賈亞南,劉俊艷
(河北醫(yī)科大學(xué)第三醫(yī)院 神經(jīng)內(nèi)科,河北 石家莊 050000)
·專題·
磁敏感加權(quán)成像突出血管征在卒中患者中的應(yīng)用價(jià)值
賈亞南,劉俊艷
(河北醫(yī)科大學(xué)第三醫(yī)院 神經(jīng)內(nèi)科,河北 石家莊 050000)
急性卒中患者低灌注區(qū)域內(nèi)腦組織局部血管內(nèi)氧攝取率增高,導(dǎo)致毛細(xì)血管及靜脈內(nèi)脫氧血紅蛋白與含氧血紅蛋白比值增高。利用磁敏感加權(quán)成像對(duì)脫氧血紅蛋白等順磁性物質(zhì)的敏感性,脫氧血紅蛋白濃度高的血管在SWI上呈現(xiàn)為突出血管征(prominent vessel sign,PVS)。PVS的出現(xiàn)可用于評(píng)估缺血半暗帶及腦灌注療效,也預(yù)示了側(cè)支循環(huán)建立及腦儲(chǔ)備能力,PVS的存在也與卒中預(yù)后有一定關(guān)系。
卒中;磁敏感加權(quán)成像;突出血管征

劉俊艷,碩士生導(dǎo)師、二級(jí)教授。河北醫(yī)科大學(xué)第三醫(yī)院神經(jīng)內(nèi)科主任,河北省青年突出貢獻(xiàn)專家,白求恩專家委員會(huì)常委,國(guó)家衛(wèi)計(jì)委腦卒中防治委員會(huì)委員。中國(guó)卒中學(xué)會(huì) 委員,中國(guó)卒中學(xué)會(huì)腦血流和代謝分會(huì)副主委,中國(guó)醫(yī)師學(xué)會(huì)委員,中國(guó)醫(yī)師學(xué)會(huì)腦血管學(xué)組委員,河北省卒中學(xué)會(huì)副主委,河北省質(zhì)量控制專家委員會(huì)副主委,河北省醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì) 副主任委員。
磁敏感加權(quán)成像(susceptibility weighted imaging, SWI)是在梯度回波序列(gradient recalled echo,GRE)基礎(chǔ)上進(jìn)一步發(fā)展而來(lái)的一種新的成像技術(shù)。其利用不同腦組織磁敏感性的差異,使含鐵血黃素、脫氧血紅蛋白、鐵沉積、鈣化等順磁性物質(zhì)得以顯像[1]。由此,SWI廣泛應(yīng)用于腦挫傷、腦卒中、腦退行性病變、腦血管畸形、顱內(nèi)鈣化、腦腫瘤等疾病的鑒別診斷[2-6],尤其對(duì)于急性卒中患者,SWI可顯示下述3個(gè)重要的病理學(xué)異常:①探查微出血灶和出血轉(zhuǎn)化[7];②顯示低灌注區(qū)域內(nèi)的突出血管征(prominent vessel sign,PVS)[8];③檢測(cè)具有血栓識(shí)別能力的磁敏感血管征(susceptibility vessel sign,SVS)[9]。本文重點(diǎn)論述SWI顯示的PVS在急性卒中臨床應(yīng)用。
灌注減低區(qū)域內(nèi)明顯的低信號(hào)血管信號(hào)影被稱之為PVS。PVS的產(chǎn)生源自于急、慢性腦灌注不良患者經(jīng)由血液動(dòng)力學(xué)障礙的失代償期,腦血管的自我調(diào)節(jié)能力不足以代償灌注量持續(xù)降低時(shí),腦組織代償?shù)卦黾恿似渥匝軆?nèi)氧的攝取率(oxygen extraction fraction,OEF),通過(guò)高OEF彌補(bǔ)貧困灌注的不足,從而導(dǎo)致毛細(xì)血管及靜脈血內(nèi)脫氧血紅蛋白與含氧血紅蛋白比值增高,這種比例的變化在磁共振成像(magnetic resonance imaging,MRI),SWI上顯示為低信號(hào)[10],即PVS的出現(xiàn)。故PVS的存在說(shuō)明腦血液動(dòng)力學(xué)障礙進(jìn)入失代償Ⅱ期即“貧困灌注期”。
