高 玉, 董潤安
3,4-二羥基丁酸及其內(nèi)酯的合成研究進(jìn)展
高 玉, 董潤安
(北京理工大學(xué)生命學(xué)院,北京,100081)
3,4-二羥基丁酸(3,4-dihydroxybutyric acid, 3,4-DHBA)及其內(nèi)酯3-羥基-γ-丁內(nèi)酯(3-hydroxy-γbutyrolactone, 3HBL)均是重要的手性C4平臺化合物,它們是許多天然產(chǎn)物合成的重要原料,也是重要的醫(yī)藥中間體。3,4-二羥基丁酸及其內(nèi)酯目前的合成方法主要為化學(xué)合成,但因其較低的產(chǎn)率﹑嚴(yán)苛的反應(yīng)條件﹑無法避免的副產(chǎn)物生成和環(huán)境污染等缺點使其難以實現(xiàn)大規(guī)模生產(chǎn)。本綜述對近年來3,4-二羥基丁酸及其內(nèi)酯的相關(guān)合成研究進(jìn)行總結(jié),詳細(xì)論述了相關(guān)化學(xué)合成法,同時總結(jié)了現(xiàn)有的生物合成3,4-二羥基丁酸及其內(nèi)酯的研究進(jìn)展。
3,4-二羥基丁酸;3-羥基-γ-丁內(nèi)酯;化學(xué)合成;生物合成
3,4-二羥基丁酸(3,4-dihydroxybutyric acid, 3,4-DHBA)是一種易溶于水﹑乙醇﹑乙醚的手性化合物,通過對其分子結(jié)構(gòu)中的羧基和羥基進(jìn)行修飾可形成許多有價值的衍生物[1],如可合成抗生素[2],β-和α-氨基酸和多肽[3,4]等,或是作為手性合成的基礎(chǔ)材料。3,4-DHBA可通過簡單酯化形成環(huán)狀的內(nèi)酯物質(zhì)3-羥基-γ-丁內(nèi)酯(3-hydroxy-γ-butyrolactone, 3HBL),該內(nèi)酯也是一種非常重要的手性C4化合物,它可用于合成各種藥物﹑聚合物和溶劑。例如制備降血脂藥物阿托伐他汀[5]﹑神經(jīng)介質(zhì)L-肉毒堿[6]﹑HIV蛋白酶抑制劑氨普那韋[7]﹑飽感劑(2S,4S)-2-羥基-4-羥甲基-4-丁內(nèi)酯[8]﹑皮膚病藥物羥基二十碳四烯酸 (12-HETE)[9]和抗癌藥aplysistatin[10]等,其中阿托伐他汀是世界范圍內(nèi)銷售量最大的處方藥,其年銷售額超過100億美元。將(S)-3-羥基-γ-丁內(nèi)酯還原可得(S)-3-羥基四氫呋喃,后者是治療艾滋病藥物的一種重要中間體;將(S)-3-羥基-γ-丁內(nèi)酯轉(zhuǎn)化為(S)-5-羥甲基-1,3-唑啉-2-酮,可得最新一代的抗菌藥物[11]。此外,由3-羥基-γ-丁內(nèi)酯經(jīng)簡單轉(zhuǎn)換得到的(s)-N-甲基-3-羥基吡咯和(R)-N-甲基-3-甲氮基吡咯也都具有重要的生理活性[11]。由于(S)-3-羥基-γ-丁內(nèi)酯廣泛的用途,其被美國能源部定義為最具價值的化合物之一[12]。

圖1.3,4-二羥基丁酸及其內(nèi)酯的應(yīng)用Fig 1.Application of 3,4-dihydroxybutyric acid and 3-hydroxy-γbutyrolactone
3,4-dihydroxybutyric acid:3,4-二羥基丁酸;thienamycin:噻嗯霉素;a-amino acids :a-氨基酸;β-amino acids:β-氨基酸;peptides:多肽類;3-hydroxyγ-butyrolactone:3-羥基-γ-丁內(nèi)酯;aplysistatin:抗癌藥物單環(huán)金合歡烷類;12-HETE:羥基二十碳四烯酸;Amprenavir:氨普那韋;Lipitor:阿托伐他汀;L-carnitine:L-肉毒堿;(S)/(R) -N-methyl-3-hydroxypyrrole:(s)/(R)-N-甲基-3-羥基吡咯;(2S, 4S)-2-hydroxy-4-hydroxymethyl-4-butyrolactone:(2S,4S)-2-羥基-4-羥甲基-4-丁內(nèi)酯;(S)-3-hydroxytetrahydrofuran:(S)-3-羥基四氫呋喃.
