陸洪良, 耿 軍, 徐 衛, 平 駿, 張永普,*
1 杭州師范大學生命與環境科學學院, 杭州 310036 2 溫州大學生命與環境科學學院, 溫州 325035
東方蠑螈幼體熱耐受性和游泳表現的熱馴化響應
陸洪良1, 耿 軍1, 徐 衛1, 平 駿2, 張永普2,*
1 杭州師范大學生命與環境科學學院, 杭州 310036 2 溫州大學生命與環境科學學院, 溫州 325035
特定物種的熱馴化能力決定著其是否能成功耐受環境溫度的改變,在應對未來氣候變暖的趨勢中扮演重要角色。為評估有尾類兩棲動物的熱馴化反應,在3個恒定水溫(15、20℃和25℃)中馴化東方蠑螈(Cynopsorientalis)幼體4周,測定馴化后幼體在不同測試溫度下的運動(游泳)表現、臨界低溫(CTMin)與臨界高溫(CTMax)。結果顯示:馴化與測試溫度均顯著影響蠑螈的游泳速度;馴化溫度亦影響蠑螈的CTMin和CTMax,但不影響可耐受溫度范圍(TRR)。馴化與測試溫度的交互作用對蠑螈泳速的影響顯著,表明馴化溫度可改變其游泳表現的熱敏感性。經某一溫度馴化后蠑螈泳速似乎在相同測試溫度下表現最好,該結果可能支持馴化有益假說。CTMin和CTMax隨馴化溫度的升高而增加,表明:低溫馴化可提高動物抗低溫能力,而高溫馴化提高其抗高溫能力。兩棲類動物熱耐受性與運動表現熱馴化反應的種間變異可能與棲息地熱環境的差異有關。
東方蠑螈;熱馴化;熱耐受能力;運動表現;馴化有益假說
在眾多影響外溫動物生理與行為表現的環境因子中,溫度效應無疑是最明顯的[1-2]。環境溫度通過改變外溫動物的體溫可影響其生理與行為表現(例如,運動、攝食、同化、生長、免疫功能等)[2]。任何一種變溫動物對外界環境溫度的耐受能力有限。較長時間在過高或過低的熱環境中暴露會使外溫動物損傷甚至死亡[2-3]。使動物無法逃離致其死亡狀態的極端溫度上下限被分別定義為臨界高溫(CTMax)和臨界低溫 (CTMin)[2, 4]。在可耐受溫度范圍內,任何生理與行為表現隨體溫變化的趨勢可用熱功能曲線表示:體溫從臨界低溫上升到最適水平,功能表現逐漸增加;從最適水平上升到臨界高溫,功能表現陡然下降[1]。外溫動物的熱耐受能力和功能表現的熱敏感性存在顯著的種內和種間差異,這種差異與其分布范圍、擴散能力等方面相關聯。例如,分布范圍廣的種類通常熱耐受范圍相對較大、熱敏感性較低[2-3]。事實上,外溫動物的熱耐受能力和功能表現的熱敏感性可以看成是長期適應熱環境變異所做出的反應。當遷徙到新生境中,動物為適應當地熱環境使某些生理表現(例如,肌肉收縮特性、酶代謝活性)逐漸發生變化,由此熱耐受能力和功能表現的熱敏感性也隨之發生偏移。這一生理變化過程也被稱為熱馴化[5]。
外溫動物的熱馴化反應決定其應對周圍環境熱變異(包括未來氣候變化等)的能力[6-8]。熱馴化會改變變溫動物的熱耐受性,但其影響在不同種類中存在差異[9-12]。例如,有些種類在較低溫度下馴化具有較大熱耐受范圍[13-14],而一些種類則在中等溫度下馴化具有較大的熱耐受范圍[12,15-16]。動物的運動表現與其適合度緊密關聯,在進化生物學研究中是被測量最為頻繁的一個特征[17-18]。熱馴化同樣會影響外溫動物的運動表現,并存在顯著的種間差異[19-20]。例如,許多魚類和蛙類的蝌蚪在不同水溫下馴化,游泳速度的熱敏感性發生顯著變化,但是這種效應在發生變態后的蛙類中并不明顯[20-23]。已有多種假說被提出來用于解釋外溫動物運動表現的熱馴化反應。例如,馴化有益假說認為,經特定溫度馴化的動物在該溫度條件下會增強其功能表現或適合度[18,24]。雖然該假說獲得了一些實驗數據的支持,但其普遍適用性仍存在爭議。一些研究表明:在低溫、中等甚至高溫下馴化的動物比在其它溫度中馴化具有較好的功能表現或較高的適合度[24-26]。熱馴化的生理與行為反應在魚類及無尾兩棲類中已有較多報道,但有尾兩棲類及陸生脊椎動物并不多見[27-29]。
