999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Banach空間中的完備集

2017-06-10 08:09:41吳森林張新玲計東海
哈爾濱理工大學學報 2017年2期

吳森林+張新玲+計東海

摘要:針對Banach空間中完備集的相關問題, 回顧了完備集這一概念的來源:等寬集的一些基本性質, 介紹了完備集的一些性質以及與完備集相關的若干研究問題和相關結果。 結果表明, 圍繞Banach空間中的完備集及其相關問題還有很多待完成的工作。

關鍵詞:Banach空間; 等寬集; 完備集; 完備化集

DOI:10.15938/j.jhust.2017.02.016

中圖分類號: O177

文獻標志碼: A

文章編號: 1007-2683(2017)02-0083-05

Abstract:For the related problems of complete sets in Banach spaces, some fundamental properties of sets of constant width which is the origin of the concept of complete sets are reviewed, and properties of complete sets and research problems and corresponding results related to complete sets are also presented. It is shown that there are much research to be done concerning complete sets and related problems in Banach spaces.

Keywords:Banach spaces; sets of constant width; complete sets; completion of sets

6完備化集與其他特殊凸集類的關系

設A是有限維Banach空間中的一個凸體, 若任何一個真包含于A的凸體的最小寬度均嚴格小于A的最小寬度(A的平行的支撐超平面之間距離的下確界), 該凸體稱為不可縮的(reduced)。顯然的, 任意一個等寬集都是不可縮的。文[46]中聲稱有限維Banach空間中任何一個完備集均是不可縮的, 然而, Martini和吳森林已經給出一個反例說明該結論是不正確的(參見文[45])。因此, 在有限維Banach空間乃至無窮維Banach空間中考慮不可縮凸集與完備集的關系十分有必要。關于

瘙 綆 n和有限維Banach空間中不可縮凸體的更多內容請參見文[46]和[47]以及這兩篇綜述文章中所列文獻。

7結語

盡管很多數學家在一般的實Banach空間特別是有限維實Banach空間中圍繞著完備集及其相關性質, 集合的完備化映射以及與完備集有關的若干問題已經做了一系列重要的工作, 但是關于完備集仍然有很多未解決的問題, 希望本文對完備集相關問題的介紹能讓更多的人關注并嘗試解決這些問題。

參 考 文 獻:

[1]JIN Hailin, GUO Qi. Asymmetry of Convex Bodies of Constant Width[J]. Discrete Comput. Geom., 2012, 47:415-423.

[2]WEBSTER R J. Convexity[M]. New York: Oxford University Press, 1994.

[3]BRNY I, SCHNEIDER R. Typicalcurvature Behaviour of Bodies of Constant Width[J]. Adv. Math., 2015, 272:308-329.

[4]CHAKERIAN G D, GROEMER H. Convex Bodies of Constant Width[M]. Basel: Birkhuser, 1983:49-96.

[5]KAWOHL B, WEBER C.Meissners mysterious bodies[J]. Math. Intell., 2011(33):94-101.

[6]HEIL E, MARTINI H. Special Convex Bodies[C]. GRUBER P, WILLS J. Handbook of Convex Geometry. Amsterdam: NorthHolland, 1993:347-385.

[7]MARTINI H, SWANEPOEL K J. The Geometry of Minkowski Spaces—A Survey. Part II.[J]. Expo. Math., 2004(22):93-144.

[8]MORENO J, PAPINI P, PHELPS R.Diametrically Maximal and Constant Width Sets in Banach Spaces[J]. Canad. J. Math., 2006, 58(4):820 -842.

[9]PAY R, RODRGUEZPALACIOS A.Banach Spaces Which are SemiLsummands in Their Biduals[J]. Math. Ann., 1991, 289(3):529-542.

[10]YOST D. Irreducible Convex Sets[J]. Mathematika, 1991(38):134-155.

[11]MEISSNER E.ber Punktmengen konstanter Breite[J]. Vierteljahrsschrift der Naturforschenden Gesellschaft Zürich, 1911, 56:42-50.

[12]MORENO J P, SCHNEIDER R. Structure of the Space of Diametrically Complete Sets in a Minkowski Space[J]. Discrete Comput. Geom., 2012(48):467-486.