2.1 化學(xué)法合成3,4-二羥基丁酸及其內(nèi)酯
有關(guān)3,4-二羥基丁酸的化學(xué)合成報道主要以專利為主,如Chem[13]首先通過降解4位含取代基的葡萄糖化合物如4-O-甲基-D-葡萄糖﹑麥芽糖﹑支鏈淀粉和纖維素等,取代4位碳上的基團(tuán)形成2-羰基化合物即4-脫氧-2,3-鄰?fù)禾牵罄迷摱驶衔锱c堿反應(yīng)即可形成3,4-DHBA,但產(chǎn)量較低(圖2)。Chem[14]繼續(xù)改進(jìn)該方法使二羰基化合物與過氧化氫反應(yīng)以生成3,4-DHBA,但會伴有副產(chǎn)物乙醇酸生成,而且該反應(yīng)中由于互變異構(gòu)作用會有少量3,4-DHBA的同分異構(gòu)體存在;同時由于過度氧化,目標(biāo)物3,4-DHBA會被降解形成甲酸和乙醇酸使得該方法不具備工業(yè)價值。利用類似的方法以二羰基化合物作為中間代謝物制備3,4-DHBA的技術(shù)方法還有很多,但據(jù)報道產(chǎn)率都很低約為30%。而且在這些合成方法中,除3,4-二羥基丁酸外還會生成多種副產(chǎn)物,包括乙醇酸﹑異糖酸﹑甲酸﹑酮和二酮等。另外,若以二糖如麥芽糖或乳糖作為底物的情況下,二糖中僅一個糖單元會形成3,4-二羥基丁酸,而另一個糖單元官能團(tuán)作為離去基團(tuán)不參與3,4-DHBA的合成而與目標(biāo)產(chǎn)物共存形成1:1混合物,因此要從反應(yīng)混合物中分離和純化3,4-二羥基丁酸是非常困難的。同時由于3,4-二羥基丁酸的產(chǎn)率非常低,這些方法并不適合于工業(yè)使用。
之后Cho 等人[15]利用特定酶將市售的支鏈淀粉制備成具有結(jié)構(gòu)特異性的寡糖以制備光學(xué)純的(S)-3,4-二羥基丁酸及其相關(guān)衍生物,但反應(yīng)過程較復(fù)雜,且反應(yīng)時間長。Hollingsworth等人[16]利用葡萄糖和堿金屬氫氧化物作為反應(yīng)物,在雙氧水存在的情況下經(jīng)70℃加熱反應(yīng)24小時獲得3,4-DHBA,因該過程產(chǎn)率低,反應(yīng)時間長,并不存在實際生產(chǎn)的可能性。或是將R-3-氯-1,2-丙二醇經(jīng)氰化和水解直接形成3,4-DHBA,缺點是該反應(yīng)過程中當(dāng)反應(yīng)溫度高于所需溫度時會生成大量副產(chǎn)物,如3,4-二羥基丁腈,3,4-二羥基丁酸的氨基化合物等[17]。

圖2.通過形成羰基基團(tuán)化學(xué)合成3,4-二羥基丁酸[14]Fig 2.Reacting the formed dicarbonyl compound to chemical synthesis 3,4-dihydroxybutyric acidA: 4-deoxy-2,3-hexodiulose, 4-脫氧-2,3-鄰?fù)禾牵?,4-dihydroxybutyric acid:3,4-二羥基丁酸
而3-羥基-γ-丁內(nèi)酯由于其廣泛的用途,近年來國內(nèi)外有關(guān)它的合成報道較多,主要包括以下8種:(1)以L-蘋果酸為原料,制成二甲酯后用LiBH4 選擇性還原制得3HBL,收率可達(dá)到90%[18];(2)以(S)-4-氯-3-羥基丁腈為原料,酸性條件水解后在強(qiáng)堿條件下環(huán)化生成3HBL,收率可達(dá)88.8%[19];(3)以(2R,3R)- 2,3-二羥基-γ-丁內(nèi)酯為原料,將其溶于二氯甲烷后經(jīng)冷卻到0℃,加入有機(jī)縛酸劑,經(jīng)過濾除去固體,之后經(jīng)蒸除溶劑﹑加堿﹑加有機(jī)溶劑﹑脫氫﹑減壓蒸餾最終制得3HBL[20];(4)以4-芐氧基- 