PVS最常見(jiàn)于患側(cè)腦組織皮層淺表靜脈分布區(qū),也可見(jiàn)于急性缺血性卒中患側(cè)大腦深靜脈部位[11-12]。此外,本作者發(fā)現(xiàn)基底節(jié)區(qū)腦出血患者于病后6個(gè)月復(fù)查時(shí),其SWI也可于患側(cè)發(fā)現(xiàn)PVS(圖1),推測(cè)PVS的出現(xiàn)與患側(cè)皮層靜脈血回流受阻或腦組織代謝活躍有關(guān)。也有學(xué)者發(fā)現(xiàn)肺栓塞患者其顱腦SWI也存在廣泛PVS,這是因?yàn)榉嗡ㄈ颊哐躏柡投冉档?,此時(shí)盡管OEF不增加,靜脈中脫氧血紅蛋白濃度也較正常高[13]。

圖1 55歲中年男性,左側(cè)基底節(jié)區(qū)出血半年后復(fù)查,SWI示:病灶側(cè)可見(jiàn)PVS
急性缺血性卒中的病灶是由核心壞死區(qū)、周圍的缺血半暗帶、良性低灌注區(qū)及正常供血區(qū)共同組成。缺血中心壞死區(qū)與缺血半暗帶是一個(gè)動(dòng)態(tài)演變的病理生理過(guò)程。隨著缺血時(shí)間的延長(zhǎng)和低灌注程度的加重,中心壞死區(qū)范圍會(huì)逐漸擴(kuò)大,而缺血半暗帶會(huì)逐漸縮小[14]。因此,及時(shí)識(shí)別和挽救缺血半暗帶對(duì)于急性腦梗死患者的臨床預(yù)后至關(guān)重要。
既往多利用磁共振灌注成像(perfusion weighted imaging, PWI)的平均通過(guò)時(shí)間((mean transit time, MTT)、達(dá)峰時(shí)間(time to peak, TTP)的延長(zhǎng)及腦血流量(cerebral blood flow, CBF)與 腦血容量(cerebral blood volume, CBV)的不匹配來(lái)評(píng)估半暗帶,明確腦組織低灌注區(qū)域。如臨床中將PWI-DWI的不匹配區(qū)表示缺血半暗帶[ 15-16],用于評(píng)估超時(shí)溶栓或不確定發(fā)病時(shí)間患者的溶栓獲益與風(fēng)險(xiǎn)。
新近研究發(fā)現(xiàn),SWI所示PVS的空間分布與PWI中MTT延長(zhǎng)的區(qū)域相似,ASPECTS-SWI與ASPECTS-PWI評(píng)分具有很強(qiáng)的相關(guān)性[17-18]。進(jìn)一步研究表明:OEF增高與MTT的延長(zhǎng)顯著相關(guān)[19-20],而PVS也間接提示OEF增加。因此,有學(xué)者提出,SWI-DWI也可用來(lái)評(píng)估缺血半暗帶[21-24],其與DWI-PWI相互補(bǔ)充,但不能替代[25]。原因是:SWI上顯示的PVS僅間接地反映腦組織的代謝儲(chǔ)備及氧代謝,但不能量化,對(duì)半暗帶的評(píng)估還缺少可靠的標(biāo)準(zhǔn)化依據(jù);除此之外,有研究發(fā)現(xiàn)并非PWI顯示的所有低灌注區(qū)均可通過(guò)SWI檢測(cè)到PVS;而SWI的優(yōu)勢(shì)是無(wú)需注入對(duì)比劑及圖像后處理來(lái)獲取圖像信息,可以節(jié)省檢查時(shí)間和費(fèi)用,降低患者對(duì)對(duì)比劑過(guò)敏的風(fēng)險(xiǎn),尤其適用于嚴(yán)重腎功不全的患者;此外,利用不同物質(zhì)順磁性強(qiáng)弱的差異,SWI還可以監(jiān)測(cè)到血管內(nèi)血栓及微出血改變,用于血管急性閉塞性疾病的診斷及出血風(fēng)險(xiǎn)評(píng)估[25-26]。
值得注意的是,有研究發(fā)現(xiàn):卒中發(fā)作8小時(shí)后的患者,SWI仍可見(jiàn)到PVS的出現(xiàn),此時(shí),SWI-DWI的不匹配區(qū)不再代表缺血半暗帶,往往代表“貧困灌注”[27]。