[13]EGGLESTON H G. Sets of Constant Width in Finite Dimensional Banach Spaces[J]. Isr. J. Math., 1965(3):163-172.

[14]MORENO J P, SCHNEIDER R. Diametrically Complete Sets in Minkowski Spaces[J]. Israel J. Math., 2012, 191:701-720.

[15]CASPANI L, PAPINI P L.On Constant Width Sets in Hilbert Spaces and Around [J]. J. Convex Anal., 2015, 22(3):889-900.

[16]MORENO J P, SCHNEIDER R. LocalLipschitz Continuity of the Diametric Completion Mapping[J]. Houston J. Math., 2012(38):1207-1223.

[17]MORENO J P, SCHNEIDER R.Lipschitz Selections of the Diametirc Completion Mapping in Minkowski Spaces[J]. Adv. Math., 2013(233):24 8-267.

[18]KARASЁV R N. On the Characterization of Generating Sets[J]. Model. iAnaliz Inform. Sistem, 2001, 8(2):3-9.

[19]BALASHOV M V, POLOVINKIN E S. Mstrongly Convex Subsets and Their Generating Sets [J]. Mat. Sb., 2000, 191(1):27-64.

[20]SALLEE G. Pairs of Sets of Constant Relative Width[J]. J. Geom., 1987, 29.

[21]MARTINI H, RICHTER C, SPIROVA M.Intersections of Balls and Sets of Constant Width in Finite Dimensional Normed Spaces[J]. Mathematika, 2013(59):477-492.

[22]GROEMER H. On Complete Convex Bodies[J]. Geom.Dedic., 1986(20):319-334.

[23]MORENO J P. Porosity and Diametrically Maximal Sets in c(K)[J]. Monatsh. Math., 2007, 152:255-263.

[24]MORENO J P. Porosity and Unique Completion in Strictly Convex Spaces[J].Math.Z., 2011, 267: 173-184.

[25]PL J.ber Ein Elementares Variationsproblem [J]. Danske Vid. Selskab. Mat.Fys. Medd., 1920, III(2):35.

[26]LEBESGUE H. Sur Quelques Questionsde Minimum, Relatives Aux Courbes Orbiformes,et Surleurs Rapports Avecle Calculdes Variations[J]. J. Math. Pures Appl. (8), 1921, 4:67-96.

[27]BONNESEN T, FENCHEL W.Theorie Der Konvexen 〖AKK¨〗orper[M]. Berlin: Springer, 1934.

[28]BCKNER H.ber Flchenvon Fester Breite [J]. Jahresber. Deutsch. Math.Verein., 1936(46):96-139.

[29]EGGLESTON H G. Convexity[M]. Cambridge: Cambridge University Press, 1958.

[30]SCOTT P R. Sets of Constant Width and Inequalities[J]. Quart. J. Math., 1981(32):345-348.

[31]VRE〖KG-1mm〗C〖DD(-1.2mm〗'〖DD)〗ICA S. A Noteon Sets of Constant Width [J]. Publ. Inst. Math., 1981(29): 289-291.

[32]GROEMER H.Extremal Convex Sets[J]. Monatsh. Math., 1983(96):29-39.

[33]MAEHARA H. Convex Bodies Forming Pairs of Constant Width[J]. J. Geom., 1984, 22:101-107.

[34]SALLEE G.Preassigning the Boundary of Diametricallycomplete Sets[J]. Monatsh. Math., 19 88, 105.

[35]LACHANDROBERT T, OUDET E. Bodies of Constant Width in Arbitrary Dimensions[J]. Math.Nachr., 2007(280):740-750.

[36]PAPINI P L, WU SENLIN. Constructions of complete sets[J]. Adv. Geom., 2015, 15(4):485- 498.

〖LL〗[37]BAVAUD F.Adjoint Transform, Overconvexity and Sets of Constant Width[J]. Trans. Amer. Math. Soc., 1992(333):315-324.

[38]MORENO J P, SCHNEIDER R. Some Geometry of Convex Bodies in C(K) Spaces[J]. J. Math. Pures Appl., 2015(103):352-373.

