999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Global exponential stability of cycle associative neural network with constant delays

2017-09-20 06:08:56SHIRenxiang
大連理工大學學報 2017年5期

SHI Renxiang

( School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China )

Globalexponentialstabilityofcycleassociativeneuralnetworkwithconstantdelays

SHI Renxiang*

( School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China )

The global exponential stability of cycle associative neural network with constant delays is discussed. During the discussion, by constructing homeomorphism mapping, it is demonstrated that there exists an equilibrium point which is unique for this system, then the global exponential stability of the unique equilibrium point is testified by constructing proper Lyapunov function. Similar to previous work about neural network stability, under the assumption that the activation function about neuron satisfies Lipschitz condition and the matrix constructed by correlation coefficient satisfies given condition, the dynamics of global exponential stability forn-layer neural network with constant delays are obtained. The results contain that when the passive rate of neuron is sufficiently large, the neural network is global exponential stable.

exponential stability; equilibrium point; neural network; Lyapunov function

0 Introduction

The dynamical behaviors of delayed neural networks have attracted increasing interest for their intense application. Especially, there are many works about stability of neural network[1-8]. In Lits. [2-3], the authors discussed the static network with S-type distributed delays. In Lit. [4], the author discussed the global exponential stability of a class of neural networks with delays by natureM-matrix. In Lits. [3-5], the authors discussed the global exponential stability of the one-layer neural network. At the same time, the stability of bidirectional associative memory neural networks of the two-layers with delays has also been studied by many researchers[6-8]. In Lits. [5-6] the authors discussed the existence of equilibrium point and the global exponential stability by homeomorphism and constructing proper Lyapunov function. Inspired by above work, we should discuss the exponential stability ofn-layers neural networks with constant delays, which should be taken as general form for work[6].

1 Model and preliminaries

In this paper, we should discuss the cycle associative neural network of then-layers with constant delays:

u.

u.

u.

(1)

(2)

Letτ=max(τ1,τ2,…,τn), initial conditions for network (1) are of the form

φ=(φ1…φl1φl1+1…φl1+l2…φl1+l2+…+ln-1+1…φl1+l2+…+ln)∈C=C([-τ,0],Rl1+l2+…+ln)

(u1(t,φ),u2(t,φ),…,un(t,φ))= (u1,1(t,φ) …ul1,1(t,φ)u1,2(t,φ) …ul2,2(t,φ) …u1,n(t,φ) …uln,n(t,φ))

Denotex=(u1u2…un)=(u1,1…ul1,1u1,2…ul2,2…u1,n…uln,n). Hence,we write network (1) as

u.T2=-A2uT2+W2S(2)(u3(t-τ2))+J(2)

u.Tn=-AnuTn+WnS(n)(u1(t-τn))+J(n)

whereA1=diag{a1,1,…,al1,1},A2=diag{a1,2,…,al2,2}, …,An=diag{a1,n,…,aln,n}, andW1=(w1,i1,i2)l1×l2,W2=(w2,i2,i3)l2×l3, …,Wn=(wn,in,i1)ln×l1.

Theorem1For network (1), the assumption (2) and condition (T) hold. Then the neural network (1) has a unique equilibrium point.

Theorem2For network (1), the assumption (2) and condition (T) hold. Then the equilibrium point of neural network (1) is global exponential stable.

We should discuss the existence and uniqueness of the equilibrium point, the global exponential stability, and compare our result with previous results and give an example.

2 The existence and uniqueness of equilibrium point

For convenience we state the following lemma,which is special case of lemma (2.1) in Lit. [6].

Lemma1Given any real vectorsX,Yof appropriate dimensions, then the following inequality holds

Let

(3)

LetS(x)=(S(n)(x)S(1)(x) …S(n-1)(x))T,xandybe two vectors such thatx≠y. Under the assumption (2) on the activation functionsx≠yimply two cases: (i)x≠yandS(x)-S(y)≠0; (ii)x≠yandS(x)-S(y)=0, now we write

H1(x)-H1(y)=-A1u1x+A1u1y+W1(S(1)(x)-S(1)(y))

H2(x)-H2(y)=-A2u2x+A2u2y+W2(S(2)(x)-S(2)(y)) …

Hn(x)-Hn(y)=-Anunx+Anuny+Wn(S(n)(x)-S(n)(y))

(4)

whereu1x=(u1,1x…ul1,1x)T,u1y=(u1,1y…

ul1,1y)T,u2x=(u1,2x…ul2,2x)T,u2y=(u1,2y…

ul2,2y)T, …,unx=(u1,nx…uln,nx)T,uny=(u1,ny…uln,ny)T.

