999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

2017-06-05 15:09:36LUHaixia

LU Haixia

(School of Arts and Science, Suqian College, Suqian 223800, Jiangsu)

Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

LU Haixia

(SchoolofArtsandScience,SuqianCollege,Suqian223800,Jiangsu)

In this paper, we discuss the nonlinear eigenvalue problem on time scalesT

eigenvalue problems; time scales; global bifurcation; positive solutions

1 Introduction

In this paper, we study the following nonlinear eigenvalue problem on time scales

(1)

where λ is a positive parameter, andTis a closed subset of the interval [0,1] with 0,1∈T.

The concept of time scales was created by Hilger[1]in order to unify continuous and discrete calculus. Some other early papers in this area include Agarwal and Bohner[2], Aulbach and Hilger[3]and Erbe and Hilger[4]. In recent years, much research has been done for the existence of solutions of boundary value problems on time scales by Krasnoselskii fixed point theorems, Leggett-williams theorem, upper and lower solution method and so on(see [5-14]). By using the global bifurcation theory and the results in [16], Luo and Ma[15]obtained the existence of solutions of the nonlinear eigenvalue problem (1) in the case that the nonlinear term f(u(t)) satisfied

sf(s)>0, ?s≠0.

(2)

Inthispaper,wediscussnonlineardifferentialequation(1)byusingRabinowitz’sbifurcationtheoremsfromboththetrivialsolutionandinfinity.Theexistenceofpositivesolutionsandmultiplicityofsolutionsof(1)areprovedinthecasethat(2)isnotsatisfied.Themethodandresultsinthispaperimprovethosegivenin[13-15].

2 Preliminaries

LetTbe a closed subset of the interval [0,1] with 0,1∈T. For completeness and convenience, we recall the following concepts related to the notation of the time scales.

Definition 2.1 Define the forward jump operator and backward jump operatorσ,ρ:T→Tby

σ(t)=inf{s∈T:s>t}, ρ(t)=sup{s∈T:s

for anyt∈T. The pointt∈Tis said to be left-dense, left-scattered, right-dense, right-scattered ifρ(t)=t,ρ(t)t, respectively.

We assume throughout that,σ(0)=0 andρ(1)=1.

Definition 2.2 Letu:T→R andt∈T.uis said to be differentiable attif there exists a number, denoted byuΔ(t), with the property that for eachε>0 there is a neighborhoodU∈Toftsuch that

|u(σ(t))-u(s)-uΔ(t)(σ(t)-s)|≤ε|σ(t)-s|

foralls∈U.

Ifuis differentiable at everyt∈Tthenuis said to be differentiable onT. The second derivative ofuattis defined to beuΔΔ(t):=(uΔ)Δ(t). We also define the functionuσ:=u°σ.

Definition 2.3 A functionu:T→R is said to be rd-continuous onTif it is continuous at all right-dense points and has finite left-sided limit at each left-dense point inT.

‖u‖1=‖u‖+‖uΔ‖,

LetX=C0(T),

E={u∈C1(T)∶u(0)=u(1)=0},

Letφ(t), ψ(t)betheuniquesolutionoftheequationLu(t)=0onTsatisfyingtheboundaryconditions

FromLemma3.3in[16],thereexistsaconstantω≠ 0suchthatω=ψ(t)φΔ(t)-φ(t)ψΔ(t)forallt∈T.For(s, t)∈T×T,let

Theboundaryvalueproblem(1)isequivalenttothefollowingintegralequation

(3)

for some t0∈T.Thenu0≡0.

Forconvenience,welistthefollowingconditionswhichwillbeusedinthispaper.

(H4) There existsr>0 such thatf(r)<0 andf(-r)>0.

Letζ,ξ∈C(R, R) satisfy

f(s)=f0s+ζ(s), f(s)=f∞s+ξ(s).

By the conditions (H2) and (H3), we have

(4)

Now (1) can be rewritten in the form either

Lu=λ f0uσ+λζ(uσ),

(5)

or

Lu=λ f∞uσ+λξ(uσ).

(6)

Definition 2.4 Suppose thatu∈C1(T) andt∈T. Ifu(t)=0, thentis a zero ofu. Ifu(t)=0 anduΔ(t)≠ 0, thentis a simple zero ofu. Ifu(t)uΔ(t)<0 (and henceσ(t)>t), then we say thatuhas a generalized zero at the point

Simple zeross∈Tand generalized zeross?T, as defined above, are often referred to as simple generalized zeros.

(i) the only zeros ofuinTare simple;

(ii)uhas exactlyk-1 simple generalized zeros in (0, 1);

(iii) ±uΔ(0)>0.

Letλkbe thekth eigenvalue of the linear eigenvalue problem

It is known from [16, Lemma 5.1] and [17, Lemma 2.6] that

0<λ1<λ2<λ3<…, uk∈Sk, k=1, 2, 3,…,

and eachλkhas algebraic multiplicity one.

