999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A HYPERGEOMETRIC EQUATION ON THE LINE BUNDLE OVER SL(n+1,R)/S(GL(1,R)×GL(n,R))

2017-07-18 11:47:12YANGXianghuiHEMinhuaZHULi
數(shù)學(xué)雜志 2017年4期

YANG Xiang-huiHE Min-huaZHU Li

(1.School of Science,Wuhan Institute of Technology,Wuhan 430205,China)(2.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

A HYPERGEOMETRIC EQUATION ON THE LINE BUNDLE OVER SL(n+1,R)/S(GL(1,R)×GL(n,R))

YANG Xiang-hui1,HE Min-hua1,ZHU Li1,2

(1.School of Science,Wuhan Institute of Technology,Wuhan 430205,China)(2.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

In this paper,we study the di ff erential equation on the line bundle over the pseudo-Riemannian symmetric space SL(n+1,R)/S(GL(1,R)×GL(n,R)).We use Lie algebraic method,i.e.,Casimir operator to obtain the desired di ff erential operator.The di ff erential equation turns out to be a hypergeometric di ff erential equation,which generalizes the di ff erential equations in[1,3,5].

Casimir operator;pseudo-Riemannian symmetric space;line bundle;hypergeometric equation

1 Introduction

Hypergeometric functions play important roles in harmonic analysis over pseudo-Rieman nian symmetric spaces.Hyperbolic spaces are examples of pseudo-Riemannian symmetric spaces.There are a lot of work on hyperbolic spaces such as[3,4].Using a geometric method,Faraut obtained a second order di ff erential equation in the explicit case of hyperbolic spaces U(p,q;F)/U(1;F)×U(p-1,q;F)with F=R,C or H in[3].Later in an algebraic way,i.e.,through Casimir operator of sl(n+1,R),van Dijk and Kosters obtained a hypergeometric equation on the pseudo-Riemannian smmetric space SL(n+1,R)/GL(n,R)in[5].

A natural extension of[3,5]is harmonic analysis on the sections of vector bundles over pseudo-Riemannian symmetric spaces.Charchov obtained a hypergeometric equation on the sections of line bundles over complex hyperbolic spaces U(p,q;C)/U(1;C)×U(p-1,q;C)in his doctor thesis[1].The di ff erential equation in[1]is the same as the one in[3].In this paper we will follow the method in[6]to obtain the hypergeometric equation on the sections of line bundles over SL(n+1,R)/GL(n,R).When the parameterλis zero,our result degenerates to the di ff erential equation in[5].Our hypergeometric equation will be used to obtaining the Plancherel formula on the sections of the line bundle over SL(n+1,R)/S(GL(1,R)×GL(n,R))in a future paper.

2 Preliminaries and Main Result

LetG=SL(n+1,R)andH1=SL(n,R).We imbedH1inGas usual,i.e.,for anyLetHbe the subgroup ofG:

In what followstAdenotes the transpose of a matrixA.LetX1be the algebraic manifold of

defined by

for anyg∈Gand any(x,y).With this action,X1is transitive underG.Letx0=(e0,e0)∈X1wheree0is the fi rst standard unit vector in Rn+1,i.e.,e0=t(1,0,···,0).Then the stabilizer ofx0inGisH1.An elementary proof shows thatX1?G/H1.We also haveX?G/HwhereX={x∈Mn+1(R):rankx=trx=1},here Mn+1(R)is the space of all real(n+1)×(n+1)matrices.Gacts on Mn+1(R)by conjugation(see[5])

Let g=sl(n+1,R)be the Lie algebra ofG.The Killing form of g isB(X,Y)=2(n+1)trXYforX,Y∈g.The Killing form induces a measure onX1.With this measure,the Casimir operator Ω of g induces a second order di ff erential operator onX1.We call it the Laplace operator and den√ote it as□1.

Forλ∈R,set√be a continuous unitary character of R?.De fi ne a

characterχλofHasfor

LetD(X1)be the space of complex-valuedC∞-functions onX1with compact support.The action ofGonX1induces a representationUofGinD(X1):

and by inverse transposition a representationUofGinD′(X1).

We define

Becauseχλ=1 onH1,the above distributionsTcan be viewed as the bi-H1-invariant distributions onGsatisfyingU(h)T=χλ(h)-1T,h∈H.

Ifμ∈C,define

De fi nition 2.1Theχλ-spherical distributionsTonX1are the distributions onGsatisfying the following properties

?TisH1-invariant,

?T(hx)=χλ(h)T(x),h∈H,x∈X1,

?□′1T=μTfor someμ∈C.

As in[2],we define a mappingQ1:X1→R byQ1(x,y)=x0y0.We take the open subsetsX01={ (x,y)∈X1:Q1(x,y)<1}andX11={ (x,y)∈X1:Q1(x,y)>0}ofX1.

There is an averaging mappingdefined by

whereδis the Dirac measure andd(x,y)is aG-invariant measure onX1.De fi neξ:X1→R2

byξ(x,y)=(ξ1(x,y),ξ2(x,y))=(x0,y0).Thenwhereis the adjoint ofM1.Then we have the main theorem of this paper.

Theorem 2.1There is a second order di ff erential operatorLλon R such that the following formula holds

where

3 Proof of Main Result

We take a basis of g=sl(n+1,R)as

whereEαβ=(δαμδβν)μνis as usual.

