No. 20142BAB215053,No.20171ACB20003), and the Innovation Fund Designated for Graduate Students of Nanchang University (No. cx2016360)