側(cè)支循環(huán)的開(kāi)放是腦血流動(dòng)力學(xué)障礙患者首要的代償途徑,卒中急性期側(cè)支循環(huán)的建立利于缺血腦組織的再灌注。研究顯示[28-30],良好的側(cè)支循環(huán)可有效增加半暗帶面積、減少缺血中心壞死區(qū)范圍,從而延長(zhǎng)卒中救治時(shí)間窗、增加靜脈溶栓和機(jī)械取栓的成功率,降低溶栓后出血轉(zhuǎn)化、改善腦組織缺血缺氧狀況,改善卒中預(yù)后、減少卒中復(fù)發(fā)風(fēng)險(xiǎn)。故全面、準(zhǔn)確地評(píng)估腦側(cè)支循環(huán)并及時(shí)進(jìn)行干預(yù)治療,對(duì)個(gè)體化治療方案的制定至關(guān)重要。
側(cè)支循環(huán)的常規(guī)檢測(cè)方法包括血管影像學(xué)檢測(cè)及灌注影像學(xué)兩種。血管影像學(xué)檢測(cè)方法包括經(jīng)顱多普勒(transcranial doppler, TCD)、經(jīng)顱彩色多普勒超聲(transcranial color-coded duplex sonography, TCCS/TCCD)、磁共振血管造影(magnetic resonance angiography, MRA)、計(jì)算機(jī)斷層血管造影(computed tomography angiography, CTA) 、數(shù)字減影血管造影(digital subtraction angiography, DSA)等,CTA、尤其是DSA作為血管影像學(xué)檢測(cè)的金標(biāo)準(zhǔn),雖具有敏感性及特異性高的優(yōu)點(diǎn),可以檢測(cè)1~3級(jí)側(cè)支循環(huán),但均需靜脈注射造影劑,且檢查價(jià)格昂貴,臨床使用具有一定的局限性;而MRA及TCD作為初篩檢查技術(shù),僅僅能檢測(cè)一、二級(jí)側(cè)支循環(huán),評(píng)估敏感性相對(duì)較低,也有各自的缺陷。而灌注影像學(xué)包括CT灌注(CT perfusion, CTP)、PWI、單光子發(fā)射計(jì)算機(jī)斷層成像術(shù)(single-photon emission computed tomography, SPECT)、正電子發(fā)射斷層成像術(shù)(positron emission tomography, PET) 及動(dòng)脈自旋標(biāo)記灌注技術(shù)(arterial spin labeling, ASL)等,主要通過(guò)MTT、 TTP、 CBF、 CBV等參數(shù)評(píng)估缺血局部腦灌注情況,反映的是微動(dòng)脈及毛細(xì)血管水平的側(cè)支循環(huán)狀態(tài),缺陷是不能明確其上游動(dòng)脈的來(lái)源。
新近研究表明SWI顯示的PVS與側(cè)支循環(huán)有一定相關(guān)性[26,31-32]。Verma等[26]以33例M1段急性閉塞的卒中患者作為研究對(duì)象,依據(jù)DSA所示軟腦膜動(dòng)脈的代償情況將患者分為:側(cè)支循環(huán)良好者20例,側(cè)支循環(huán)較差者13例;比較了兩組患者各自在DWI、PVS、MTT的ASPECTS評(píng)分。結(jié)果發(fā)現(xiàn),側(cè)支循環(huán)良好組患者PVS-ASPECTS評(píng)分顯著高于側(cè)支循環(huán)較差組 (4.1 vs 2.69;P=0.039)。由此認(rèn)為:SWI顯示的PVS顯影程度與軟腦膜動(dòng)脈側(cè)支開(kāi)放程度有關(guān),側(cè)支循環(huán)好的PVS顯影較少,反之亦然。而該研究中兩組患者M(jìn)TT-ASPECTS評(píng)分都顯著低于PVS-ASPECTS(1.0 vs 3.5;P<0.001)評(píng)分,提示MTT顯示的灌注不良面積大于PVS的面積。