999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

2017-06-05 15:09:36LUHaixia

LU Haixia

(School of Arts and Science, Suqian College, Suqian 223800, Jiangsu)

Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

LU Haixia

(SchoolofArtsandScience,SuqianCollege,Suqian223800,Jiangsu)

In this paper, we discuss the nonlinear eigenvalue problem on time scalesT

eigenvalue problems; time scales; global bifurcation; positive solutions

1 Introduction

In this paper, we study the following nonlinear eigenvalue problem on time scales

(1)

where λ is a positive parameter, andTis a closed subset of the interval [0,1] with 0,1∈T.

The concept of time scales was created by Hilger[1]in order to unify continuous and discrete calculus. Some other early papers in this area include Agarwal and Bohner[2], Aulbach and Hilger[3]and Erbe and Hilger[4]. In recent years, much research has been done for the existence of solutions of boundary value problems on time scales by Krasnoselskii fixed point theorems, Leggett-williams theorem, upper and lower solution method and so on(see [5-14]). By using the global bifurcation theory and the results in [16], Luo and Ma[15]obtained the existence of solutions of the nonlinear eigenvalue problem (1) in the case that the nonlinear term f(u(t)) satisfied

sf(s)>0, ?s≠0.

(2)

Inthispaper,wediscussnonlineardifferentialequation(1)byusingRabinowitz’sbifurcationtheoremsfromboththetrivialsolutionandinfinity.Theexistenceofpositivesolutionsandmultiplicityofsolutionsof(1)areprovedinthecasethat(2)isnotsatisfied.Themethodandresultsinthispaperimprovethosegivenin[13-15].

2 Preliminaries

LetTbe a closed subset of the interval [0,1] with 0,1∈T. For completeness and convenience, we recall the following concepts related to the notation of the time scales.

Definition 2.1 Define the forward jump operator and backward jump operatorσ,ρ:T→Tby

σ(t)=inf{s∈T:s>t}, ρ(t)=sup{s∈T:s

for anyt∈T. The pointt∈Tis said to be left-dense, left-scattered, right-dense, right-scattered ifρ(t)=t,ρ(t)t, respectively.

We assume throughout that,σ(0)=0 andρ(1)=1.

Definition 2.2 Letu:T→R andt∈T.uis said to be differentiable attif there exists a number, denoted byuΔ(t), with the property that for eachε>0 there is a neighborhoodU∈Toftsuch that

|u(σ(t))-u(s)-uΔ(t)(σ(t)-s)|≤ε|σ(t)-s|

foralls∈U.

Ifuis differentiable at everyt∈Tthenuis said to be differentiable onT. The second derivative ofuattis defined to beuΔΔ(t):=(uΔ)Δ(t). We also define the functionuσ:=u°σ.

Definition 2.3 A functionu:T→R is said to be rd-continuous onTif it is continuous at all right-dense points and has finite left-sided limit at each left-dense point inT.

‖u‖1=‖u‖+‖uΔ‖,

LetX=C0(T),

E={u∈C1(T)∶u(0)=u(1)=0},

Letφ(t), ψ(t)betheuniquesolutionoftheequationLu(t)=0onTsatisfyingtheboundaryconditions

FromLemma3.3in[16],thereexistsaconstantω≠ 0suchthatω=ψ(t)φΔ(t)-φ(t)ψΔ(t)forallt∈T.For(s, t)∈T×T,let

Theboundaryvalueproblem(1)isequivalenttothefollowingintegralequation

(3)

for some t0∈T.Thenu0≡0.

Forconvenience,welistthefollowingconditionswhichwillbeusedinthispaper.

(H4) There existsr>0 such thatf(r)<0 andf(-r)>0.

Letζ,ξ∈C(R, R) satisfy

f(s)=f0s+ζ(s), f(s)=f∞s+ξ(s).

By the conditions (H2) and (H3), we have

(4)

Now (1) can be rewritten in the form either

Lu=λ f0uσ+λζ(uσ),

(5)

or

Lu=λ f∞uσ+λξ(uσ).

(6)

Definition 2.4 Suppose thatu∈C1(T) andt∈T. Ifu(t)=0, thentis a zero ofu. Ifu(t)=0 anduΔ(t)≠ 0, thentis a simple zero ofu. Ifu(t)uΔ(t)<0 (and henceσ(t)>t), then we say thatuhas a generalized zero at the point

Simple zeross∈Tand generalized zeross?T, as defined above, are often referred to as simple generalized zeros.

(i) the only zeros ofuinTare simple;

(ii)uhas exactlyk-1 simple generalized zeros in (0, 1);

(iii) ±uΔ(0)>0.

Letλkbe thekth eigenvalue of the linear eigenvalue problem

It is known from [16, Lemma 5.1] and [17, Lemma 2.6] that

0<λ1<λ2<λ3<…, uk∈Sk, k=1, 2, 3,…,

and eachλkhas algebraic multiplicity one.

