張 松, 沈冰冰, 李 飛, 朱啟仁, 王志榮, 張卓琦△
(1徐州醫科大學附屬醫院心內科, 江蘇 徐州 221002; 2邳州市人民醫院, 江蘇 邳州 221300)
白藜三醇通過下調microRNA-21減輕快速電刺激所致心房肌細胞電重構*
張 松1, 沈冰冰1, 李 飛2, 朱啟仁1, 王志榮1, 張卓琦1△
(1徐州醫科大學附屬醫院心內科, 江蘇 徐州 221002;2邳州市人民醫院, 江蘇 邳州 221300)
目的: 研究白藜三醇(resveratrol,RSV)對快速電刺激(rapid electrical stimulation,RES)導致乳鼠心房肌細胞電重構時微小RNA-21(microRNA-21,miR-21)表達的影響,探討RSV通過miR-21參與電重構的可能機制。方法: 采用胰酶、Ⅰ型膠原酶雙酶法及差速貼壁法分離培養乳鼠心房肌細胞。通過RES建立乳鼠心房肌細胞房顫模型,心房肌細胞隨機分為4組:空白對照(control)組、RSV組、RES組和RSV+RES組。為了證實RSV是否通過調控miR-21的表達參與電重構,除了上述4組,另增加過表達和沉默miR-21組:RES+陰性對照組(RES+NC組)、RES+miR-21 mimics組、RES+miR-21 mimics+RSV組、RES+miR-21 inhibitor組和RES+miR-21 inhibitor+RSV組。CCK-8法檢測心房肌細胞活性以確定RSV最佳作用濃度及時間,qPCR法檢測各組細胞內miR-21及L型鈣離子通道CACNA1C、CACNB2 mRNA的表達水平,Western blot檢測L型鈣離子通道Cav1.2和Cavβ2的蛋白表達水平。結果: 與control組相比,RES組miR-21表達明顯上調(P<0.05),加入RSV預處理后miR-21表達下調(P<0.05)。與RES+miR-21 mimics組相比,RES+miR-21 mimics+RSV組miR-21表達下調(P<0.05),而CACNA1C和CACNB2 mRNA及Cav1.2和Cavβ2蛋白表達量增加(P<0.05)。與RES組比,RES+miR-21 inhibitor和RES+miR-21 inhibitor+RSV組的miR-21表達下調(P<0.05),CACNA1C和CACNB2 mRNA及Cav1.2和Cavβ2蛋白表達量增加,但RES+miR-21 inhibitor組與RSV+RES組比,miR-21表達、CACNA1C和CACNB2 mRNA及Cav1.2和Cavβ2蛋白表達量的差異無統計學顯著性。結論: 在快速電刺激乳鼠心房肌細胞模擬房顫模型中,RSV干預可能通過下調miR-21表達而調控其下游靶基因這一途徑來減輕心房肌細胞電重構。
白藜三醇; 微小RNA-21; 快速電刺激; 電重構; 乳鼠心房肌細胞
心房顫動(atrial fibrillation,AF)是臨床上最常見的慢性持續性心律失常,具有較高的發病率、致死率、致殘率,其發生和維持的機制非常復雜[1]。目前研究認為AF的發生機制包括電重構、結構重構、細胞內鈣離子活動異常、氧化應激和炎癥反應等[2-3]。其中,心房重構是房顫發生與維持的重要機制。隨著近年來對AF發生機制研究的深入,已有越來越多的研究表明微小RNA(microRNA,miRNA,miR)參與心房重構的調控。其中,miR-21的表達量在房顫發生中明顯上調,通過調控鈣離子通道蛋白參與心房重構[4]。
白藜三醇(resveratrol,RSV)是主要存在于葡萄、虎杖等植物中的一種非黃酮類多酚化合物。大量研究表明,RSV具有抗炎、抗氧化、抗血小板聚集及心律失常[5]等眾多心血管保護作用[6]。同時,研究表明RSV可通過下調miR-21減輕缺氧/復氧損傷,從而保護心肌細胞[7]。為研究RSV對快速電刺激(rapid electrical stimulation,RES)導致乳鼠心房肌細胞電重構時miR-21表達的影響,探討RSV通過miR-21參與電重構的可能機制,本研究采用體外培養的乳鼠心房肌細胞,電刺激法建立心房細胞AF模型。通過觀察心房肌細胞miR-21及靶基因mRNA、蛋白水平變化,探討RSV通過miR-21參與電重構的可能機制,為進一步臨床應用RSV治療房顫提供理論依據。
1 實驗動物
新生SD大鼠(1~3日齡)來源于徐州醫科大學實驗動物中心。
2 藥物、試劑和儀器