LetΓdenote the closure of the set of nontrivial solutions of (3) in R×E. A continuum ofΓis a maximal closed connected subset.

Hσ=GEζσ:R×E→E.

We see from (3) and (5) that finding a solution (λ,u)∈Γis equivalent to finding a solution (λ,u)∈R×Eof the equation

It follows from the definition ofHσthatHσis compact and continuous. In addition, it follows from (4) thatHσ(λ,u)=°(|u|) forunear zero, uniformly on boundedλintervals. Therefore, following the arguments in the proof of Theorem 7.1 in [16] Lemma 2.2 holds.

Fσ=GEξσ: R×E→E.

We see from (6) that (3) is equivalent to the following equation

(7)

ItfollowsfromthedefinitionofFσthatFσiscompactandcontinuous.Andby(4)wehavethatFσ(λ,u)=°(|u|)forunear∞,uniformlyonboundedλintervals.Hence(7)isoftheformdiscussedin[18].

Let Г1denotetheclosureofthesetofnontrivialsolutionsof(3)inR×X. Obviously, from the point of the set, Г=Г1. Hence, in the sense of the set, we denoteΓandΓ1byΓ.

Lemma 2.4[14, 19]LetMbe a subset ofΓ. Then

(i)Mis a closed set in R×XiffMis a closed set in R×E;

(ii)Mis a connected component set in R×XiffMis a connected component set in R×E;

(iii)Mis a unbounded set in R×XiffMis a unbounded set in R×E.

3 Main results

In this section we give our main results.

Theorem 3.1 Let (H1)-(H3) hold. Assume for some integerk≥1, one of the following conditions is satisfied:

Then (1) has two solutionsu+kandu-ksuch thatu+khas exactlyk-1 simple generalized zeros inTwith (u+k)Δ(0)>0,u-khas exactlyk-1 simple generalized zeros inTwith (u-k)Δ(0)<0.

Theorem 3.2 Let (H1)-(H3) hold. Suppose that there exist two integersk≥ 1 andj≥0 such that one of the following conditions is satisfied:

λAu≠u, ?λ>0,u∈?Br,

(8)whereAisdenotedby(3), Br={u∈X| ‖u‖

Otherwise,thereexistλ0>0andu0∈?Brsuchthatu0=λ0Au0.Since‖u0‖=r,thenthereexistst0∈Tsuchthatu0(σ(t0))=r (theproofforu0(σ(t0))=-rissimilar).

Butitfollowsfrom(H4)that

Lu0(t0)=λ0f(u0(σ(t0)))=λ0f(r)<0,

whichisacontradiction.

Then

[1] HILGER S. Analysis on measure chains-a unified approach to continuous and disrete calculus[J]. Results Math,1990,18(1):18-56.

[2] AGARWAL R P, BOHNER M. Basic calculus on time scales and some of its applications[J]. Results Math,1999,35(1):3-22.

[3] AULBACH B, HILGER S. Linear Dynamic Processes with in Homogeneous Time Scale, Nonlinear Dynamics and Quantum Dynamical System[M]. Berlin:Akademic Verlag,1990.

[4] ERBE L H, HILGER S. Sturmian theory on measure chains[J]. Differential Equations Dynam System,1993,1(3):223-246.

[5] AGARWAL R P, O'REGAN D. Nonlinear boundary value problem on a measure chain[J]. Nonlinear Anal,2001,44(4):527-535.

[6] ANDERSON D R. Eigenvalue intervals for a two-point boundary value problem on a measure chain[J]. J Comput Appl Math,2002,141(1/2):57-64.

[7] CHEN H H, CHEN C. Positive solutions for eigenvalue problems on a measure chain[J]. Nonlinear Anal,2002,51(3):499-507.

[8] CHYAN C J, HENDERSON J. Eigenvalue problems for differential equations on a measure chain[J]. J Math Anal Appl,2000,245(2):547-559.

[9] CHYAN C J, HENDERSON J. Twin solutions of boundary value problems for differential equations on a measure chain[J]. J Comput Appl Math,2002,141(1/2):123-131.

[10] ERBE L H, PETERSON A. Positive solutions for a nonlinear differential equation on a measure chain[J]. Math Comput Modelling,2000,32(5/6):571-585.

[11] ERBE L H, PETERSON A, MATHSEN R. Existence, multiplicity and nonexistence of positive solutions to a differential equation on a measure chain[J]. J Comput Appl Math,2000,113(1/2):365-380.

[12] LI W T, SUN H R. Multiple Positive solutions for nonlinear dynamic systems on a measure chain[J]. J Comput Appl Math,2004,162(2):421-430.

[13] SONG C X. Positive solutions for first-order PBVPs on time scales[J]. Chin Quart J Math,2012,27(3):337-343.

