999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

2017-07-18 11:47:12YANGChangsenYANGChaojun
數(shù)學(xué)雜志 2017年4期

YANG Chang-sen,YANG Chao-jun

(College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

YANG Chang-sen,YANG Chao-jun

(College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

In this paper,we study the relations between the operator inequalities and the operator monotone functions.By using the fundamental conclusions based on majorization,namely,product lemma and product theorem for operator monotone functions,we can give some operator inequalities.This result contains the Furuta inequality,which has a huge impact on positive operator theory.

operator monotone function;product lemma;product theorem;majorization

1 Introduction

LetJbe an interval such thatJ/(-∞,∞).P(J)denotes the set of all operator monotone functions onJ.We setP+(J)={f∈P(J)|f(t)≥0,t∈J}.Iff∈P+(a,b)and-∞<a,thenfhas the natural extension to[a,b),which belongs toP+[a,b).We therefore identifyP+(a,b)withP+[a,b).

It is well-known that iff(t)∈P+(0,∞),thenare both inP+(0,∞),and that iff(t),φ(t),φ(t)are all inP+(0,∞),then so are

andf(t)αφ(t)1-αfor 0<α<1(see[1-5]).Throughout this work,we assume that a function is continuous and increasing means “strictly increasing”.Further more,for convenience,letB(H)denote theC?-algebra of all bounded linear operators acting on a Hilbert spaceH.A capital letterAmeans an element belongs toB(H),Φ means a positive linear map fromB(H)toB(H)and we assume Φ(I)=Ialways stand(see[7,8]).In this paper,we also assume thatJ=[a,b)orJ=(a,b)with-∞≤a<b≤+∞.

De fi nition 1.1[9,10]Letdenote the following sets,respectively,

whereh-1stands for the inverse function ofh.

De fi nition 1.2Leth(t)andg(t)be functions defined onJ,andg(t)is increasing,thenhis said to be majorized byg,in symbolh≤gif the compositeh?g-1is operator monotone ong(J),which is equivalent to

Lemma 1.1(Product lemma)(see[9,10])Leth,gbe non-negative functions defined onJ.Suppose the producthgis increasing,(hg)(a+0)=0 and(hg)(b-0)=∞.Then

Moreover,for everyψ1,ψ2inP+[0,∞),

Theorem 1.1(Product theorem)(see[9,10])

Further,letgi(t)∈LP+(J)for 1≤i≤mandhj(t)∈P-1+(J)for 1≤j≤n.Then for everyψi,φj∈P+[0,∞),we have

2 Main Results

Before to prove our main results,we give the following lemmas.

Lemma 2.1(L-H inequality)(see[2,12])If 0≤α≤1,A≥B≥0,thenAα≥Bα.

Lemma 2.2(Furuta inequality)(see[6,9])LetA≥B≥0,then

wherer≥0,p≥1 with

Lemma 2.3(Hansen inequality)(see[13])LetXandAbe bounded linear operators onH,and such thatX≥ 0,‖A‖≤1.Iffis an operator monotone function on[0,∞),then

Theorem 2.1PutJ/=(-∞,∞),,fi∈P+(J),i=1,2,···,n,,andkn(t)=f1(t)f2(t)···fn(t).Ifh(t)is defined onJsuch that,then

(i)the functionφnon(0,∞)defined by

belongs toP+(0,∞);

(ii)ifA≤C≤B,then

Proof(i)Sincef1(t)f1(t)h(t),by product lemmah(t)f1(t)h(t),thereforeh(t)is nondecreasing.When,since,we haveη(t)g(t).Now puttingψ0(s)=s,ψ1(g)=η,ψ2(f1h)=f1,obviously,we haveψ0,ψ1,ψ2∈P+(0,∞).By takingsinψ0(s)asf2···fn,and from product theorem,we obtain

Therefore we haveφnbelongs toP+(0,∞)forφngiven in(i).

Wheng(t)=f1(t),by takingψ0(s)=s,ψ1(g(t)h(t))=η(t),we haveψ0,ψ1∈P+(0,∞),and thenφn∈P+(0,∞)by product theorem.