First, we consider the case (i). In this case,there existsk∈(1,2,…,n) such thatS(k)(x)≠S(k)(y). Multiplying both sides of the first equation in Eq. (4) by 2(S(n)(x)-S(n)(y))TP1, results in

2(S(n)(x)-S(n)(y))TP1(H1(x)-H1(y))= -2(S(n)(x)-S(n)(y))TP1(A1u1x-A1u1y)+ 2(S(n)(x)-S(n)(y))TP1W1(S(1)(x)-S(1)(y))

we have

(S(n)(x)-S(n)(y))TP1(A1u1x-A1u1y)≥ (S(n)(x)-S(n)(y))TP1A1(α(n))-1(S(n)(x)-S(n)(y))

It follows from Lemma 1

(5)

Similarly

(6)

(7)

which imply that

Ψ(x,y)=(2(S(n)(x)-S(n)(y))T2(S(1)(x)-S(1)(y))T… 2(S(n-1)(x)-S(n-1)(y))T)diag{P1,P2,…,Pn}× (H(x)-H(y))

Ψ(x,y)≤-(S(1)(x)-S(1)(y))TΩ1(S(1)(x)-S(1)(y))-(S(2)(x)-S(2)(y))T×Ω2(S(2)(x)-S(2)(y))-…- (S(n)(x)-S(n)(y))TΩn(S(n)(x)-S(n)(y))<0

(8)

That isH(x)≠H(y). Sincediag{P1,P2,…,Pn} is a positive diagonal matrix,we prove thatH(x)-H(y)≠0whenx≠yandS(x)≠S(y).

Now we consider the case (ii). In view ofx≠yandS(x)-S(y)=0,we have

which implies thatH(x)≠H(y) forx≠y.

Ψ(x,0)≤-λmin[(S(x)-S(0))T(S(x)-S(0))]

whereλmindenotes the minimum eigenvalue of the positive definite matricesΩ1,Ω2, …,Ωn. Similar to Lemma 2.2 in Lit. [6], we obtain

Hence

3 The global exponential stability of the equilibrium point

v.

1(t)=-A1v1(t)+W1f(1)(v2(t-τ1))

v.

2(t)=-A2v2(t)+W2f(2)(v3(t-τ2))

v.

n(t)=-Anvn(t)+Wnf(n)(v1(t-τn))

(9)

i1=1,2,…,l1

The Lipschitz condition implies that

ProofofTheorem2We employ the following Lyapunov function

V(v1(t),v2(t),…,vn(t),t)=ε1V1(v1(t),v2(t),…,vn(t))+V2(v1(t),v2(t),…,vn(t),t)

(10)

where

First we compute the derivative ofValong trajectories of Eq. (9), then determine positive constantε1and positive definite matricesR1,R2, …,Rn.

V.

(v1(t),v2(t),…,vn(t),t)=ε1

V.

1(v1(t),v2(t), …,vn(t))+

V.

2(v1(t),v2(t), …,vn(t),t)

where

V.

and

V.

2(v1(t),v2(t),…,vn(t),t)= 2f(1)T(v2(t))P2[-A2v2(t)+W2f(2)(v3(t-τ2))]+2f(2)T(v3(t))P3[-A3v3(t)+W3f(3)(v4(t-τ3))]+…+ 2f(n)T(v1(t))P1[-A1v1(t)+W1f(1)(v2(t-τ1))]+f(1)T(v2(t))R1f(1)(v2(t))-f(1)T(v2(t-τ1))×R1f(1)(v2(t-τ1))+f(2)T(v3(t))R2f(2)(v3(t))-f(2)T(v3(t-τ2))R2f(2)(v3(t-τ2))+…+f(n)T(v1(t))Rnf(n)(v1(t))-f(n)T(v1(t-τn))×Rnf(n)(v1(t-τn))

Rewriting

V.

1as

V.

It follows from Lemma 1 that

V.

we get

-f(1)T(v2(t))P2A2v2(t)≤ -f(1)T(v2(t))P2A2(α(1))-1f(1)(v2(t)) -f(2)T(v3(t))P3A3v3(t)≤ -f(2)T(v3(t))P3A3(α(2))-1f(2)(v3(t)) … -f(n)T(v1(t))P1A1v1(t)≤ -f(n)T(v1(t))P1A1(α(n))-1f(n)(v1(t))

V.