[39]MORENO J P. Convex Values andLipschitz Behavior of the Complete Hull Mapping[J]. Trans. Amer. Math. Soc., 2010(362):3377-3389.

[40]MALUTA E, PAPINI P L. Diametrically Complete Sets and Normal Structure[J]. J. Math. Anal. Appl., 2015(424):1335-1347.

[41]MARTINI H, PAPINI P L, SPIROVA M. Complete Sets and Completion of Sets in Banach Spaces[J]. Monatsh. Math., 2014, 174:587-597.

[42]MORENO J, PAPINI P, PHELPS R. New Families of Convex Sets Related to Diametral Maximality[J]. J. Convex. Anal., 2006(13):823-837.

[43]CASPANI L, PAPINI P L. Complete Sets, Radii, and Inner Radii[J].Beitr. Algebra Geom., 2011(52):163-170.

[44]PAPINI P L. Completions and Balls in Banach Spaces[J]. Ann. Funct. Anal., 2015, 6(1):24-33.

[45]MARTINI H, WU SENLIN. Complete Sets Need not be Reduced in Minkowski Spaces[J]. Beitr. Algebra Geom., 2015, 56(2):533-539.

[46]LASSAK M, MARTINI H. Reduced Convex Bodies in Finite Dimensional Normed Spaces: A Survey[J]. Results Math., 2014(66):405-426.

[47]LASSAK M, MARTINI H. Reduced Convex Bodies in Euclidean Space—A Survey[J]. Expo. Math., 2011(29):204-219.

(編輯:溫澤宇)

主站蜘蛛池模板: 九色在线视频导航91| 久久国产精品影院| 伊人精品成人久久综合| 亚洲国产第一区二区香蕉| 国产黄网永久免费| 强乱中文字幕在线播放不卡| 成人精品免费视频| 亚洲福利一区二区三区| 色综合网址| 国产va在线| 久久久久亚洲AV成人人电影软件 | 人妻中文字幕无码久久一区| 97精品国产高清久久久久蜜芽| 午夜视频在线观看免费网站 | 99热免费在线| 欧美精品成人一区二区在线观看| 亚洲乱伦视频| 香蕉视频在线观看www| 欧美久久网| 亚洲女同一区二区| 亚洲第七页| 四虎影视无码永久免费观看| 国产丰满大乳无码免费播放 | 欧美在线网| 亚洲免费福利视频| 九九这里只有精品视频| 日韩一区精品视频一区二区| 69精品在线观看| 亚洲永久视频| 国产无码网站在线观看| 国产精欧美一区二区三区| 真人免费一级毛片一区二区| 国产毛片基地| AV网站中文| 青青青国产在线播放| 成年A级毛片| 香蕉久久永久视频| 美女亚洲一区| 少妇精品网站| 久久大香香蕉国产免费网站| 黄片在线永久| 国产成人超碰无码| 欧美α片免费观看| 美女被躁出白浆视频播放| 久久人妻xunleige无码| 一本色道久久88| 久久精品国产999大香线焦| 潮喷在线无码白浆| 亚洲高清资源| 四虎综合网| 色网在线视频| 国产尤物jk自慰制服喷水| 91成人在线观看| 99精品欧美一区| 九色国产在线| 69视频国产| 亚洲精品中文字幕午夜| 免费jjzz在在线播放国产| 免费无码AV片在线观看中文| 久久天天躁狠狠躁夜夜2020一| 伊人激情综合网| 日韩精品无码免费一区二区三区| 亚洲开心婷婷中文字幕| 国产va在线观看免费| AV无码无在线观看免费| 在线日韩日本国产亚洲| 国产超碰一区二区三区| 激情影院内射美女| 91美女视频在线| 国产美女91呻吟求| 久久超级碰| 久久精品无码专区免费| 国产精品毛片一区视频播| 超薄丝袜足j国产在线视频| 日韩国产精品无码一区二区三区| 91国内视频在线观看| 先锋资源久久| 亚洲性色永久网址| 国产美女叼嘿视频免费看| 国产69囗曝护士吞精在线视频| 福利在线一区| 永久免费精品视频|