(ii)First we prove that

Sinceφn,kn,h,gare all nonnegative,nondecreasing functions andJis a right open interval,by consideringC+?,B+?,we may assume that,h(C),h(B),g(C),g(B)are positive semi-de fi nite and invertible.Through(i),

This implies the right part of(2.2)holds forn=1.Next we assume the right part of(2.2)holds forn-1.Sinceandand this means that there existssuch thatfn(t)= Ψn(kn-1(t)η(t)).Puts=kn-1(t)η(t),we can obtain.Since the following inequality holds

Denote the left side of the upper inequalities asH,the right one asK,we have

ByH=φn-1(kn-1(C)h(C)g(C))=kn-1(C)η(C),we obtain

By Lemma 2.3 again,we obtain

From the above inequalities and(2.4),we get

Therefore the right part of(2.2)holds forn,one can proof the left part of(2.2)similarly.

RemarkIn Theorem 2.1,letn=2,f1(t)=g(t)=1,f2(t)=tr(r≥0),h(t)=tp(p≥1),andη(t)=t,then we haveφ2(tp+r)=t1+r.So Furuta inequality can be obtained by(2.2)and L-H inequality.

Lemma 2.4(see[10,11])PutJ(-∞,∞),theng∈LP+(J)if and only if there exists a sequence{gn}of a fi nite product of functions inP+(J)which converges pointwise togonJ,further more,{gn}converges uniformly togon every bounded closed subinterval ofJ.

Theorem 2.2PutJ(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,then

(i)the functionφon(0,∞)defined by

belongs toP+(0,∞);

(ii)IfA≤C≤B,then forφ∈P(0,∞)such thatφ≤φon(0,∞),

Proof(i)First consider,thenk=lfand

Letψ0(s)=s,ψ1(f(t)h(t))=f(t),ψ2(g(t))=η(t),thenψ0,ψ1,ψ2∈P+(0,∞).By takings=l(t)and applying product theorem,we get

which equals tok(t)η(t)≤k(t)h(t)g(t).So we haveφ∈P+(0,∞)forφsuch that

Ifg=f,takingψ0(s)=s,ψ1(h(t)g(t))=η(t),obviously,we haveψ0,ψ1∈P+(0,∞),and thenψ0(k)ψ1(hg).Hence we also haveφ∈P+(0,∞)from product theorem.

(ii)From Lemma 2.4,we obtain there exists a sequence{ln},whereln(t)is a fi nite product of functions inP+(J),such thatln(t)converges ponitwise tol(t).Putkn(t)=f(t)ln(t)then we easily getkn(t)converges tok(t)=f(t)l(t).De fi neφn(kn(t)h(t)g(t))=kn(t)η(t)(t∈J),φn∈P+(0,∞).By Theorem 2.1,we have

Lemma 2.5(Choi inequality)(see[6,7])Let Φ be a positive unital linear map,then

(C1)whenA>0 and-1≤p≤0,then Φ(A)p≤Φ(Ap);

(C2)whenA≥ 0 and 0≤p≤1,then Φ(A)p≥ Φ(Ap);

(C3)whenA≥ 0 and 1≤p≤2,then Φ(A)p≤Φ(Ap).

Corollary 2.1PutJ/=(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,the functionφon(0,∞)defined as(2.5),Φ is a positive unital

linear map.If

then forφ∈P(0,∞)such thatφ≤φ,

ProofBy Choi inequality and L-H inequality,we obtain

Corollary 2.2Put

such that.Then(2.5)and(2.6)in Theorem 2.2 hold.

ProofPutc=min{ 1,p},thenf(t)=t1-c∈P+(0,∞).Thus we get

which means the conditions of Theorem 2.2 is satis fi ed.Therefore(2.5)and(2.6)in Theorem 2.2 hold.

Corollary 2.3Put,p,r≥0 andp+r≥1,s≥1,we obtain

ProofPutg(t)=ts(s≥1),η(t)=tin Corollary 2.2.Then we only need to show logs≤φ(s),s∈(0,∞).The de fi nition ofφis given in(2.5).The upper majorization relationship is equivalent to

It is obviously that logk(t),logh(t),logtsare operator monotone on(0,∞)and,then

Therefore(2.8)holds.

[1]Bhatia R.Matrix analysis[M].New York:Springer,1996.

[3]Horn R A,Johnson C R.Matrix analysis[M].Cambridge:Cambridge Univ.Press,1985.

[4]Rosenblum M,Rovenyak J.Hardy classes and operator theory[M].Oxford:Oxford Univ.Press,1985.

[5]Pedersen G K.Some operator monotone functions[J].Proc.Amer.Math.Soc.,1972,36:309-310.

[6]Choi M D.Some assorted inequalities for positive linear map onC?-algebras[J].J.Oper.The.,1980,4:271-285.