3-羥基丁酸酯為原料,不對稱加氫后在酸性條件下成環(huán)生成目標(biāo)產(chǎn)物,收率可達(dá)88.8%[21];(5)以(S)-堿為原料,在堿性的極性溶劑中100~190℃下反應(yīng)0.5~5h,即可得到3HBL,收率為82%[22];(6)以(S)- 4-鹵代-羥基丁酸酯為原料,在含水溶劑中回流即可得到3HBL,收率為75.1%[23];(7)以D-異抗壞血酸為原料,經(jīng)六步反應(yīng)最后在鹽酸條件下成環(huán)生成3HBL,收率為40%[24];(8)以異己糖源為原料,也可使用乳糖﹑麥芽糖或一些低聚物糖類[25,26],在一定條件下經(jīng)氧化形成3HBL。以上方法中,路線1中的還原合成法需在固定床反應(yīng)器內(nèi)以金屬釕作為催化劑對L-蘋果酸高壓加氫來合成3HBL,工序復(fù)雜危險,并需要昂貴的催化劑和純化過程,目前已經(jīng)工業(yè)化,年產(chǎn)量約120噸[27,28];路線8采用價格便宜﹑原料易得的乳糖作為起始原料合成了(S)-3 -羥基-γ-丁內(nèi)酯,收率達(dá)44.5%[29],該路線的不同之處在于原料簡單易得,具有一定的工業(yè)化前景,但該路線容易出現(xiàn)糖源過度氧化問題,且副產(chǎn)物二羰基化合物也難以分離。
綜上所述,可見3,4-二羥基丁酸及其內(nèi)酯的化學(xué)合成法雖多,但這些方法都存在一些難以避免的缺點,例如催化劑價格昂貴[15,18]﹑反應(yīng)條件嚴(yán)苛[16,19]﹑過程不易控制[14,15]﹑產(chǎn)量較低[13,14]或是不可避免的副產(chǎn)物的形成[13,17]﹑及后續(xù)處理繁雜等問題[14]。因此,亟需開發(fā)一種反應(yīng)條件溫和﹑原材料安全易得且副產(chǎn)物較少的3,4-二羥基丁酸及其內(nèi)酯的合成方法。
2.2 生物法合成3,4-二羥基丁酸及其內(nèi)酯
合成生物學(xué)是二十一世紀(jì)發(fā)展最快的學(xué)科之一,利用其進(jìn)行微生物代謝改造,可以合成許多非天然﹑高附加值的化合物。生物合成法通過操作微生物的遺傳密碼,調(diào)整細(xì)胞代謝網(wǎng)絡(luò),重新配置代謝流,在溫和條件下有效利用可再生生物質(zhì)資源[30],廣泛受到研究人員和政府的重視。
2013年,麻省理工大學(xué)化學(xué)工程系Martin 等人[31]以葡萄糖和一些可提供酰基輔酶A的前體物質(zhì)如丁酸鹽﹑異丁酸鹽﹑丙酸鹽和乙醇酸等作為原料,構(gòu)建了以3-羥基酸作為平臺化合物合成3,4-二羥基丁酸和其他多種平臺化合物的方法。我們已知羥基酸是一類通用的手性化合物,可用于合成多種極具價值的化合物,據(jù)已有文獻(xiàn)報道,3-羥基丁酸(3HB)[32]和3-羥基戊酸酯(3HV)[33]可通過生物合成途徑成功合成。在該合成通路中,3HB和3HV的合成起始于兩個乙酰CoA分子﹑或乙酰CoA和丙酰CoA的縮合,該過程由硫解酶PHaA 或BktB催化;隨后生成的β-酮酰基輔酶A分別被3-羥基丁酰CoA還原酶PHaB或Hbd還原成(R)或(S)型的對映異構(gòu)體醇類,繼續(xù)經(jīng)磷酸轉(zhuǎn)乙酰酶Ptb 和丁酸鹽激酶 Buk[32]或硫解酶ⅡTesB[34,35]水解即可產(chǎn)生各種游離酸。需要注意的是在該過程中TesB可以水解3HB-CoA的所有異構(gòu)體,而Ptb-Buk酶系只特異性針對(R)型異構(gòu)體[36]。