RSV和Ⅰ型膠原酶均購于Sigma;胎牛血清(fetal bovine serum,FBS)購于Gibco; CCK-8試劑盒購于Dojindo;miR-21、CACNA1C和CACNB2 引物由上海捷瑞生物工程有限公司設計及合成;miR-21過表達/沉默序列(表1)由蘇州吉瑪基因股份有限公司合成;抗Cav1.2和Cavβ2蛋白兔源多克隆 I 抗購于Alomone Labs;辣根過氧化物酶標記山羊抗兔IgG II 抗購于北京中山金橋生物技術有限公司。C-Pace細胞培養刺激儀購于Bioprobes;倒置顯微鏡和體視顯微鏡購于Olympus。
3 主要方法
3.1 乳鼠心房肌細胞分離及培養 取新生SD大鼠心臟,參考文獻[8]進行培養,采用雙酶法及差速貼壁法獲得乳鼠原代心房肌細胞。
3.2 CCK-8法檢測心房肌細胞活力以確定白藜三醇最佳作用濃度及時間 將原代心房肌細胞按每孔1×105個細胞接種于96孔板,RSV分5、10、15、20和25 μmol/L 5個濃度組,CCK-8試劑盒檢測經不同濃度梯度RSV預處理不同時間的心房肌細胞活性。檢測步驟:避光條件下每孔加入CCK-8和新鮮DMEM混合液(比例為1∶10)110 μL,將培養板繼續置于37 ℃、5% CO2條件下培養,2 h后酶標儀測定在450 nm處的吸光度[9],計算細胞存活率。
3.3 乳鼠心房肌細胞房顫模型制備及分組 原代心房肌細胞培養于6孔板中,培養至第3天后予以RSV預處理,RSV的劑量是15 μmol/L。將與6孔板配套的帶有刺激電極的蓋板覆蓋于6孔板上,使電極到達培養基液面以下。蓋板通過導線連接于細胞刺激器,置于培養箱中繼續培養。參考文獻[10-12]方法,將細胞刺激器設置為脈沖5 ms,頻率4 Hz,電壓15 V,持續電刺激24 h以建立心房細胞房顫模型。心房肌細胞隨機分為4組:對照(control)組、RSV組、RES組和RES+RSV組。為了證實白藜三醇是否通過調控miR-21的表達參與電重構,除了上述4組,另增加過表達或沉默miR-21組:RES+NC組、RES+miR-21 mimics組、RES+miR-21 mimics+RSV組、RES+miR-21 inhibitor組和RES+miR-21 inhibitor+RSV組。
3.4 過表達或沉默miR-21 按上述方法培養的乳鼠心房肌細胞,48 h后細胞貼壁完全,狀態良好,可進行轉染。轉染操作按Lipofectamine 2000試劑說明,將miR-21 mimics/inhibitor轉染至細胞。
3.5 RT-qPCR法檢測心房肌細胞miR-21及L型鈣離子通道CACNA1C、CACNB2 mRNA的表達水平 各組處理結束后,Trizol試劑一步法提取心房肌細胞總RNA。采用兩步法進行RT-qPCR反應。miR-21莖環引物、上下游引物,以及各靶基因及內參照U6、GAPDH上下游引物均由上海捷瑞公司設計與合成,具體序列見表1。結果采用2-ΔΔCt法進行相對定量分析。

表1 引物及miR-21 mimics/inhibitor序列
3.6 Western blot檢測心房肌細胞 Cav1.2和Cavβ2蛋白的表達水平 將以上9組細胞經預冷的PBS漂洗2遍后,用含有蛋白酶抑制劑的細胞裂解液在冰上裂解30 min;12 000×g離心15 min,收集上清液;經BCA法測濃度后,蛋白高溫變性,加樣,5%的濃縮膠和8%的分離膠進行跑膠,按濕轉方法轉膜, I 抗(Cav1.2以1∶1 000稀釋,Cavβ2以1∶1 000稀釋)4 ℃孵育過夜,TBST洗膜5 min×3次, II 抗孵育1.5 h,洗膜3次,ECL法顯色。用ImageJ圖像分析軟件進行半定量分析。蛋白質的相對含量以目的蛋白與GAPDH條帶光密度值的比值表示。
4 統計學處理
用GraphPad Prism 5.0軟件進行統計學分析。計量資料均以均數±標準差(mean±SD)來表示。各組間差異的比較采用單因素方差分析(one-way ANOVA),組間兩兩比較采用q檢驗,以P<0.05為差異有統計學意義。
1 CCK-8篩選RSV最佳預處理時間及濃度
CCK-8實驗結果顯示,與不同濃度RSV預處理6 h和12 h相比,不同濃度RSV預處理24 h和48 h使乳鼠心房肌細胞活力減低(P<0.05)。因此白藜三醇最佳預處理時間設定為12 h,見圖1。

Figure 1.The cell viability after 6 h, 12 h, 24 h and 48 h pretreatment with different concentrations of RSV. Mean±SD.n=5.