OnX1we take the coordinates{x0,y0,x1,y1,···,xn-1,yn-1,xn}.Using(2.1),we followthe way in[6]to expressEαβas di ff erential operators onX1in terms of the coordinates{x0,y0,x1,y1,···,xn-1,yn-1,xn}.The results are

Following[1],let the functionFonX1be the formF(x,y)=F(x0,y0).We calculate the action of the Laplace operator □1or the Casimir operator Ω on such functions.BecauseFdepends onx0,y0only,we take Ω as

where the ‘other terms’are the combinations ofEkl(2≤kl≤n+1).With the coordinates{x0,y0,x1,y1,···,xn-1,yn-1,xn},using(3.1)-(3.5),we have

Now taking functionF(x0,y0)with the formwe obtain

Comparing(3.10)and(3.11),we haveThis completes the proof of Theorem 2.1.

[1]Charchov I.Harmonic analysis on line bundles over complex hyperbolic spaces[D].Leiden:Univ.Leiden,1999.

[2]van Dijk G.(GL(n+1,R),GL(n,R))is a generalized gelfand pair[J].Russian J.Math.Phys.,2008,15(4):548-551.

[3]Faraut J.Distributions sphriques sur les espaces hyperboliques[J].J.Math.Pures Appl.,1979,58:369-444.

[4]Han Yingbo,Feng Shuxiang.On complete hypersurfaces in hyperbolic space formHn+1(-1)[J].J.Math.,2013,33(5):767-772.

[5]Kosters M T,van Dijk G.Spherical distributions on the Pseudo-Riemannian space SL(n,R)/GL(n-1,R)[J].J.Funct.Anal.,1986,68:168-213.

[6]Lang S.SL2(R)[A].Volume 105 of Graduate Texts in Mathematics[C].Reprint of 1975 ed.,New York:Springer-Verlag,1985.

SL(n+1,R)/S(GL(1,R)×GL(n,R))上線叢的一個超幾何方程

楊向輝1,何敏華1,朱 理1,2

(1.武漢工程大學(xué)理學(xué)院,湖北武漢 430205)(2.武漢大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,湖北武漢 430072)

本文研究了偽黎曼對稱空間SL(n+1,R)/S(GL(1,R)×GL(n,R))線叢上的微分方程.利用李代數(shù)方法,即Casimir算子得到這個微分算子.這個微分算子是一個超幾何方程,這個結(jié)論推廣了文獻[1,3,5]中的微分方程.

Casimir算子;偽黎曼對稱空間;線叢;超幾何方程

O152.5

on:22E46;33C05

A Article ID: 0255-7797(2017)04-0667-05

date:2016-05-27Accepted date:2016-07-11

Supported by the Research Foundation of Education Department of Hubei Province(Q20121512).

Biography:Yang Xianghui(1980-),female,born at Xiantao,Hubei,lecturer,major in functional di ff erential equations.

主站蜘蛛池模板: 色婷婷色丁香| 欧美自拍另类欧美综合图区| 亚洲精品无码高潮喷水A| 国产精品极品美女自在线网站| 黄色福利在线| 色婷婷丁香| 亚洲丝袜第一页| 亚洲国产清纯| 精品夜恋影院亚洲欧洲| 免费国产好深啊好涨好硬视频| 18禁影院亚洲专区| 久操中文在线| 国产精品lululu在线观看| 午夜a级毛片| 97国产在线观看| 久久伊人操| 一级不卡毛片| 国产一区亚洲一区| www.国产福利| 国产人人射| 欧美怡红院视频一区二区三区| 亚洲AV无码一区二区三区牲色| 国产精品无码一二三视频| 亚洲黄网视频| 午夜视频日本| 全部免费特黄特色大片视频| 国产激情无码一区二区APP| 国产噜噜噜视频在线观看| 国产欧美日韩资源在线观看| 国产丝袜91| 久久精品国产电影| 丁香婷婷久久| 无码中字出轨中文人妻中文中| 国产成人三级| 亚洲第一成网站| 露脸真实国语乱在线观看| 国产肉感大码AV无码| 无码AV动漫| 国产成人盗摄精品| 香蕉eeww99国产在线观看| 在线观看免费黄色网址| 精品无码日韩国产不卡av| 欧亚日韩Av| 国产区福利小视频在线观看尤物| 国模视频一区二区| 国产美女视频黄a视频全免费网站| 婷婷开心中文字幕| 成人av手机在线观看| 亚洲国产在一区二区三区| 欧美日韩成人| 久久女人网| a级毛片网| 色网在线视频| 在线另类稀缺国产呦| 麻豆AV网站免费进入| 在线免费不卡视频| 欧美精品亚洲精品日韩专| 久久久久久久97| 日韩免费中文字幕| 国产永久在线观看| 中文字幕天无码久久精品视频免费 | 国产成年无码AⅤ片在线| 五月婷婷激情四射| 亚洲人成网7777777国产| 91综合色区亚洲熟妇p| 精品国产免费观看一区| 色成人亚洲| 四虎永久在线| 亚洲精品色AV无码看| 中文字幕 欧美日韩| 99re视频在线| 国产成人精品免费av| 亚洲电影天堂在线国语对白| 精品91视频| 久久免费成人| 97青草最新免费精品视频| 18禁色诱爆乳网站| 国产亚洲精品在天天在线麻豆 | 理论片一区| 久操中文在线| 99尹人香蕉国产免费天天拍| 一级毛片高清|