2≤-f(1)T(v2(t))2P2A2(α(1))-1f(1)(v2(t))-f(2)T(v3(t))2P3A3(α(2))-1f(2)(v3(t))-…-f(n)T(v1(t))2P1A1(α(n))-1f(n)(v1(t))+ 2(f(1)T(v2(t))P2(W21K2-1)(K2W22)×f(2)(v3(t-τ2)))+2(f(2)T(v3(t))×P3(W31K3-1)(K3W32)f(3)(v4(t-τ3)))+…+ 2(f(n)T(v1(t))P1(W11K1-1)(K1W12)×f(1)(v2(t-τ1)))+f(1)T(v2(t))×R1f(1)(v2(t))-f(1)T(v2(t-τ1))×R1f(1)(v2(t-τ1))+f(2)T(v3(t))×R2f(2)(v3(t))-f(2)T(v3(t-τ2))×R2f(2)(v3(t-τ2))+…+f(n)T(v1(t))×Rnf(1)(v1(t))-f(n)T(v1(t-τn))×Rnf(n)(v1(t-τn))

That

V.

2is bounded by Lemma 1.

V.

V.

2(v1(t),v2(t),…,vn(t),t)≤ -f(1)T(v2(t))(Ω1-2ε2Il2+ε2Il2)f(1)(v2(t))-f(2)T(v3(t))(Ω2-2ε2Il3+ε2Il3)f(2)(v3(t))-…-f(n)T(v1(t))(Ωn-2ε2Il1+ε2Il1)f(n)(v1(t))-ε2f(1)T(v2(t-τ1))f(1)(v2(t-τ1))-ε2f(2)T(v3(t-τ2))f(2)(v3(t-τ2))-…-ε2f(n)T(v1(t-τn))f(n)(v1(t-τn))≤ -ε2f(1)T(v2(t))f(1)(v2(t))-ε2f(2)T(v3(t))f(2)(v3(t))-…-ε2f(n)T(v1(t))f(n)(v1(t))-ε2f(1)T(v2(t-τ1))f(1)(v2(t-τ1))-ε2f(2)T(v3(t-τ2))f(2)(v3(t-τ2))-…-ε2f(n)T(v1(t-τn))f(n)(v1(t-τn))

Chooseε1>0 such thatMε1≤ε2, we have

V.

εε1+εpθ-ε1a+rθ2ετeετ<0

(11)

We obtain

Noting that

(12)

Integrating both sides of Eq. (12) from 0 tos, concerned with Eq. (11), similar to Theorem 2.3 in Lit. [6], we obtain

Therefore

(13)

According to Eq. (13) and the above inequality

that is,

(14)

Inequality (14) implies that the origin of system (9) is global exponential stable.

4 Comparison with previous results

Now we compare our results with the previous result in Lit. [6], where authors gave a new sufficient condition for the existence, uniqueness and global stability of the equilibrium point for BAM neural network with constant delays:

a.

i=1,2,…,n

z.

j=1,2,…,m

(15)

We could obtain the result in Lit. [6] from our work,whenn=2, network (1) is similar to Eq. (15), Theorems (1), (2) became Lemma (2.2), Theorem (2.3) in Lit. [6].

Example1Assume the parameters in Eq. (9) are given as follows:

andA1=A2=…=An=aIn,Q1=Q2=…=Qn=rIn, (α(1))-1=(α(2))-1=…=(α(n))-1=P1=P2=…=Pn=W11=W21=…=Wn1=In, whereInisn×nidentity matrix. Hence, we have

5 Conclusion

We study a class of neural networks with constant delays in this paper, comparing with previous work[6], we expand the result of neural network from 2-layer ton-layer by constructing Lyapunov function. Our result includes the result of work in Lit. [6].

[1] HAN Wei, LIU Yan, WANG Linshan. Robust exponential stability of Markovian jumping neural networks with mode-dependent delay [J].CommunicationsinNonlinearScienceandNumericalSimulation, 2010,15(9):2529-2535.

[2] WANG Yangfan, LU Chunge, JI Guangrong,etal. Global exponential stability of high-order Hopfield-type neural networks with S-type distributed time delays [J].CommunicationsinNonlinearScienceandNumericalSimulation, 2011,16:3319-3325.

[3] WANG M, WANG L. Global asymptotic robust stability of static neural network models with S-type distributed delays [J].MathematicalandComputerModelling, 2006,44:218-222.

[4] YANG Fengjian, ZHANG Chaolong, CHEN Chuanyong,etal. Global exponential stability of a class of neural networks with delays [J].ActaMathematicaeApplicataeSinica, 2009,25(1):43-50.[5] ZHAO Weirui, ZHANG Huanshui. Globally exponential stability of neural network with constant and variable delays [J].PhysicsLettersA, 2006,352(4/5):350-357.

[6] ZHAO Weirui, ZHANG Huanshui, KONG Shulan. An analysis of global exponential stability of bidirectional associative memory neural networks with constant time delays [J].Neurocomputing, 2007,70(7/9):1382-1389.