圖1 不同濃度的RSV預處理6、12、24和48 h后細胞活力的變化
與對照組相比,白藜三醇25 μmol/L組乳鼠心房肌細胞活性明顯減低(P<0.01),其它的4個濃度組與對照組相比差異無統計學顯著性;與白藜三醇15 μmol/L組相比,白藜三醇20和25 μmol/L組乳鼠心房肌細胞活力減低(P<0.05)。因此白藜三醇作用于乳鼠心房肌細胞的最佳濃度設定為15 μmol/L,見圖2。

Figure 2.The cell viability after 12 h pretreatment with different concentrations of RSV. Mean±SD.n=5.*P<0.05vs0 μmol/L group;#P<0.05,##P<0.01vs15 μmol/L group.
圖2 不同濃度RSV預處理12 h后細胞活力的變化
2 RT-qPCR檢測原代心房肌細胞miR-21及L型鈣離子通道CACNA1C、CACNB2 mRNA的表達
與control組比, RES組miR-21表達上調(P<0.05),RSV預處理后可明顯下調miR-21的表達(P<0.05);沉默miR-21后,RES+miR-21 inhibitor組miR-21表達下調(P<0.05),且與RES+RSV組沒有明顯差異;過表達miR-21后,RES+miR-21 mimics組miR-21表達明顯上調,加入RSV預處理后同樣可下調miR-21的表達(P<0.05),見圖3。

Figure 3.The effects of RSV on the expression of miR-21 in primary atrial myocytes were detected by RT-qPCR. U6 was used as an internal control. Mean±SD.n=3.**P<0.01vscontrol;##P<0.01vsRES;&P<0.05vsRES+RSV;△△P<0.01vsRES+miR-21 mi-mics;▲P<0.05vsRES+RSV+miR-21 mimics.
圖3 RT-qPCR檢測RSV對原代心房肌細胞miR-21表達的影響
與control組比,RES組的CACNA1C表達量減少(P<0.05),加入RSV干預后,CACNA1C的表達量增加(P<0.05);沉默miR-21后,RES+miR-21 inhibitor組CACNA1C的表達量增加(P<0.05),且與RES+RSV組相比差異無統計學顯著性;過表達miR-21后,RES+miR-21 mimics組的CACNA1C表達量減少,加入RSV預處理CACNA1C的表達量增加(P<0.05);CACNA1C的表達量與miR-21表達水平呈負相關,見圖4。
RT-qPCR檢測不同分組L型鈣離子通道基因CACNB2的mRNA的表達,CACNB2的mRNA表達趨勢與CACNA1C的mRNA表達趨勢類似,見圖5。
3 Western blot檢測原代心房肌細胞 Cav1.2和Cavβ2蛋白的表達
各組Cav1.2和Cavβ2蛋白表達與CACNA1C和CACNB2 mRNA表達的趨勢一致,見圖6。
房顫的發生和發展過程中伴隨著心房電重構,電重構的過程又能導致房顫惡化,即房顫導致房顫[13]。

Figure 4.The effects of RSV on the mRNA expression of CACNA1C were detected by RT-qPCR. GAPDH was used as an internal control. Mean±SD.n=3.**P<0.01vscontrol;##P<0.01vsRES;&&P<0.01vsRES+RSV;△△P<0.01vsRES+miR-21 mimics;▲P<0.05vsRES+RSV+miR-21 mimics.