LetΓdenote the closure of the set of nontrivial solutions of (3) in R×E. A continuum ofΓis a maximal closed connected subset.

Hσ=GEζσ:R×E→E.

We see from (3) and (5) that finding a solution (λ,u)∈Γis equivalent to finding a solution (λ,u)∈R×Eof the equation

It follows from the definition ofHσthatHσis compact and continuous. In addition, it follows from (4) thatHσ(λ,u)=°(|u|) forunear zero, uniformly on boundedλintervals. Therefore, following the arguments in the proof of Theorem 7.1 in [16] Lemma 2.2 holds.

Fσ=GEξσ: R×E→E.

We see from (6) that (3) is equivalent to the following equation

(7)

ItfollowsfromthedefinitionofFσthatFσiscompactandcontinuous.Andby(4)wehavethatFσ(λ,u)=°(|u|)forunear∞,uniformlyonboundedλintervals.Hence(7)isoftheformdiscussedin[18].

Let Г1denotetheclosureofthesetofnontrivialsolutionsof(3)inR×X. Obviously, from the point of the set, Г=Г1. Hence, in the sense of the set, we denoteΓandΓ1byΓ.

Lemma 2.4[14, 19]LetMbe a subset ofΓ. Then

(i)Mis a closed set in R×XiffMis a closed set in R×E;

(ii)Mis a connected component set in R×XiffMis a connected component set in R×E;

(iii)Mis a unbounded set in R×XiffMis a unbounded set in R×E.

3 Main results

In this section we give our main results.

Theorem 3.1 Let (H1)-(H3) hold. Assume for some integerk≥1, one of the following conditions is satisfied:

Then (1) has two solutionsu+kandu-ksuch thatu+khas exactlyk-1 simple generalized zeros inTwith (u+k)Δ(0)>0,u-khas exactlyk-1 simple generalized zeros inTwith (u-k)Δ(0)<0.

Theorem 3.2 Let (H1)-(H3) hold. Suppose that there exist two integersk≥ 1 andj≥0 such that one of the following conditions is satisfied:

λAu≠u, ?λ>0,u∈?Br,

(8)whereAisdenotedby(3), Br={u∈X| ‖u‖

Otherwise,thereexistλ0>0andu0∈?Brsuchthatu0=λ0Au0.Since‖u0‖=r,thenthereexistst0∈Tsuchthatu0(σ(t0))=r (theproofforu0(σ(t0))=-rissimilar).

Butitfollowsfrom(H4)that

Lu0(t0)=λ0f(u0(σ(t0)))=λ0f(r)<0,

whichisacontradiction.

Then

[1] HILGER S. Analysis on measure chains-a unified approach to continuous and disrete calculus[J]. Results Math,1990,18(1):18-56.

[2] AGARWAL R P, BOHNER M. Basic calculus on time scales and some of its applications[J]. Results Math,1999,35(1):3-22.

[3] AULBACH B, HILGER S. Linear Dynamic Processes with in Homogeneous Time Scale, Nonlinear Dynamics and Quantum Dynamical System[M]. Berlin:Akademic Verlag,1990.

[4] ERBE L H, HILGER S. Sturmian theory on measure chains[J]. Differential Equations Dynam System,1993,1(3):223-246.

[5] AGARWAL R P, O'REGAN D. Nonlinear boundary value problem on a measure chain[J]. Nonlinear Anal,2001,44(4):527-535.

[6] ANDERSON D R. Eigenvalue intervals for a two-point boundary value problem on a measure chain[J]. J Comput Appl Math,2002,141(1/2):57-64.

[7] CHEN H H, CHEN C. Positive solutions for eigenvalue problems on a measure chain[J]. Nonlinear Anal,2002,51(3):499-507.

[8] CHYAN C J, HENDERSON J. Eigenvalue problems for differential equations on a measure chain[J]. J Math Anal Appl,2000,245(2):547-559.

[9] CHYAN C J, HENDERSON J. Twin solutions of boundary value problems for differential equations on a measure chain[J]. J Comput Appl Math,2002,141(1/2):123-131.

[10] ERBE L H, PETERSON A. Positive solutions for a nonlinear differential equation on a measure chain[J]. Math Comput Modelling,2000,32(5/6):571-585.

[11] ERBE L H, PETERSON A, MATHSEN R. Existence, multiplicity and nonexistence of positive solutions to a differential equation on a measure chain[J]. J Comput Appl Math,2000,113(1/2):365-380.

[12] LI W T, SUN H R. Multiple Positive solutions for nonlinear dynamic systems on a measure chain[J]. J Comput Appl Math,2004,162(2):421-430.

[13] SONG C X. Positive solutions for first-order PBVPs on time scales[J]. Chin Quart J Math,2012,27(3):337-343.