東方蠑螈(Cynopsorientalis)是一種分布于中國中部及東部的有尾兩棲類動物,主要棲息于池塘、水田、流速較緩的山間溪流等水域。有關東方蠑螈的研究涉及胚胎發育、形態、繁殖等內容,但體溫調節與功能表現方面未見報道。野外自然環境中,水溫超過10℃東方蠑螈開始活動,3—7月雌體產卵,15—25℃是其適宜的生長溫度[30]。本文以3個恒定馴化水溫(15、20和25℃)代表適宜東方蠑螈生長的較低、中等以及較高水溫,測定其臨界高、低溫以及不同體溫下的運動表現,以評價熱馴化對該種動物熱生理特征的影響,旨在探討熱馴化是否會改變東方蠑螈的運動表現和熱耐受能力?兩棲類動物運動表現及熱耐受能力的馴化反應是否存在種間差異?
1.1 動物收集與處理
實驗用東方蠑螈為變態后幼體(N= 48),2014年6月中旬購自杭州錢江花鳥市場,隨后運至杭州師范大學兩棲爬行動物實驗室。蠑螈隨機放在3個塑料整理箱(60 cm × 45 cm × 35 cm)中,在實驗室條件下適應性養殖3天。用數顯游標卡尺(0.01mm)測定蠑螈體長(吻端至泄殖腔孔前緣間距),體長范圍為32—43mm,隨后將個體隨機分為3組(15℃: (40.50.8) mm,N= 25; 20℃: (40.60.7) mm,N=9; 25℃: (38.90.9) mm,N=14)。將動物個體單獨放入已標記的塑料盒(15 cm × 10 cm × 8 cm)中,盒底加入曝曬過自來水,水深約1.5cm,上覆打有小孔的蓋子以保證空氣流通。將裝有蠑螈的塑料盒分別置于溫度預先設置為(150.5)℃、(200.5)℃和(250.5)℃的人工氣候箱(寧波萊福科技有限公司)中,每隔1d投喂食物(碎魚肉)1次并換水。氣候箱內光照周期設為13L∶11D,馴化時間為4周。
1.2 運動表現的測定
蠑螈熱馴化4周后,選取無損傷、無病態的活躍個體用于隨機測定3個測試溫度(體溫)條件下的運動表現(N= 44:15℃ 23條,20℃ 8條,25℃ 13條),不同測試溫度間隔一天進行實驗。運動表現測定前2h,將蠑螈放置于溫度預先設定的人工氣候箱內以控制其體溫。將蠑螈放入盛有5cm水深的長方形玻璃槽(150 cm × 10 cm × 15 cm)中,玻璃槽的水溫預先調整至相應的測試溫度,一人用毛筆輕觸蠑螈尾部以驅使其向前游動,另一人用松下HDC-HS900數碼攝像機記錄蠑螈在水中的游泳情況,每條蠑螈測定一個來回。攝像機記錄的視頻片段經MGI Video Wave III軟件(MGI Software Co., Canada)分析讀出游泳速度。游泳速度用蠑螈游過25 cm的最大速度表示。運動表現測定結束后,將蠑螈放回原來相應馴化溫度的塑料盒。
1.3 熱耐受性測定