該現(xiàn)象在側(cè)支循環(huán)良好個(gè)體中尤為顯著,考慮其發(fā)生機(jī)制可能是良好側(cè)支循環(huán)的建立,增加了缺血半暗帶的血氧供給量,減少了腦組織對(duì)局部血管的OEF,從而使SWI顯示的PVS面積小于MTT顯示的灌注不良區(qū)域。然而, Park等[31-32]研究則認(rèn)為,SWI顯示的PVS與側(cè)支循環(huán)良好有關(guān)。因?yàn)椋己玫膫?cè)支循環(huán)可延長(zhǎng)缺血半暗帶的維持時(shí)間,減少缺血半暗帶向壞死區(qū)的轉(zhuǎn)化,而PVS的存在意義等同于PWI,可用來(lái)評(píng)估缺血半暗帶的大小。因此,側(cè)支循環(huán)良好者其SWI顯示的PVS面積可能也更為廣泛。所以,有關(guān)SWI所示PVS意義及與側(cè)支循環(huán)的關(guān)系尚還存有爭(zhēng)議,需要大樣本研究PVS與側(cè)支循環(huán)的相關(guān)性。
PVS作為反應(yīng)腦組織代謝狀態(tài)的指標(biāo),對(duì)于評(píng)估治療前后受累腦組織低灌注程度、灌注不良范圍及血管再通后再灌注狀態(tài)具有重要意義。腦組織得到有效再灌注治療后,靜脈中脫氧血紅蛋白的濃度恢復(fù)正常,SWI顯示的PVS消失[33-34]。Baik等[34]研究了19例顱內(nèi)大動(dòng)脈急性閉塞患者的SWI成像,以健側(cè)靜脈顯影作對(duì)照,觀察了再灌注治療后患側(cè)PVS改變與預(yù)后關(guān)系。結(jié)果顯示:再灌注治療后患側(cè)PVS顯影等同于對(duì)側(cè)靜脈者(圖2)有良好的再灌注及臨床預(yù)后;而灌注治療后患側(cè)PVS較健側(cè)靜脈少者,提示腦組織已發(fā)生不可逆損害,壞死的組織細(xì)胞代謝率減低,OEF也隨之下降,從而使靜脈顯影較對(duì)側(cè)減少。此時(shí)的再灌注治療屬于無(wú)效灌注,且可能造成再灌注損傷,臨床預(yù)后差。因此,利用SWI顯示再灌注治療前后PVS的變化來(lái)反應(yīng)腦組織的代謝狀態(tài),從而評(píng)估灌注治療療效,指導(dǎo)臨床及預(yù)后評(píng)估。值得注意的是,利用PVS評(píng)估再灌注治療效果時(shí),應(yīng)在接受治療后盡可能短的時(shí)間內(nèi)進(jìn)行SWI檢查,因?yàn)榻^大多數(shù)患者即使不接受溶栓治療,其PVS在發(fā)病48小時(shí)內(nèi)也將自然消褪[35]。

圖2 Baik等[34]觀察再灌注治療后SWI顯示的PVS改變的研究中的1例患者 a.左側(cè)頸內(nèi)動(dòng)脈及左側(cè)大腦中動(dòng)脈閉塞,溶栓前DWI示左側(cè)基底節(jié)區(qū)梗死灶;b.溶栓前的SWI左側(cè)大腦中動(dòng)脈供血區(qū)可見(jiàn)廣泛的PVS;c.左側(cè)頸內(nèi)動(dòng)脈及大腦中動(dòng)脈恢復(fù)再灌注,溶栓1.5小時(shí)后其DWI顯示的梗死灶未進(jìn)一步擴(kuò)大;d.溶栓1.5小時(shí)后其SWI顯示的PVS消失
基于上述,PVS對(duì)急性缺血性卒中的臨床預(yù)測(cè)價(jià)值尚存爭(zhēng)議。一些人認(rèn)為,廣泛存在的PVS可能代表缺血半暗帶,表示患者可挽救腦組織面積較大,靜脈溶栓、機(jī)械取栓等創(chuàng)傷性治療可獲益,臨床預(yù)后較好。Lou等[36]進(jìn)行的一項(xiàng)回顧性隊(duì)列研究表明:存在PVS-DWI不匹配的患者溶栓預(yù)后較無(wú)PVS-DWI不匹配區(qū)患者好。Payabvash等[37]以150例急性大腦中動(dòng)脈閉塞患者作為研究對(duì)象,所有患者均接受標(biāo)準(zhǔn)內(nèi)科治療,且接受SWI與DWI檢測(cè),評(píng)估兩者的不匹配區(qū)面積與臨床預(yù)后的關(guān)系。結(jié)果顯示:PVS-DWI不匹配區(qū)的存在的患者其DWI顯示的病灶越小、3個(gè)月時(shí)臨床預(yù)后較好。