[7]Choi M D.A Schwarz inequality for positive linear maps onC?-algebras[J].Illinois.J.Math.,1974,18:565-574.

[8]Ando T.Concavity of certain maps on postive de fi nite matrices and applications to hadamard products[J].Linear Alg.Appl.,1976,26:203-241.

[9]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities[J].J.Funct.Anal.,2006,231:221-244.

[10]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities II[J].J.Math.Soc.Japan,2008,60:291-310.

[11]Uchiyama M.Operator inequalities:from a general theorem to concrete inequalities[J].Linear Alg.Appl.,2015,465:161-175.

[12]Yang C.Inequalities relating to means of positive operators[J].J.Math.,1996,16(4):467-474.

[13]Hensen F.An operator inequality[J].Math.Ann.,1980,246:249-250.

一些蘊(yùn)含F(xiàn)uruta不等式的算子單調(diào)函數(shù)的算子不等式

楊長(zhǎng)森,楊朝軍

(河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,河南新鄉(xiāng) 453007)

本文研究了算子不等式與算子單調(diào)函數(shù)之間的聯(lián)系.利用關(guān)于算子單調(diào)函數(shù)的乘積引理,乘積定理等基本控制原理,給出許多算子不等式,這些不等式可包含正算子理論中應(yīng)有十分廣泛的Furuta不等式.

算子單調(diào)函數(shù);積引理;積定理;控制

O177.1

on:47A62;47A63

A Article ID: 0255-7797(2017)04-0698-07

date:2015-09-21Accepted date:2015-12-11

Supported by National Natural Science Foundation of China(11271112;11201127)and Technology and the Innovation Team in Henan Province(14IRTSTHN023).

Biography:Yang Changsen(1965-),male,born at Xinxiang,Henan,professor,major in functional analysis.

主站蜘蛛池模板: 国产高清色视频免费看的网址| 欧美a级在线| 四虎影视库国产精品一区| 欧洲av毛片| 日韩在线视频网站| 国产一级片网址| 天天做天天爱夜夜爽毛片毛片| 日本国产在线| 第一区免费在线观看| 久久99精品久久久久久不卡| 91精品国产丝袜| 国产一级做美女做受视频| 中文字幕免费在线视频| 国产美女精品人人做人人爽| a级毛片在线免费| 国产精品视频公开费视频| 久久激情影院| 日本一区二区不卡视频| 亚洲视频一区在线| 人与鲁专区| 亚洲日本一本dvd高清| 人人妻人人澡人人爽欧美一区 | 在线国产资源| 青青草91视频| 91口爆吞精国产对白第三集| 欧美另类图片视频无弹跳第一页| 99视频在线免费看| 国产精品免费久久久久影院无码| 九九免费观看全部免费视频| 国产在线第二页| 伊人蕉久影院| 综合久久五月天| 亚洲成人网在线观看| 国产午夜福利片在线观看| 中国国产一级毛片| 国产在线专区| 国产va在线| 亚洲国产中文精品va在线播放 | 91区国产福利在线观看午夜| 免费jjzz在在线播放国产| 99re精彩视频| 国产在线观看第二页| 九九线精品视频在线观看| 怡红院美国分院一区二区| 九九热视频精品在线| 人妻无码中文字幕一区二区三区| 99热国产这里只有精品9九| 精品久久久久久成人AV| 国产精品自在在线午夜区app| 国模粉嫩小泬视频在线观看| 欧美一级在线播放| 久久婷婷色综合老司机| 欧美国产成人在线| 欧美特级AAAAAA视频免费观看| 97综合久久| 国产精品无码翘臀在线看纯欲| 国产国语一级毛片在线视频| 欧美色图久久| 亚洲一级毛片在线观播放| 日韩欧美高清视频| 国产精品一区在线麻豆| 青青草一区二区免费精品| 成人福利视频网| 免费看美女毛片| 久久综合九九亚洲一区| www.亚洲国产| 日本91在线| 色偷偷一区二区三区| 色久综合在线| 国产精品偷伦在线观看| 国产精品视频系列专区| 一区二区欧美日韩高清免费| 成人午夜视频免费看欧美| 日本三级欧美三级| 熟妇丰满人妻av无码区| 永久在线播放| 一级看片免费视频| 久久免费观看视频| 亚洲欧美一级一级a| 国产成人一区免费观看| 精品無碼一區在線觀看 | 国产精品极品美女自在线网站|