圖4 RT-qPCR檢測RSV對CACNA1C mRNA表達的影響

Figure 5.The effects of RSV on the mRNA expression of CACNB2 were detected by RT-qPCR. GAPDH was used as an internal control. Mean±SD.n=3.**P<0.01vscontrol;#P<0.05,##P<0.01vsRES;&&P<0.01vsRES+RSV;△△P<0.01vsRES+miR-21 mimics;▲P<0.05vsRES+RSV+miR-21 mimics.
圖5 RT-qPCR檢測RSV對CACNB2 mRNA表達的影響
心房電重構主要表現為心房有效不應期和動作電位時程呈進行性縮短,傳導速度減慢,不應期離散度增加,以及頻率適應性減退等[14-15],而這些主要是通過離子通道的改變實現的,鉀離子通道電流、鈣離子通道電流等均參與動作電位的形成。房顫的治療原則包括:控制心室率、抗凝治療、緩解癥狀、治療基礎心臟病和誘發因素、恢復并維持竇性心律。目前臨床上治療房顫的藥物療效并不十分理想,而導管消融術很難將多個分布的局灶全部發現,且復發率高,兩者均有明顯的局限性[16-17],因此探尋新的治療方法尤為重要。電重構發生在房顫的早期階段,在此階段針對房顫發生機制的上游治療正越來越得到重視。

Figure 6.The effects of RSV on the protein expression of Cav1.2 and Cavβ2were detected by Western blot. GAPDH was used as an internal control. Mean±SD.n=3.**P<0.01vscontrol;#P<0.05,##P<0.01vsRES;&&P<0.01vsRES+RSV;△△P<0.01vsRES+miR-21 mimics;▲▲P<0.01vsRES+RSV+miR-21 mimics.
圖6 Western blot檢測RSV對Cav1.2和Cavβ2蛋白表達的影響
miRNA是一類長約22個核苷酸的單鏈、內源性、非編碼的小分子RNA。近年來隨著對房顫發生機制研究的深入,越來越多研究表明miRNA參與心房重構的調控。Luo等[18]通過研究證實miRNA參與心臟電重構,他們結合實驗方法設計了生物信息學分析,來證實miRNA具有調節編碼人類心臟離子通道蛋白基因的潛能。房顫的發生涉及多個離子通道蛋白的改變,而 miRNA參與調控多個心臟電重構相關蛋白的表達[19],因此miRNA表達失衡引起離子通道蛋白功能失調可能是房顫發生的電生理基礎,也可能成為抗心律失常藥物的作用靶點[20]。同時也有研究認為,miRNA可能通過調控離子通道蛋白的表達,從而表現出促房顫或抗房顫的作用[21]。
RSV一種非黃酮類多酚化合物。本實驗室前期研究已證實RSV可以通過減輕心房纖維化[22]、抑制心房重構[23]、減少氧化應激損傷[24]等發揮抗心律失常作用。同時有研究表明,RSV可調控miRNA的表達發揮其保護作用[25]。在本研究中,我們通過體外培養的乳鼠心房肌細胞,電刺激法建立心房細胞AF模型,課題組前期已證實miR-21在此模型中明顯上調[26]。本實驗發現RSV預處理可以下調miR-21的表達,并且編碼L型鈣離子通道的基因CACNA1C、CACNB2 的mRNA及Cav1.2、Cavβ2的蛋白表達量均增加,與miR-21表達呈負相關,這些結果表明CACNA1C和CACNB2 可能是miR-21的靶基因,這與Barana等[4]使用螢光素酶報告分析結果一致。為進一步探討白藜三醇是否通過調控miR-21的表達參與電重構,另增加過表達或沉默miR-21組,結果顯示:過表達miR-21后,與RES+miR-21 mimics組相比,加入RSV干預可下調miR-21表達,且CACNA1C、CACNB2的mRNA及Cav1.2、Cavβ2的蛋白表達量增加。沉默miR-21后,RES+miR-21inhibitor及RES+miR-21inhibitor+RSV組miR-21表達均下調,同時CACNA1C、CACNB2 mRNA及Cav1.2、Cavβ2蛋白表達量增加,且與RES+RSV組相比無明顯差異。本研究結果顯示,RSV可能通過下調miR-21表達而調控其下游靶基因CACNA1C、CACNB2 及其編碼的Cav1.2、Cavβ2蛋白水平來減輕快速電刺激所致心房肌細胞電重構,為房顫的上游治療提供了新的方向,為臨床應用白藜三醇治療房顫提供理論依據和實驗數據。
[1] Gramley F, Lorenzen J, Jedamzik B, et al. Atrial fibrillation is associated with cardiac hypoxia[J]. Cardiovasc Pathol, 2010, 19(2):102-111.
