999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GLOBAL BOUNDEDNESS OF SOLUTIONS IN A BEDDINGTON-DEANGELIS PREDATOR-PREY DIFFUSION MODEL WITH PREY-TAXIS

2017-07-18 11:47:12MAWenjunSUNLiangliang
數學雜志 2017年4期
關鍵詞:模型

MA Wen-jun,SUN Liang-liang

(1.Longqiao College,Lanzhou University of Finance and Economics,Lanzhou 730101,China)(2.School of Mathematics and Statistics,Lanzhou University,Lanzhou 730030,China)

GLOBAL BOUNDEDNESS OF SOLUTIONS IN A BEDDINGTON-DEANGELIS PREDATOR-PREY DIFFUSION MODEL WITH PREY-TAXIS

MA Wen-jun1,SUN Liang-liang2

(1.Longqiao College,Lanzhou University of Finance and Economics,Lanzhou 730101,China)(2.School of Mathematics and Statistics,Lanzhou University,Lanzhou 730030,China)

In this paper,we study a Beddington-DeAngelis predator-prey di ff usion model with prey taxis,where the prey-taxis describes a direct movement of the predator in response to a variation of the prey.We prove that the global classical solutions are globally bounded by theLp-Lqestimates for the Neumann heat semigroup andLpestimates with Moser’s iteration of parabolic equations.

predator-prey;di ff usion;prey-taxis;classical solution;global boundedness

1 Introduction

In recent years,more and more attention were given to the reaction-di ff usion system of a predator-prey model with prey-taxis.For example,for the existence and uniqueness of weak solutions[1,11],the global existence and uniqueness of classical solutions[2,17,18],pattern formation induced by the prey-taxis[12],global bifurcation for the predator-prey model with prey-taxis[13],boundedness or blow up in a chemotaxis system[14-16].

In this paper,we study the following reaction-di ff usion system of a predator-prey model with Beddington-DeAngelis functional response and prey-taxis

where Ω is a bounded domain in RNwith smooth boundary?Ω,initial datau0(x),v0(x)∈C2+α()compatible on?Ω,andνis the normal outer vector on?Ω,uandvrepresent the densities of the predator and prey,respectively,d1,d2,n,h,e,m,a,b,c,r,Kare positive constants that stand for di ff usion coefficients,death rate ofu,intra-speci fi c competition ofu,conversion rate,consumption rate,predator interference,prey saturation constant,another saturation constant,intrinsic growth and carrying capacity ofv,respectively.

The Beddington-DeAngelis model(1.1)is similar to the well known Holling type II model with an extra termauin the denominator which models the mutual interference among predators.In 2008,Ainseba et al.[1]proposed a Holling type II model with preytaxis and established the existence of weak solution by Schauder fi xed point theorem and the uniqueness via duality technique.In 2010,Tao[2]gave the global existence and uniqueness of classical solution to Ainseba’s model by contraction mapping principle together withLpestimates and Schauder estimates of parabolic equations.In 2015,He and Zheng[3]proved further more that the global classical solution is globally bounded.

There were also many works published for model(1.1).For the ODE system corresponding to(1.1),Cantrell and Cosner[4]presented some qualitative analysis of solutions from the view point of permanence and the existence of a global asymptotic stable positive equilibrium;Hwang[5]demonstrated that the local asymptotic stability of the positive equilibrium implies its global asymptotic stability.Chen and Wang[6]presented the qualitative analysis of system(1.1)from the view point of local asymptotic stability of the positive constant steady state and the existence and nonexistence of a nonconstant positive steady state.Haque[7]investigated the the in fl uence of intra-speci fi c competition among predators in the original Beddington-DeAngelis predator-prey model and o ff ered a detailed mathematical analysis of the model.Yan and Zhang[8]studied model(1.1)without prey-taxis and obtained that the di ff usion can destabilize the positive constant steady state of the system.

However,the emergency of the prey-taxis makes it more difficult to deal with the original problems.It is known that the global existence and bounedeness of solutions in(1.1)without prey-taxis can be easily obtained by using energy estimates and bootstrap arguments.In this paper,however,we will prove that the global classical solutions of(1.1)are moreover globally bounded by using theLp-Lqestimates for the Neumann heat semigroup andLpestimates with Moser’s iteration of parabolic equations.

Throughout this paper,we assume thatχ(u)∈C1([0,+∞)),χ(u)≡ 0 foru>um,andχ′(u)is Lipschitz continuous,i.e.,|χ′(u1)-χ′(u2)|≤L|u1-u2| for anyu1,u2∈[0,+∞),whereumandLare two positive constants.The assumption ofχis a regularity requirement for our qualitative analysis,and the assumption thatχ(u) ≡ 0 foru>umhas a clear biological interpretation[1].Our main result is stated as follows.