[14] LI H Y, DAI L M. Positive solutions for nonlinear differential equations with sign changing nonlinearity on a measure chain[J]. J Math,2012,32(1):9-16.

[15] LUO H, MA R Y. Nodal solutions to nonlinear eigenvalue problems on time scales[J]. Nonlinear Anal,2006,65(4):773-784.

[16] DAVIDSON F A, RYNNE B P. Global bifurcation on time scales[J]. J Math Anal Appl,2002,267(1):345-360.

[17] DAVIDSON F A, RYNNE B P. Curves of positive solution of boundary value problems on time scales[J]. J Math Anal Appl,2004,300(2):491-504.

[18] RABINOWITZ P H. On bifurcation from infinity[J]. J Differential Equations,1973,14(3):462-475.

[19] CUI Y J, SUN J X, ZOU Yumei. Global bifurcation and multiple results for Sturm-Liouville problems[J]. J Comput Appl Math,2011,235(8):2185-2192.

(編輯 陶志寧)

時標上非線性特征值問題正解的存在性和多解性

陸海霞

(宿遷學院 文理學院, 江蘇 宿遷 223800)

討論時標T上非線性特征值問題其中λ是正參數.運用全局分歧理論,研究在一定條件下上述特征值問題發自u=0和(或)u=∞非零解的連通分支,得到此特征值問題正解的存在性和多解性結果,推廣和改進了一些已有結果.

特征值問題; 時標; 全局分歧; 正解.

O175.8

A

1001-8395(2017)03-0289-06

Foundation Items:This work is supported by the National Science Foundation of China (No. 11501260) and Natural Science Foundation of Suqian city(No. Z201444)

10.3969/j.issn.1001-8395.2017.03.002

Received date: 2016-05-25.

whereλis a positive parameter. Using the global bifurcation theory, we study the continua of its nontrivial solutions bifurcating fromu=0 and/oru=∞ under some conditions. In addition, the existence of positive solutions and the multiplicity of solutions of this nonlinear eigenvalue problem are obtained. Our results generalize and improve some known results.

2010 MSC:34B15

主站蜘蛛池模板: 欧美黄网站免费观看| 永久免费AⅤ无码网站在线观看| 高清亚洲欧美在线看| 国产白浆视频| 在线看免费无码av天堂的| 国产在线视频福利资源站| 1级黄色毛片| 男女性色大片免费网站| 色一情一乱一伦一区二区三区小说| 在线中文字幕网| 视频国产精品丝袜第一页| 亚洲无码A视频在线| 日韩精品无码一级毛片免费| 国产性猛交XXXX免费看| 精品视频第一页| 久久久久国产一级毛片高清板| 国产女人18水真多毛片18精品 | a天堂视频| 秋霞一区二区三区| 午夜高清国产拍精品| 久久综合亚洲鲁鲁九月天| 青青草国产精品久久久久| 看你懂的巨臀中文字幕一区二区| 人妻中文字幕无码久久一区| 亚洲二区视频| 久久综合激情网| 国产网友愉拍精品| 国产精品理论片| 狼友av永久网站免费观看| 一级毛片免费播放视频| 中文字幕人妻无码系列第三区| 亚洲欧美激情小说另类| 免费又黄又爽又猛大片午夜| 麻豆精品视频在线原创| 8090午夜无码专区| 亚洲欧美精品在线| 中文字幕日韩久久综合影院| 99国产精品国产| 黄色国产在线| 国产精品99r8在线观看| 国产特级毛片| 国产h视频在线观看视频| 国产成人h在线观看网站站| 高清久久精品亚洲日韩Av| 在线国产毛片手机小视频| 精品人妻一区无码视频| 一级在线毛片| 婷婷午夜天| 四虎永久免费地址| 一级毛片高清| 国产剧情国内精品原创| 精品三级在线| 日韩欧美国产区| 国产一级二级三级毛片| 久久精品人妻中文系列| 国产菊爆视频在线观看| 香蕉久人久人青草青草| 先锋资源久久| 亚洲啪啪网| 亚洲视频四区| 九色视频一区| 日韩成人午夜| 亚洲精品无码在线播放网站| 99精品热视频这里只有精品7| 国产精品第5页| 国产女人18毛片水真多1| 中文字幕乱码中文乱码51精品| 97国产精品视频人人做人人爱| 97精品伊人久久大香线蕉| 亚洲一级无毛片无码在线免费视频| 8090成人午夜精品| 日韩欧美中文| 波多野结衣爽到高潮漏水大喷| 天天操精品| 欧美视频在线不卡| 2021亚洲精品不卡a| 亚洲精品第一页不卡| 天天摸夜夜操| 国产精品亚洲一区二区三区在线观看| 日韩AV手机在线观看蜜芽| 免费在线成人网| 真人免费一级毛片一区二区|