也有學(xué)者認(rèn)為,PVS的出現(xiàn)提示腦組織處于“貧困灌注”狀態(tài),代表腦組織的儲(chǔ)備功能衰竭,是早期神經(jīng)功能惡化、梗死灶擴(kuò)大、卒中進(jìn)展及不良預(yù)后的影像標(biāo)志[8-9,18,27]。國(guó)外研究顯示:PVS可反映腦組織低灌注的程度,無(wú)PVS的患者溶栓治療后神經(jīng)功能改善情況優(yōu)于PVS出現(xiàn)的患者[33]。此外,新近的研究通過(guò)SWI觀察急性卒中患者的深部靜脈顯像,發(fā)現(xiàn)患側(cè)深部靜脈-丘紋靜脈的突出與急性卒中患者溶栓后不良預(yù)后有很強(qiáng)的相關(guān)性[11]。他們認(rèn)為,丘紋靜脈的突出是因?yàn)槠涿撗跹t蛋白濃度較高,反映其所引流區(qū)的腦組織處于低灌注狀態(tài),并可能與較差的側(cè)支循環(huán)有關(guān),使缺血半暗帶持時(shí)較短,若得不到及時(shí)再灌注治療,溶栓后可能預(yù)后不良。
然而,也有小樣本研究認(rèn)為PVS與臨床預(yù)后無(wú)關(guān)[38]。上述研究存在著樣本量小、接受SWI檢查的時(shí)間不一致,患者接受的治療措施迥異等問(wèn)題,可能影響研究結(jié)論,需要大樣本的RCT試驗(yàn)進(jìn)一步研究。
綜上所述,SWI顯示的PVS可反應(yīng)組織的代謝狀態(tài),用于評(píng)估缺血半暗帶及腦灌注療效,間接評(píng)估側(cè)支循環(huán)開(kāi)放程度,利于卒中預(yù)后評(píng)價(jià)。然而,目前有關(guān)急性卒中患者SWI顯示的PVS的研究有限,有待進(jìn)一步研究證實(shí)。
[1] Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI)[J]. Magn Reson Med, 2004,52(3):612-618.
[2] Tan IL, van Schijndel RA, Pouwels PJ, et al. MR venography of multiple sclerosis[J]. AJNR Am J Neuroradiol, 2000,21(6):1039-1042.
[3] Thamburaj K, Radhakrishnan VV, Thomas B, et al. Intratumoral microhemorrhages on T2*-weighted gradient-echo imaging helps differentiate vestibular schwannoma from meningioma[J]. AJNR Am J Neuroradiol, 2008,29(3):552-557.
[4] Thomas B, Somasundaram S, Thamburaj K, et al. Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review[J]. Neuroradiology, 2008,50(2):105-116.
[5] Tong KA, Ashwal S, Holshouser BA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results[J]. Radiology, 2003,227(2):332-339.
[6] Hingwala D, Kesavadas C, Thomas B, et al. Clinical utility of susceptibility-weighted imaging in vascular diseases of the brain[J]. Neurol India, 2010,58(4):602-607.