Martin等人從上述生物合成3HB和3HV的通路中受到啟發(fā),希望通過改造該通路以合成更多更具價值的3-羥基酸衍生物,如3,4-DHBA。如圖3所示,他們利用來自埃氏巨球型菌(Megasphaera elsdenii)中具有廣泛底物特異性的乙酰CoA轉(zhuǎn)移酶(Pct)[37,38]或來自于鼠傷寒沙門菌(Salmonella typhimurium LT2)的乙酰或丙酰CoA合成酶(PrpE)[39]對前體物質(zhì)進(jìn)行反應(yīng)使其可提供酰基輔酶A,之后利用3-羥基酸途徑來縮合乙酰CoA和乙醇酰CoA。根據(jù)生物體內(nèi)不同通路的酶組合對最終產(chǎn)物效率高低的影響,Pct﹑BktB﹑PHaB 和 TesB被認(rèn)為是最高效的酶組合,利用該通路可直接合成五種通用物質(zhì),包括3,4-DHBA﹑3羥基丁酸(3HB)﹑3-羥基戊酸(3HV)﹑3-羥基己酸(3HH)和3-羥基-4-甲基戊酸(3H4MV),其中合成了555±52 mg/L的3,4-DHBA,而3,4-DHBA經(jīng)過酸處理后可產(chǎn)生221±15 mg/L的3HBL。
2014年,該課題組Dhamankar等人繼續(xù)優(yōu)化該通路,通過利用乙酰CoA轉(zhuǎn)移酶Pct將CoA轉(zhuǎn)移到乙醇酸上,之后經(jīng)縮合和立體定向還原形成4-羥基-3-酮丁基CoA,該中間代謝物可經(jīng)硫解酶TesB作用直接生成3,4-DHBA,最終同時合成了0.7 g/ L的3,4-DHBA和0.3 g/L的3HBL[40]。該通路中的乙醇酸可由重組Escherichia coli菌株在代謝過程中合成,不需要外源添加,提高了菌株的合成效率。
隨后Cheong等人[41]又發(fā)現(xiàn)在細(xì)菌體內(nèi)利用非脫羧的克萊森反應(yīng),以ω-功能化引物和α-功能化的延伸基團(tuán)為底物經(jīng)多步反應(yīng)可合成多種極具功能的小分子化合物,其中若以乙醇酰基為引物,乙酰輔酶A作為延伸基團(tuán)可經(jīng)Pct,BktB和 PhaB1等相關(guān)酶催化反應(yīng)產(chǎn)生0.35 g/L的3-羥基-γ-丁內(nèi)酯,相較于以葡萄糖作為底物的生物合成通路,3HBL的產(chǎn)量稍有提高。

圖3.3-羥基羧酸生物合成途徑[31]Fig 3.Schematic representation of the 3-hydroxyacid pathway Butyrate:丁酸鹽;Isobutyrate:異丁酸鹽;Glycolate:乙醇酸;Propionate:丙酸鹽;Glucose:葡萄糖;3-Ketoacyl-CoA:3-酮酰基輔酶A;(S)-3-Hydroxyacyl-CoA:(S)-3-羥丁酰輔酶A;(R)-3-Hydroxyacyl-CoA:(R)-3-羥丁酰輔酶A;3-Hydroxybutyrate(3HB):3-羥基丁酸;3-Hydroxyvalerate(3HV):3-羥基戊酸;3-Hydroxy-4-methylvalerate(3H4MV):3-羥基-4甲基戊酸;3-Hydroxyhexanoate(3HH):3-羥基己酸Ptb: 磷酸轉(zhuǎn)乙酰酶;Buk: 丁酸鹽激酶;PrpE: 乙酰COA或丙酰CoA合成酶;Pct: 乙酰CoA轉(zhuǎn)移酶;BktB: 硫解酶;Hbd: 3-羥基丁酰CoA還原酶;PhaB: 3-羥基丁酰CoA還原酶;TesB:硫解酶