[14] LI H Y, DAI L M. Positive solutions for nonlinear differential equations with sign changing nonlinearity on a measure chain[J]. J Math,2012,32(1):9-16.

[15] LUO H, MA R Y. Nodal solutions to nonlinear eigenvalue problems on time scales[J]. Nonlinear Anal,2006,65(4):773-784.

[16] DAVIDSON F A, RYNNE B P. Global bifurcation on time scales[J]. J Math Anal Appl,2002,267(1):345-360.

[17] DAVIDSON F A, RYNNE B P. Curves of positive solution of boundary value problems on time scales[J]. J Math Anal Appl,2004,300(2):491-504.

[18] RABINOWITZ P H. On bifurcation from infinity[J]. J Differential Equations,1973,14(3):462-475.

[19] CUI Y J, SUN J X, ZOU Yumei. Global bifurcation and multiple results for Sturm-Liouville problems[J]. J Comput Appl Math,2011,235(8):2185-2192.

(編輯 陶志寧)

時標上非線性特征值問題正解的存在性和多解性

陸海霞

(宿遷學院 文理學院, 江蘇 宿遷 223800)

討論時標T上非線性特征值問題其中λ是正參數.運用全局分歧理論,研究在一定條件下上述特征值問題發自u=0和(或)u=∞非零解的連通分支,得到此特征值問題正解的存在性和多解性結果,推廣和改進了一些已有結果.

特征值問題; 時標; 全局分歧; 正解.

O175.8

A

1001-8395(2017)03-0289-06

Foundation Items:This work is supported by the National Science Foundation of China (No. 11501260) and Natural Science Foundation of Suqian city(No. Z201444)

10.3969/j.issn.1001-8395.2017.03.002

Received date: 2016-05-25.

whereλis a positive parameter. Using the global bifurcation theory, we study the continua of its nontrivial solutions bifurcating fromu=0 and/oru=∞ under some conditions. In addition, the existence of positive solutions and the multiplicity of solutions of this nonlinear eigenvalue problem are obtained. Our results generalize and improve some known results.

2010 MSC:34B15

主站蜘蛛池模板: 色成人综合| 91福利一区二区三区| 日韩AV手机在线观看蜜芽| 成人在线综合| 国产美女91呻吟求| 婷婷六月在线| 99热这里只有精品国产99| 免费xxxxx在线观看网站| 四虎永久在线视频| 99精品视频在线观看免费播放| 欧美精品亚洲日韩a| 992Tv视频国产精品| 制服无码网站| 婷婷色婷婷| 亚洲人成网址| 毛片手机在线看| 亚洲欧美激情另类| 亚洲日韩日本中文在线| 美女裸体18禁网站| 免费网站成人亚洲| a免费毛片在线播放| 国产精品视屏| 毛片免费高清免费| 欧美精品v日韩精品v国产精品| 2019年国产精品自拍不卡| 欧美日韩国产精品综合| 天天躁狠狠躁| 91久久国产综合精品女同我| 免费又黄又爽又猛大片午夜| 久久综合丝袜长腿丝袜| 亚洲swag精品自拍一区| 手机在线免费毛片| 亚洲无码37.| 国产精品久线在线观看| 片在线无码观看| 国产原创第一页在线观看| 日韩欧美综合在线制服| 久久九九热视频| 国产成人亚洲无吗淙合青草| 精品精品国产高清A毛片| 日韩a在线观看免费观看| 国产激爽大片高清在线观看| 色噜噜中文网| 国产午夜福利亚洲第一| 亚洲国产精品人久久电影| 午夜精品久久久久久久99热下载| 欧美日韩中文国产| 伊人久久大香线蕉aⅴ色| 一级香蕉人体视频| 国产精品成人一区二区不卡 | 成人国内精品久久久久影院| 天堂网亚洲系列亚洲系列| 91精品视频在线播放| 亚洲天堂网视频| 思思99热精品在线| 国禁国产you女视频网站| 免费人成视网站在线不卡| 内射人妻无码色AV天堂| 九一九色国产| 热99精品视频| 国产成人麻豆精品| 97精品伊人久久大香线蕉| 日韩视频免费| 99青青青精品视频在线| 亚洲无码高清一区| 精品无码国产一区二区三区AV| 玖玖精品视频在线观看| 精品人妻系列无码专区久久| 国产你懂得| 2020精品极品国产色在线观看 | 中文字幕va| 香蕉eeww99国产精选播放| 综合五月天网| 欧美日韩北条麻妃一区二区| 一区二区三区成人| 91精品国产91久久久久久三级| 国产精品深爱在线| 午夜国产精品视频| 久久女人网| 精品人妻一区无码视频| 人妻免费无码不卡视频| 国产日韩久久久久无码精品|