[7] Santhosh K, Kesavadas C, Thomas B, et al. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke[J]. Clin Radiol, 2009,64(1):74-83.
[8] Chen CY, Chen CI, Tsai FY, et al. Prominent vessel sign on susceptibility-weighted imaging in acute stroke: prediction of infarct growth and clinical outcome[J]. PLoS One, 2015,10(6):e0131118.
[9] Park MG, Yoon CH, Baik SK, et al. Susceptibility vessel sign for intra-arterial thrombus in acute posterior cerebral artery infarction[J]. J Stroke Cerebrovasc Dis, 2015,24(6):1229-1234.
[10] Kesavadas C, Santhosh K, Thomas B. Susceptibility weighted imaging in cerebral hypoperfusion-can we predict increased oxygen extraction fraction?[J]. Neuroradiology, 2010,52(11):1047-1054.
[11] Zhang X, Zhang S, Chen Q, et al. Ipsilateral prominent thalamostriate vein on susceptibility-weighted imaging predicts poor outcome after intravenous thrombolysis in acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2017,38(5):875-881.
[12] Yu X, Yuan L, Jackson A, et al. Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke[J]. AJNR Am J Neuroradiol, 2016,37(3):423-429.
[13] Oztoprak B. Prominent cerebral veins on susceptibility-weighted imaging (SWI) in pulmonary embolism[J]. Eur Radiol, 2017,27(7):3004-3012.
[14] 駱嵩,鄧方,張穎,等.磁敏感加權(quán)成像界定卒中急性期缺血半暗帶及與灌注加權(quán)成像的對(duì)照研究[J].中華神經(jīng)科雜志,2014,47(10):711-715.
[15] Schaefer PW, Barak ER, Kamalian S, et al. Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged[J]. Stroke, 2008,39(11):2986-2992.
[16] Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging[J]. Stroke, 2003,34(11):2729-2735.
[17] Cheng B, Schroder N, Forkert ND, et al. Hypointense vessels detected by susceptibility-weighted imaging identifies tissue at risk of infarction in anterior circulation stroke[J]. J Neuroimaging, 2017,27(4):414-420.
[18] Luo Y, Gong Z, Zhou Y, et al. Increased susceptibility of asymmetrically prominent cortical veins correlates with misery perfusion in patients with occlusion of the middle cerebral artery[J]. Eur Radiol, 2017,27(6):2381-2390.
[19] Kamath A, Smith WS, Powers WJ, et al. Perfusion CT compared to H(2) (15)O/O (15)O PET in patients with chronic cervical carotid artery occlusion[J]. Neuroradiology, 2008,50(9):745-751.
[20] Yata K, Suzuki A, Hatazawa J, et al. Relationship between cerebral circulatory reserve and oxygen extraction fraction in patients with major cerebral artery occlusive disease: a positron emission tomography study[J]. Stroke, 2006,37(2):534-536.
[21] Kao HW, Tsai FY, Hasso AN. Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion[J]. Eur Radiol, 2012,22(7):1397-1403.
[22] Fujioka M, Okuchi K, Iwamura A, et al. A mismatch between the abnormalities in diffusion- and susceptibility-weighted magnetic resonance imaging may represent an acute ischemic penumbra with misery perfusion[J]. J Stroke Cerebrovasc Dis, 2013,22(8):1428-1431.
[23] Wu X, Luo S, Wang Y, et al. Use of susceptibility-weighted imaging in assessing ischemic penumbra: a case report[J]. Medicine (Baltimore), 2017,96(6):e6091.
[24] Luo S, Yang L, Wang L. Comparison of susceptibility-weighted and perfusion-weighted magnetic resonance imaging in the detection of penumbra in acute ischemic stroke[J]. J Neuroradiol, 2015,42(5):255-260.
[25] Dejobert M, Cazals X, Annan M, et al. Susceptibility-diffusion mismatch in hyperacute stroke: correlation with perfusion-diffusion mismatch and clinical outcome[J]. J Stroke Cerebrovasc Dis, 2016,25(7):1760-1766.