Theorem 1Under the assumptions forχand initial data described above,the unique nonnegative classical solution of(1.1)is globally bounded.

The paper is organized as follows.We introduce some known results as preliminaries in Section 2.In Section 3,we give the proof of Theorem 1.

2 Preliminaries

First we introduce the well-known classicalLp-Lqestimates for the Neumann heat semigroup on bounded domains.

Lemma 1(see Lemma 1.3 in[9])Suppose(etΔ)t>0is the Neumann heat semigroup in Ω,and letλ1denote the fi rst nonzero eigenvalue of-Δ in Ω under Neumann boundary conditions.Then there existC1,C2>0 only depending on Ω such that the following estimates hold

(i)If 1≤q≤p≤+∞,then

for allω∈Lq(Ω);

(ii)If 2≤q≤p≤+∞,then

for allω∈W1,q(Ω).

One can obtain the boundedness ofvbased on the comparison principle of ODEs.

Lemma 2Let(u,v)be a solution of(1.1).Thenu≥0 and 0≤v≤K1=max{K,maxv0(x)}.

3 Proof of Theorem 1

In this section,we give proof of Theorem 1,which is motivated by Tao and Winkler[10].

Proof of Theorem 1

Step 1Boundedness of‖u‖L1(Ω).

Integrating the sum of the fi rst equation andetimes of the second equation in(1.1)on Ω by parts,we have

Step 2Boundedness of‖u‖Lp(Ω)withp≥ 2.

Multiplying the fi rst equation of(1.1)byup-1and integrate on Ω by parts,combining Lemma 2.2,we have

Together withχ(u)≤Mdue toχ∈C1andχ≡ 0 foru≥um.This yields

Multiply the second equation of(1.1)by-Δv,and integrate on Ω by parts to get

by the Young inequality.Choosing?=2d2,we have

withC6>0 depending on?1.By the Sobolev interpolation inequality and Lemma 2.2,we have for any?2>0 that

whereC7,C8>0 depending on?2.Applying the Gagliardo-Nirenberg inequality yields

for any?3>0,withC10>0 depending on?3.By Step 1,we know‖u‖1≤C5.So

withC11>0.Now fix?2,?3such thatFrom(3.4)-(3.6),we have

withC12>0.De finefor allt>0 with.By the Gronwall inequality,we havefor allt>0.

Step 3Boundedness of‖?v‖Lp(Ω)withp≥ 2.

By Lemma 2.1,we conclude that

Step 4Global boundedness.

On the basis of Steps 2 and 3,using Lemma A.1 in[10],we can obtain the global boundedness of solutions to(1.1)by the standard Moser iterative technique.

Remarkwe used the assumption thatχ′(u)is Lipschitz continuous,which is a necessary condition for existence of the global solutions(see[2]).

On the other hand,the intra-speci fi c competition termhu2makes our estimates easier,which is a “good” term.This also coincides with Haque’s[7]result that competition among the predator population is bene fi cial for both populations co-existence.

[1]Ainseba B E,Bendahmane M,Noussair A.A reaction-di ff usion system modeling predator-prey with prey-taxis[J].Nonl.Anal.:RWA,2008,9:2086-2105.

[2]Tao Y S.Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis[J].Nonl.Anal.:RWA,2010,11:2056-2064.

[3]He X,Zheng S N.Global boundedeness of solutions in a reaction-di ff usion system of predator-prey model with prey-taxis[J].Appl.Math.Lett.,2015,49:73-77.

[4]Cantrell R S,Cosner C.On the dynamics of predator-prey models with Beddington-DeAngelis functional response[J].J.Math.Anal.Appl.,2001,257:206-222.

[5]Hwang T W.Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J].J.Math.Anal.Appl.,2003,281:395-401.

[8]Chen W,Wang M.Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and di ff usion[J].Math.Comput.Model.,2005,42:31-44.

[10]Haque M.A detailed study of the Beddington-DeAngelis predator-prey model[J].Math.Biosci.,2011,234(1):1-16.

[8]Yan X P,Zhang C H.Stability and turing instability in a di ff usive predator-prey system with Beddington-DeAngelis functional response[J].Nonl.Anal.:RWA,2014,20:1-13.

[10]Winkler M.Aggregation vs.global di ff usive behavior in the higher-dimensional Keller-Segel model[J].J.Di ff.Eqs.,2010,248:2889-2905.

[10]Tao Y S,Winkler M.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity[J].J.Di ff.Eqs.,2012,252:692-715.

[11]Bendahmane M.Analysis of a reaction-di ff usion system modeling predator-prey with prey-taxis[J].Netw.Heterog.Media,2008,3(4):863-879.