在合成生物學(xué)研究中,木質(zhì)纖維素作為自然界產(chǎn)量最豐富的可再生能源在代替石油資源方面被廣泛利用。其中木糖作為木質(zhì)纖維素原料中第二豐富的糖類被廣泛用于合成各種生物制品,如1,4-丁二醇[42]﹑中康酸酯[43]﹑D-1,2,4-丁三醇[44]﹑乙醇[45]﹑乙二醇[46]等。因此,相關(guān)研究者轉(zhuǎn)而開始研究是否可以利用更為豐富的木糖來生物合成3,4-DHBA及其內(nèi)酯。北京化工大學(xué)化學(xué)工程系Yajun Yan團(tuán)隊[47]利用木糖為底物通過人為設(shè)計構(gòu)建了一條可經(jīng)五步反應(yīng)直接生成3,4-DHBA的合成通路。在該通路中木糖經(jīng)木糖脫氫酶(XDH)﹑D-硅藻糖基酶(XL)和D-木糖苷脫水酶(XD)的逐步催化轉(zhuǎn)化為2-酮-3-脫氧-D-戊酮糖酸,該物質(zhì)接著被酮酸脫羧酶(KDC)脫羧形成3,4-二羥基丁醛,之后在合適的醛脫氫酶(ALDH)作用下轉(zhuǎn)化為3,4-二羥基丁酸(如圖4所示)。通過優(yōu)化該通路相關(guān)基因和敲除競爭途徑最終產(chǎn)生了1.27 g/L的3,4-DHBA,這是目前國際上關(guān)于生物合成3,4-DHBA的最高產(chǎn)量。
3.展望

圖4.利用大腸桿菌體內(nèi)構(gòu)建的以木糖為底物生物合成3,4-DHBA的新通路[47]Fig.4.A novel biosynthetic pathway for the production of 3,4-DHBA from D-xylose in E.coli.D-xylose: D-木糖; D-xylonolactone: D-己酸內(nèi)酯; D-xylonate: D-木糖苷;2-keto-3-deoxy-D-xylonate:2-酮-3-脫氧-D-戊酮糖酸; 3,4-dihydroxybutanal:3,4-二羥基丁醛; 3,4-dihydroxybutyric acid:3,4-二羥基丁酸.xylA: D-木糖異構(gòu)酶; yagE or yjhH: 醛縮酶; XDH: 木糖脫氫酶; XL: D-硅藻糖基酶; XD: D-木糖苷脫水酶;KDC: 酮酸脫羧酶; ALDH: 醛脫氫酶.
由于3,4-二羥基丁酸及其內(nèi)酯的應(yīng)用越來越廣泛,全球范圍內(nèi)對其的需求持續(xù)增長,因此,亟需找到一種既經(jīng)濟(jì)安全又高產(chǎn)的3,4-二羥基丁酸及其內(nèi)酯的生產(chǎn)方法。通過微生物生物合成來生產(chǎn)3,4-二羥基丁酸及其內(nèi)酯是較好的選擇,但上述無論是利用代謝工程改造的大腸桿菌以葡萄糖作為底物異源生物合成3,4-DHBA和3HBL的研究,或是通過克萊森酯縮合反應(yīng)產(chǎn)生3HBL的反應(yīng),都存在反應(yīng)步驟多﹑產(chǎn)率低﹑副產(chǎn)物多等難以實現(xiàn)大規(guī)模生物化生產(chǎn)的瓶頸。而最新的以木糖為底物經(jīng)五步催化反應(yīng)生物合成3,4-DHBA的通路在克服了上述通路現(xiàn)有的瓶頸后,構(gòu)建了以更為豐富的木糖為原料生物合成3,4-DHBA的通路,且該過程副產(chǎn)物少,產(chǎn)量較高,為實現(xiàn)3,4-二羥基丁酸及其內(nèi)酯的大規(guī)模生產(chǎn)奠定了基礎(chǔ)。
[1] Chen G Q, Wu Q.Microbial production and applications of chiral hydroxyalkanoates[J].Applied Microbiology and Biotechnology, 2005, 67(5): 592-599.