[7] DING Ke, HUANG Nanjing, XU Xing. Global robust exponential stability of interval BAM neural network with mixed delays under uncertainty [J].NeuralProcessingLetters, 2007,25(2):127-141.

[8] LI Chuandong, LIAO Xiaofang, ZHANG Rong. Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach [J].Chaos,Solitions&Fractals, 2005,24(4):1119-1134.

[9] FORTI M, TESI A. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J].IEEETransactionsonCircuitsandSystems-I:FundamentalTheoryandApplications, 1995,42(7):354-366.

1000-8608(2017)05-0537-08

帶有常時滯循環耦合神經網絡的全局指數穩定性

石 仁 祥*

( 上海交通大學 數學科學學院, 上海 200240 )

討論了帶有常時滯循環耦合神經網絡的全局指數穩定性,在討論過程中通過構造同胚映射論證了該系統平衡點的存在性與唯一性,再通過構造合適的Lyapunov函數論證唯一平衡點是全局指數穩定的.類似于已有的神經網絡穩定性方面工作,在神經元的激勵函數滿足Lipschitz條件且相關系數構成矩陣也滿足給定條件下,得到n層帶有常時滯的神經網絡全局指數穩定的動力學性質.所得結果同時也蘊含當神經元的衰減速率足夠大時,神經網絡是全局指數穩定的.

指數穩定性;平衡點;神經網絡;Lyapunov函數

O175.13;TP183

A

2016-10-07;

2017-06-20.

江蘇省自然科學基金資助項目(BK20131285).

石仁祥*(1983-),男,博士生,E-mail:srxahu@aliyun.com.

SHI Renxiang*(1983-), Male, Doc., E-mail:srxahu@aliyun.com.

10.7511/dllgxb201705015

Receivedby2016-10-07;Revisedby2017-06-20.

SupportedbyNatural Science Foundation of Jiangsu (BK20131285).

主站蜘蛛池模板: 亚洲精品在线观看91| 亚洲an第二区国产精品| 亚洲天堂网在线播放| 欧美成人在线免费| 国产精品尤物在线| 欧美a在线视频| 国产三级视频网站| 特级做a爰片毛片免费69| 久久精品无码一区二区国产区| 狠狠干综合| 国产精品网址你懂的| 亚洲爱婷婷色69堂| vvvv98国产成人综合青青| 欧美一区二区福利视频| 日韩第八页| 欧美在线导航| 激情综合网激情综合| 999国内精品久久免费视频| 婷五月综合| 国产鲁鲁视频在线观看| av在线人妻熟妇| 亚洲第一区欧美国产综合| 欧美性爱精品一区二区三区| 青青国产视频| 国产91透明丝袜美腿在线| 国产黄网永久免费| 欧美国产日本高清不卡| 欧美另类视频一区二区三区| 国产黄色片在线看| 久久99国产综合精品1| 在线人成精品免费视频| 国产精品视频观看裸模| 亚洲欧洲自拍拍偷午夜色无码| 手机永久AV在线播放| 日本在线国产| 久久人人97超碰人人澡爱香蕉| 亚洲第一成人在线| 国产永久在线视频| 亚洲天堂首页| 中国国产A一级毛片| 91青青视频| 欧美午夜理伦三级在线观看| 天堂成人在线| 亚洲一级毛片在线播放| 精品无码日韩国产不卡av| 免费国产无遮挡又黄又爽| 狠狠色狠狠综合久久| 欧美在线视频a| 欧美激情第一欧美在线| 欧美成人免费一区在线播放| 日本91视频| 久久91精品牛牛| 亚洲综合国产一区二区三区| 免费亚洲成人| 国产91丝袜在线观看| 免费又爽又刺激高潮网址| 丁香婷婷激情网| 精品国产中文一级毛片在线看| 日本五区在线不卡精品| 色综合天天视频在线观看| 日韩精品欧美国产在线| 欧美不卡视频一区发布| yjizz视频最新网站在线| 久久99国产精品成人欧美| 欧美特黄一免在线观看| 国产精品视频导航| 成人免费一级片| 天天做天天爱夜夜爽毛片毛片| 欧美精品在线免费| 67194成是人免费无码| 国产凹凸一区在线观看视频| 91精品视频在线播放| 久久人人97超碰人人澡爱香蕉| 一本一道波多野结衣一区二区 | 国产美女精品人人做人人爽| 国产亚洲欧美在线专区| 911亚洲精品| 无码高潮喷水专区久久| 国产精品999在线| 亚洲日韩高清在线亚洲专区| 2020精品极品国产色在线观看| 精品伊人久久大香线蕉网站|