[12]Lee J M,Hillen T,Lewis M A.Pattern formation in prey-taxis systems[J].J.Biol.Dyn.,2009,3(6):551-573.

[13]Wang X L,Wang W D,Zhang G H.Global bifurcation of solutions for a predator-prey model with prey-taxis[J].Math.Meth.Appl.Sci.,2015,38:431-443.

[14]Xiang T.Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source[J].J.Di ff.Eqs.,2015,258(12):4275-4323.

[15]Winkler M.Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with growth source[J].Comm.Partial Di ff.Eqs.,2010,35(8):1516-1537.

[16]Horstmann D,Winkler M.Boundedness vs.blow up in a chemotaxis system[J].J.Di ff.Eqs.,2005,215(1):52-107.

[17]Wu S N,Shi J P,Wu B Y.Global existence of solutions and uniform persistence of a di ff usive predator-prey model with prey-taxis[J].J.Di ff.Eqs.,2016,260:5847-5874.

[18]Li X J.Global solutions for the ratio-dependent food-chain model with cross-di ff usion[J].J.Math.,2015,35(2):267-280.

一類帶食餌趨向的Beddington-DeAngelis捕食者-食餌擴散模型整體解的有界性

馬文君1,孫亮亮2

(1.蘭州財經大學隴橋學院,甘肅蘭州730101)(2.蘭州大學數學與統計學院,甘肅蘭州730030)

本文研究一類帶食餌趨向的Beddington-DeAngelis捕食者-食餌擴散模型,其中食餌趨向性描述的是捕食者對食餌數量變化而產生的一種正向遷移.利用Neumann熱半群的Lp-Lq估計和帶拋物型方程Moser迭代的Lp估計,獲得了該模型經典解的整體有界性.

捕食者-食餌;擴散;食餌趨向;經典解;整體有界性

??35B35;35K57;92D25

O175.26

on:35B35;35K57;92D25

A Article ID: 0255-7797(2017)04-0731-06

date:2016-03-15Accepted date:2016-04-22

Biography:Ma Wenjun(1987-),female,born at Gangu,Gansu,lecturer,major in partial di ff erential equations.

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 亚洲国产午夜精华无码福利| 国产欧美网站| 极品私人尤物在线精品首页 | yjizz国产在线视频网| 免费高清自慰一区二区三区| 日韩毛片在线播放| 亚洲成a∧人片在线观看无码| 亚洲国产天堂在线观看| a毛片在线| 久久精品亚洲热综合一区二区| 亚洲天堂精品在线观看| 精品综合久久久久久97超人| 国产成人免费观看在线视频| 黄片在线永久| 亚洲欧洲自拍拍偷午夜色无码| 日韩福利在线观看| 亚洲日韩高清在线亚洲专区| 精品无码一区二区在线观看| 玩两个丰满老熟女久久网| 亚洲av无码人妻| 精品国产免费观看一区| 欧美三级不卡在线观看视频| 国产精品女在线观看| 五月六月伊人狠狠丁香网| 国产精品区网红主播在线观看| 女人18一级毛片免费观看| 九九这里只有精品视频| 国产视频一区二区在线观看| 精品国产香蕉伊思人在线| 欧美日韩中文国产va另类| 精品国产电影久久九九| 欧美一级高清片欧美国产欧美| 波多野结衣在线一区二区| 亚洲国产精品久久久久秋霞影院| 欧美色综合网站| 国产小视频a在线观看| 免费一级毛片完整版在线看| 伊人久久久大香线蕉综合直播| 国产欧美日韩另类| 亚洲天堂网在线观看视频| 91小视频在线| 四虎影视无码永久免费观看| 亚洲无卡视频| a亚洲天堂| 激情成人综合网| 欧洲免费精品视频在线| 澳门av无码| 福利一区三区| 久久国产精品国产自线拍| 亚洲热线99精品视频| 欧美成人h精品网站| 午夜视频日本| 国产爽妇精品| 国产成人亚洲综合A∨在线播放| 国产成人综合日韩精品无码首页| 日韩免费毛片| 免费观看精品视频999| 最新国产精品第1页| 2020极品精品国产 | 伊人久久久久久久| 天堂亚洲网| 国产屁屁影院| 永久毛片在线播| 97青草最新免费精品视频| 亚洲第一色视频| 亚洲乱伦视频| 男女性午夜福利网站| 国产精品一区在线麻豆| 国产极品美女在线观看| 久久久久夜色精品波多野结衣| 日韩经典精品无码一区二区| 久草视频中文| 高清色本在线www| 精品三级网站| 国产视频你懂得| 欧美五月婷婷| 天天综合色天天综合网| 自拍偷拍欧美| 欧美日韩中文字幕在线| 精品无码人妻一区二区| 伊在人亚洲香蕉精品播放| 丁香婷婷激情综合激情|