[2] Schroen B, Heymans S. Small but smart: microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing[J]. Car-diovasc Res, 2012, 93(4):605-613.
[3] Luo X, Yang B, Nattel S. MicroRNAs and atrial fibrillation: mechanisms and translational potential[J]. Nat Rev Cardiol, 2015, 12(2):80-90.
[4] Barana A, Matamoros M, Dolz-Gaiton P, et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current[J]. Circ Arrhythm Electrophysiol, 2014, 7(5):861-868.
[5] 卞洲艷, 唐其柱, 易方方, 等. 白藜蘆醇對大鼠心肌梗死后室性心律失常及長期存活率的影響[J]. 中華心律失常學雜志, 2009, 13(1):66-69.
[6] Kaneko H, Anzai T, Morisawa M, et al. Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization[J]. Atherosclerosis, 2011, 217(2):350-357.
[7] Mukhopadhyay P, Mukherjee S, Ahsan K, et al. Restoration of altered microRNA expression in the ischemic heart with resveratrol[J]. PLoS One, 2010, 5(12):e15705.
[8] Qin Y, Zhang Z, Chen J, et al. Ca2+disorder caused by rapid electrical field stimulation can be modulated by CaMKIIδ expression in primary rat atrial myocytes[J]. Biochem Biophys Res Commun, 2011, 409(2):287-292.
[9] 張曉萍, 彭景燕, 熊君宇, 等. 羅哌卡因預處理對其誘導ND7/23細胞毒性的影響[J]. 中華麻醉學雜志, 2011, 31(4):463-464.
[10]Yang Z, Shen W, Rottman JN, et al. Rapid stimulation causes electrical remodeling in cultured atrial myocytes[J]. J Mol Cell Cardiol, 2005, 38(2):299-308.
[11]Inoue N, Ohkusa T, Nao T, et al. Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist[J]. J Am Coll Cardiol, 2004, 44(4):914-922.
[12]Brundel BJ, Henning RH, Ke L, et al. Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation[J]. J Mol Cell Cardiol, 2006, 41(3):555-562.
[13]Harada M, Luo X, Qi XY, et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation[J]. Circulation,2012, 126(17):2051-2064.
[14]Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats[J]. Circulation,1995, 92(7):1954-1968.
[15]Morillo CA, Klein GJ, Jones DL, et al. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation[J]. Circulation, 1995, 91(5):1588-1595.
[16]Sovari AA, Dudley SC. Antioxidant therapy for atrial fibrillation: lost in translation?[J]. Heart, 2012, 98(22):1615-1616.
[17]Murray KT, Mace LC,Yang Z. Nonantiarrhythmic drug therapy for atrial fibrillation[J]. Heart Rhythm, 2007, 4(3 Suppl):S88-S90.
[18]Luo X, Zhang H, Xiao J, et al. Regulation of human cardiac ion channel genes by microRNAs: theoretical perspective and pathophysiological implications[J]. Cell Physiol Biochem, 2010, 25(6):571-586.
[19]Luo X, Pan Z, Shan H, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation[J]. J Clin Invest, 2013, 123(5):1939-1951.
[20]Gomes da Silva AM, Silbiger VN. miRNAs as biomarkers of atrial fibrillation[J]. Biomarkers, 2014, 19(8):631-636.
[21]Lu Y, Zhang Y, Wang N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation, 2010, 122(23):2378-2387.
[22]杜海歌, 張超群, 徐 晤, 等. 白藜三醇通過HIF途徑對快速心房起搏豬心房結構重構的抑制作用[J]. 徐州醫學院學報, 2012, 32(3):149-153.