[2] Chiba T, Nakai T.A synthetic approach to (+)-thienamycin from methyl (R)-3-hydroxybutanoate.A new entry to (3R, 4R)-3-((R)-1-hydroxyethyl)-4-acetoxy-2-
azetidinone[J].Chemistry Letters, 1985, 5: 651-654.
[3] Park S H, Lee S H, Lee S Y.Preparation of optically active β-amino acids from microbial polyester polyhydroxyalkanoates[J].Journal of Chemical Research, 2001, 11: 498-499.
[4] Seebach D, Albert M, Arvidsson P I.From the biopolymer PHB to biological investigations of unnatural β-and γ-peptides[J].CHIMIA International Journal for Chemistry, 2001, 55(4): 345-353.[5] Brower P L,Butler D E,Deering C, et al.The synthesis of (4R-cis)-1,1-dimethylethyl 6-cyanomethyl-2,2-dimethyl-1,3-dioxane-4-acetate, a key intermediate for the preparation of CI-981, a highly potent, tissue selective inhibitor of HMGCoA reductase[J].Tetrahedron Letters, 1992, 33(17):2279-2282.
[6] Larcheveque M.Enantiomerically pure β,γ-epoxyeters from β-hydroxylactones: Synthesis of β-hydroxyesters and (-)-GABOB[J].Tetrahedron, 1990, 46(12): 4277-4282.
[7] Kim E E, Baker C T, Dwyer M D, et al.Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme[J].Journal of the American Chemical Society, 1995, 117(3): 1181-1182.
[8] Uchikawa O, Okukado N, Sakata T, et al.Synthesis of (S) and (R)-3-hydroxy- 4-butanolide and (2S,4S)-, (2R,4S)-,(2S,4R)-and(2R,4R)-2-hydroxy-4- (hydroxymethyl)-4-butanolide and their satiety and hungermodulating activities[J].Bulletin of the Chemical Society of Japan, 1988, 61(6): 2025-2029.
[9] Corey E J, Niwa H, Knolle J.Total sythesis of (S)-12-hydroxy-5,8,14-cis,-10-trans-eicosatetraenoic acid (Samuelesson’s HETE)[J].Journal of the American Chemical Society, 1978, 100(6): 1942-1944.
[10] Shieh H M, Prestwich G D.Chiral, biomimetic total synthesis of (-)-aplysistatin[J].Tetrahedron Letters, 1982, 23(45):4643-4646.[11] Inoue K, Matsumoto M.Method for preparing optically active 3,4-dihyoxybuthric acid derivatives:US,US4994597[P].1991.
[12] Werpy T, Peterson G.Top Value Added Chemicals from Biomass, Vol 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas[M].US: The United States Department of Energy,2004:1-76.
[13] Machell G, Richards G N.Mechchanism of saccharinic acid formation part I .competing reactions in the alkaline degradation of 4-O-methyl-D-glucose,maltose,amylase,and cellulose[J].Journal of the Chemical Society, 1960, 384:1924-1931.
[14] Machell G, Richards G N.Mechchanism of saccharinic acid formation part II .the apdicarbonyl intermediate in formation of D-glucoisosaccharinic acid[J].Journal of the Chemical Society, 1960, 385:1932-1937.
[15] Cho Y H, Chun J, Park Y M, et al.Process for preparing optically pure (S)-3,4-dihydroxybutyric acid derivatives:US,US 6221639B1[P].2001.