運動表現測定結束,44條蠑螈在相應馴化溫度再飼養一周后,用動態法測定其CTMin和CTMax[3, 31]。臨界高、低溫測定在人工氣候箱內進行,為了消除不同時段對測定的影響,每日13:00—16:00進行實驗。實驗動物分批測定,單次4—6條蠑螈放入底部鋪有濕潤紗布的玻璃缸(35 cm × 30 cm × 25 cm),缸上覆以可透氣塑料蓋以防其逃脫,玻璃缸置于人工氣候箱中。人工氣候箱內溫度從馴化溫度以0.3℃ /min的速度下降或上升,當氣候箱內低于5℃或高于35℃時按0.1℃ /min改變溫度速率。當蠑螈在強烈刺激下出現反正反應(Righting response)時用UT- 325型電子溫度計(優利德電子有限公司,上海)迅速測出泄殖腔溫度,表示對應的CTMin或CTMax值。實驗測定CTMin后,在相應馴化溫度下繼續馴養3d后測定CTMax??赡褪軠囟确秶?TRR)用同個體CTMax與CTMin的差值表示。臨界高低溫測定結束后3d內,4條蠑螈死亡(15℃ 1條,20℃ 1條,25℃ 2條),相對應的CTMin、CTMax值以及可耐受溫度范圍未用于進一步統計分析。馴化反應速率(Acclimation response ratio, ARR)用馴化溫度改變1℃時對應的CTMin或CTMax的變化值表示,即ARR=Δ CTM /Δ AT,式中Δ CTM 為CTMin或CTMax的改變量,Δ AT 為馴化溫度(AT) 的改變量。
1.4 數據處理
用Statistica 6.0統計軟件包(StatSoft, Tulsa, USA)處理相關數據。做進一步統計檢驗前, 用Kolmogorov-Smirnov檢驗和Bartlett分別檢驗數據正態性和方差同質性。用重復測量方差分析(Repeated measures ANOVA)檢驗馴化溫度和測試體溫對游泳速度的影響,單因子方差分析(One-way ANOVA)檢驗臨界高低溫以及耐受溫度范圍的組間差異,Tukey檢驗進行多重比較。描述性統計值用平均值±標準誤表示,顯著性水平設置為α=0.05。

圖1 不同熱馴化條件下東方蠑螈幼體的游泳速度Fig.1 Swimming speed of juvenile Cynops orientalis acclimated to different temperatures
各實驗組動物體長無顯著的組間差異(F2, 45=1.04,P=0.363)。東方蠑螈幼體的游泳速度受馴化溫度(F2, 41=3.28,P=0.048)、測試體溫(F2, 82=4.31,P=0.017)以及兩者交互作用(F4, 82=6.83,P<0.001)的影響顯著(圖1)。15、20℃馴化蠑螈泳速平均值分別在15、20℃測試溫度下最大,但不同測試溫度間統計上無顯著差異(15℃馴化:F2, 44=1.22,P=0.306;20℃馴化:F2, 14=2.28,P=0.139);25℃馴化蠑螈在25℃測試溫度下的泳速顯著大于15、20℃測試溫度下泳速(F2, 24=14.40,P<0.001)。15℃測試溫度下,低溫(15℃)和中等溫度(20℃)馴化蠑螈泳速快于高溫(25℃)馴化個體(F2, 41=3.43,P=0.042);20℃測試溫度下,中等溫度馴化蠑螈泳速快于低溫及高溫馴化個體(F2, 41=5.31,P<0.01);而25℃測試溫度下,高溫及中等溫度馴化蠑螈泳速快于低溫馴化個體(F2, 41=6.94,P<0.01)(圖1)。
馴化溫度對東方蠑螈臨界高、低溫的影響均顯著(CTMin:F2, 37=17.30,P<0.001;CTMax:F2, 37=5.92,P<0.01)。CTMin和CTMax均隨馴化溫度的升高而升高(圖2)。20℃條件馴化蠑螈具稍寬的可耐受溫度范圍(TRR),但馴化溫度對TRR的影響并不顯著(F2, 37=0.74,P=0.483,圖2)。15—20℃馴化溫度,CTMin和CTMax的馴化反應速率(ARR)分別為0.09和0.26;而20-25℃馴化溫度,CTMin和CTMax的ARR分別為0.21和0.16。