[26] Verma RK, Hsieh K, Gratz PP, et al. Leptomeningeal collateralization in acute ischemic stroke: impact on prominent cortical veins in susceptibility-weighted imaging[J]. Eur J Radiol, 2014,83(8):1448-1454.
[27] Sun W, Liu W, Zhang Z, et al. Asymmetrical cortical vessel sign on susceptibility-weighted imaging: a novel imaging marker for early neurological deterioration and unfavorable prognosis[J]. Eur J Neurol, 2014,21(11):1411-1418.
[28] Bang OY, Saver JL, Kim SJ, et al. Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke[J]. Stroke, 2011,42(8):2235-2239.
[29] Liebeskind DS, Cotsonis GA, Saver JL, et al. Collaterals dramatically alter stroke risk in intracranial atherosclerosis[J]. Ann Neurol, 2011,69(6):963-974.
[30] Fanou EM, Knight J. Effect of collaterals on clinical presentation, baseline imaging, complications, and outcome in acute stroke[J]. 2015,36(12):2285-2291.
[31] Park MG, Yang TI, Oh SJ, et al. Multiple hypointense vessels on susceptibility-weighted imaging in acute ischemic stroke: surrogate marker of oxygen extraction fraction in penumbra?[J]. Cerebrovasc Dis, 2014,38(4):254-261.
[32] Park MG, Yeom JA, Baik SK, et al. Total mismatch of diffusion-weighted imaging and susceptibility-weighted imaging in patients with acute cerebral ischemia[J]. J Neuroradiol, 2017 May 31.[Epub ahead of print]
[33] Zhao G, Sun L, Wang Z, et al. Evaluation of the role of susceptibility-weighted imaging in thrombolytic therapy for acute ischemic stroke[J]. J Clin Neurosci, 2017,40:175-179.
[34] Baik SK, Choi W, Oh SJ, et al. Change in cortical vessel signs on susceptibility-weighted images after full recanalization in hyperacute ischemic stroke[J]. Cerebrovasc Dis, 2012,34(3):206-12.
[35] Kaya D, Dincer A, Yildiz ME, et al. Acute ischemic infarction defined by a region of multiple hypointense vessels on gradient-echo T2* MR imaging at 3T[J]. AJNR Am J Neuroradiol, 2009,30(6):1227-1232.
[36] Lou M, Chen Z, Wan J, et al. Susceptibility-diffusion mismatch predicts thrombolytic outcomes: a retrospective cohort study[J]. AJNR Am J Neuroradiol, 2014,35(11):2061-2067.
[37] Payabvash S, Taleb S, Benson JC, et al. Susceptibility-diffusion mismatch in middle cerebral artery territory acute ischemic stroke: clinical and imaging implications[J]. Acta Radiol, 2017,58(7):876-882.
[38] Huang P, Chen CH, Lin WC, et al. Clinical applications of susceptibility weighted imaging in patients with major stroke[J]. J Neurol, 2012,259(7):1426-1432.
Application value of prominent vessel sign on magnetic susceptibility weighted imaging in stroke
Jia Yanan, Liu Junyan
DepartmentofNeurology,theThirdHospitalofHebeiMedicalUniversity,Shijiazhuang050000,China
LiuJunyan,Email:junyanliu2003@ 163.com
In the patients with acute stroke, the oxygen extraction fraction(OEF) is increased in the hypoperfused parenchyma, resulting in an increase in the ratio of deoxygenated hemoglobin to oxygenated hemoglobin in the capillary and vein. Because Susceptibility weighted imaging(SWI) is exquisitely sensitive to paramagnetic substances, such as deoxyhemoglobin,prominent vessel sign(PVS) will appear on SWI when the concentration of deoxyhemoglobin in the veins increases. The presence of PVS can be used to assess ischemic penumbra and cerebral reperfusion therapy, and also predict the establishment of collateral circulation and brain reserve capacity. Moreover, the presence of PVS is also related to the prognosis of stroke.
stroke; susceptibility weighted imaging; prominent vessel sign
劉俊艷,Email: junyanliu2003@163.com
R743
A
1004-583X(2017)09-0737-05
10.3969/j.issn.1004-583X.2017.09.001
2017-09-04 編輯:王秋紅