[16] Hollingsworth R I.Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof: US, US 5292939A[P].1994.
[17] Inoue K, Matsumoto M, Takahashi S.Method for preparing optically active 3,4-dihydroxybutyric acid derivatives: US, US4994597[P].1991.
[18] Saito S, Hasegawa T, Inaba M.Combination of boranedimethyl sulfide complex with catalytic sodium tetrahydroborate as a selective reducing agent for a-hydroxy esters.Versatile chiral building block from (S)-(-)-malic acid[J].Chemistry Letters, 1984, (8): 1389-1392.
[19] Nakagawa A, Idogaki H, Kato K, et al.Improvement on production of (R)-4-chloro-3-hydroxybutyrate and (S)-3-hydroxyγ-butyrolactone with recombinant Escherichia coli cells[J].Journal of bioscience and bioengineering, 2006, 101(2): 97-103.
[20] Suzuki T, Idogaki H, Kasai N.Dual production of highly pure methyl (R)-4-chloro-3-hydroxybutyrate and (S)-3-hydroxygamma-butyrolactone with Enterobacter sp[J].Enzyme and Microbial Technology, 1999, 24:13-20.
[21] Kumar P, Deshmukh A N, Upadhyay R K, et al.A simple and practical approach toenantiomerically pure (S)-3-hydroxy-γbutyrolactone: synthesis of (R)-4-cyano-3-hydroxybutyric acid ethylester[J].Tetrahedron Asymmetry, 2005, 16(16): 2717-2721.
[22] Kumar S, Kurur N D, Chawla H M, et al.[J].Synthetic Communications, 2001, 31(5):775.
[23]Yong L I, Wang J S, Wang Q, et al.[J].Chinese Chemical Letters, 2004, 15(4):400~403.
[24] Tanaka A, Yamashita K.A novel synthesis of (R)- and (S)-4-hydroxytetrahydrofuran-2-ones[J].Synthesis, 1987, (6):570-576.
[25] Jacks T E, Butler D E.Process for the synthesis of protected esters of (S)-3, 4-dihydroxybutyric acid: US.US 5998633[P].1999.[26] 千鐘弻, 趙翼行.制備光學(xué)純(S)-3-羥基-γ-丁內(nèi)酯的連續(xù)方法: CN1166782 [P].2001.
[27] Agranat I, Caner H, Caldwell J.Putting chirality to work: the strategy of chiral switches[J].Nature Reviews Drug Discovery, 2002, 1(10): 753-768.
[28] Kwak B S, Chung K N, Kim T Y, et al.Continuous process for the production of optically pure (S)-β-hydroxy-γ-butyrolactone: US.US 10528246[P].2002.
[29] 章小波, 蔣永祥, 汪勁松.(S)-3-羥基-γ-丁內(nèi)酯的合成[J].精細(xì)化工中間體, 2004, 35(3):25-26.
[30] Xu P, Bhan N, Koffas M A G.Engineering plant metabolism into microbes: from systems biology to synthetic biology[J].Current Opinion in Biotechnology, 2013, 24:291-299.
[31] Martin C H, Dhamankar H, Tseng H C, et al.A platform pathway for production of 3-hydroxy acids provides a biosynthetic route to 3-hydroxy-gamma-butyrolactone[J].Nature Communications, 2013, 4:17-27.
[32] Gao H J, Wu Q, Chen G Q.Enhanced production of D-(-)-3-hydroxybutyric acid by recombinant Escherichia coli[J].FEMS Microbiology Letters, 2002, 213:59-65.
[33] Tseng H C, Harwell C L, Martin C H, et al.Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E.coli[J].Microbial Cell Factories, 2010, 9:96-104.
[34] Liu S J, Steinbuchel A.Exploitation of butyrate kinase and pHospHo transbutyrylase from Clostridium acetobutylicum for the in vitro biosynthesis of poly (hydroxyalkanoic acid)[J].Applied Microbiology and Biotechnology, 2000, 53:545-552.