[23]周曉峰, 王志榮, 張卓琦, 等. 白藜蘆醇對快速起搏右心房誘發的持續性心房顫動豬心房結構重構的影響[J]. 中國心血管雜志, 2013, 18(6):455-458.
[24]葛力萁, 李承宗, 程明月, 等. 探討白藜三醇抑制快速電刺激乳鼠心肌細胞氧化應激損傷及其機制[J]. 中國循環雜志, 2015, 30(7):684-688.
[25]Lancon A, Kaminski J, Tili E, et al. Control of micro-RNA expression as a new way for resveratrol to deliver its beneficial effects[J]. J Agric Food Chem, 2012, 60(36):8783-8789.
[26]李艷茹, 張 瓊, 張 松, 等. 心房顫動電重構機制中相關microRNA的表達差異[J]. 徐州醫學院學報, 2016, 36(5):291-295.
(責任編輯: 盧 萍, 羅 森)
Resveratrol reduces electrical remodeling in atrial fibrillation by down-regulating microRNA-21 in neonatal rat atrial myocytes
ZHANG Song1, SHEN Bing-bing1, LI Fei2, ZHU Qi-ren1, WANG Zhi-rong1, ZHANG Zhuo-qi1
(1DepartmentofCardiology,TheAffiliatedHospitalofXuzhouMedicalCollege,Xuzhou221002,China;2PizhouPeople’sHospital,Pizhou221300,China.E-mail:zhuoqizhang@sina.com)
AIM: To detect the effects of resveratrol (RSV) on the expression of microRNA-21 (miR-21) in primarily cultured neonatal rat atrial myocytes with electric remodeling induced by rapid electrical stimulation (RES). Furthermore, to find out the possible mechanism of miR-21 regulating electrical remodeling. METHODS: The neonatal rat atrial myocytes were isolated by double-enzyme (trypsin and collagenase I) digestion and differential adhesion method. The atrial fibrillation (AF) model was induced by RES. Atrial myocytes were randomly divided into 4 groups: control group, RSV group, RES group, and RSV+RES group. To further detect whether RSV regulated electric remodeling by miR-21, except the 4 groups, we add miR-21 over-expression group and miR-21 inhibitor group: RES+negative control (NC) group, RES+miR-21 mimics group, RES+miR-21 mimics+RSV group, RES+miR-21 inhibitor group, and RES+miR-21 inhibitor+RSV group. The optimal concentration and pretreatment time of resveratrol were determined by CCK-8 assay. The expression of miR-21 and the mRNA expression of L-type calcium channels CACNA1C and CACNB2 in atrial myocytes were detected by qPCR. The protein expression of L-type calcium channels Cav1.2 and Cavβ2in the atrial myocytes was analyzed by Western blot. RESULTS: The expression of miR-21 in RES group was significantly increased compared with control group, while preconditioning with RSV decreased the expression of miR-21. Compared with RES+miR-21 mimics group, the expression of miR-21 in RES+miR-21 mimics+RSV group was significantly decreased. Meanwhile, the mRNA expression of CACNA1C and CACNB2, and the protein levels of Cav1.2 and Cavβ2were increased (P<0.05). Compared with RES group, the expression of miR-21 in RES+miR-21 inhibitor group and RES+miR-21 inhibitor+RSV group was decreased, while the mRNA expression of CACNA1C and CACNB2, and the protein levels of Cav1.2 and Cavβ2were increased. However, no difference of the expression of miR-21, the mRNA expression of CACNA1C and CACNB2, and the protein levels of Cav1.2 and Cavβ2among RSV+RES, RES+miR-21 inhibitor and RES+miR-21 inhibitor+RSV groups was observed (P<0.05).CONCLUSION: In AF model induced by RES, RSV may reduce electric remodeling by inhibiting the expression of miR-21 and regulating the downstream target genes.
Resveratrol; MicroRNA-21; Rapid electrical stimulation; Electric remodeling; Neonatal rat atrial myocytes
1000- 4718(2017)08- 1353- 06
2017- 03- 07
2017- 03- 17
國家自然科學基金資助項目(No. 30800219);徐州市醫學青年后備人才項目
R541.7; R965
A
10.3969/j.issn.1000- 4718.2017.08.002
雜志網址: http://www.cjpp.net
△通訊作者 Tel: 13775886473; E-mail: zhuoqizhang@sina.com