[35] Naggert J, Narasimhan M L, DeVeaux L, et al.Cloning, sequencing, and characterization of Escherichia coli Thioesterase-II[J].Journal of Biological Chemistry, 1991, 266:11044-11050.
[36] Liu Q, Ouyang S P, Chung A, et al.Microbial production of R-3-hydroxybutyric acid by recombinant E.coli harboring genes of phbA,phbB, and tesB[J].Applied Microbiology and Biotechnology, 2007, 76:811-818.
[37] Schweiger G, Buckel W.On the dehydration of (R)-lactate in the fermentation of alanine to propionate by clostridiumpropionicum[J].FEBS Letters, 1984, (171):79-84.
[38] Taguchi S, Yamada M, Matsumoto K, et al.A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme[J].Proceedings of the National Academy of Sciences, 2008, 17323-17327.
[39] Liu X W, Wang H H, Chen J Y, et al.Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli harboring propionyl-CoA synthase gene (prpE) or propionate permease gene(prpP)[J].Biochemical Engineering Journal, 2009, 43: 72-77.
[40] Dhamankar H, Tarasova Y, Martin C H, et al.Engineering E.coli for the biosynthesis of 3-hydroxy-γ-butyrolactone (3HBL) and 3, 4-dihydroxybutyric acid (3, 4-DHBA) as value-added chemicals from glucose as a sole carbon source[J].Metabolic engineering, 2014, 25: 72-81.
[41] Cheong S, Clomburg J M, Gonzalez R.Energy and carbon efficient synthesis of unctionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions[J].Nature Biotechnology, 2016, 34(5):556.
[42] Tai Y, Xiong M, Jambunathan P, et al.Engineering nonphosphorylative metabolism to generate lignocellulose-derived products[J].Nature Chemical Biology, 2016, 12:247-253.
[43] Bai W, Tai Y S, Wang J, et al.Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli[J].Metabolic Engineering, 2016,38:285-292.
[44] Zhang N N, Wang J B, Zhang Y, et al.Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli[J].Enzyme and Microbial Technology, 2016, 93:51-58.
[45] Sakihama Y, Hasunuma T, Kondo A.Improved ethanol production from xylose in the presence of acetic acid by theoverexpression of the HAA1 gene in Saccharomyces cerevisiae[J].Journal of Bioscience and Bioengineering, 2015, 119:297-302.
[46] Pereira B, Li Z J, Mey D, et al.Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate[J].Metabolic Engineering, 2016,34:80-87.
[47] Wang J, Shen X L, Jain R, et al.Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli[J].Metabolic Engineering, 2017, 41: 39-45.
Study on Synthesis of 3,4 - Dihydroxybutyric Acid and Its Lactone Form
Gao Yu, Dong Runan
(School of Life Science, Beijing Institute of Technology, Beijing, 100081)
3,4-dihydroxybutyric acid (3,4-DHBA) and its lactone form 3-hydroxy-γ-butyrolactone are all versatile chiral C4 compounds which could be used as a raw materials to synthesis many natural products, or pharmaceutical intermediates.Currently production of 3,4-DHBA and its lactone form mainly employs chemical synthesis, which has many drawbacks, such as harsh reaction conditions, low yield, more byproducts, severe environment contamination and so on.This review summarizes the progress of the chemical synthesis for the 3,4-dihydroxybutyric acid and its lactone form, and discusses the existing research about biosynthesis in detail.
3,4-dihydroxybutyric acid; 3-hydroxy-γ-butyrolactone; Chemical synthesis ; Biosynthesis
Q81 [Document Code] A
10.11967/ 2017150203
Q81
A DOI:10.11967/ 2017150203
高玉(1991-),女,內(nèi)蒙古烏海市,碩士研究生,主要研究方向:微生物合成與代謝,Email:gaoyu0324@163.com.
董潤安(1964-),男,博士研究生,副教授,碩士生導(dǎo)師,主要研究方向:細(xì)胞生物學(xué),Email: dongra@bit.edu.cn.
高玉:聯(lián)系地址:北京市海淀區(qū)中關(guān)村南大街5號北京理工大學(xué);聯(lián)系電話:18401621435;Email:gaoyu0324@163.com.本課題無基金項目。