圖2 不同熱馴化條件下東方蠑螈幼體的臨界高低溫及可耐受溫度范圍(平均值帶不同上標字母的表示差異顯著)Fig.2 Critical thermal minimum and maximum, and thermal resistance range of juvenile Cynops orientalis acclimated to different temperatures (Means with different letters differ significantly, Tukey′s test, α=0.05, a>b)
3.1 熱馴化對蠑螈運動表現的影響
雖然低溫及中等溫度馴化的東方蠑螈幼體在不同測試溫度的游泳速度無顯著差異,但總體上其游泳速度的熱敏感性仍存在。外溫動物運動表現的熱功能曲線一般呈右傾的峰型曲線[2]。低溫及中等溫度馴化蠑螈泳速未表現明顯的測試溫度效應可能與熱馴化改變泳速的熱敏感性有關。運動表現隨體溫變化而變化在外溫動物中是普遍的,但不同運動方式的熱敏感性存在差異。一些研究表明:因水中運動能力的相對重要性,水生動物(如魚類、兩棲類等)水中運動表現的熱敏感性顯著低于陸地運動表現[27-29,32-33]。低溫及中等溫度馴化蠑螈在15—25℃測試溫度范圍內泳速無顯著變化可能部分反映出這種趨勢。當然與蠑螈陸地運動表現熱敏感性的差異仍需進一步確定。
馴化溫度顯著影響蠑螈幼體的運動表現,這與許多其它外溫動物的研究結果相類似。有意思的是,經某一溫度馴化后蠑螈的游泳能力似乎在相同測試溫度下表現最好。例如,25℃馴化蠑螈在25℃測試溫度泳速最大;其余兩馴化條件蠑螈在對應測試溫度下泳速亦稍大。因此,這一結果可能支持馴化有益假說,即特定溫度馴化的動物在該溫度下具增強的功能表現和適合度[18,24]。
外溫動物運動表現的熱馴化效應在種間、種群間甚至不同發育階段間存在差異[19-20]。兩棲類動物運動表現熱馴化效應的研究結果顯示(表1):許多兩棲類動物幼體階段水中運動表現的熱馴化效應顯著,但成年后陸地運動時該效應基本消失。兩棲類運動表現的熱馴化效應在不同個體階段的轉變被認為是與其生活環境的變遷有關。兩棲類(特別是蛙類)幼體階段主要在水體中生活,而成體階段在陸地生活的時間會明顯增加;水體的溫度日波動通常遠小于陸地上的溫度日波動。成年后上陸活動的兩棲類逐漸適應這種大幅度變化的陸地熱環境,同時也削弱了熱馴化對其運動表現以及其它生理行為特征的影響[19,24]。東方蠑螈生活于丘陵、山間或山邊的水塘、溝渠、水田等靜水水域中,此類水體環境的溫度變異有限,因此,與其它水生動物相似[19-20],蠑螈幼體在水中的運動表現受熱馴化的顯著影響是可預測的。

表1 熱馴化對幾種兩棲類動物運動表現的影響
3.2 熱馴化對蠑螈熱耐受性的影響
東方蠑螈幼體的臨界低溫(CTMin, 2.4—3.9℃)低于兩種已研究蛙類蝌蚪的相應值(澤陸蛙Fejervaryalimnocharis:7.4—8.9℃;飾紋姬蛙Microhylaornata:8.7—11.7℃[11]);其臨界高溫(CTMax, 34.6—36.7℃)同樣低于蛙類蝌蚪的相應值,如中國林蛙(Ranachensinensis)(35.8—39.8℃)[10],澤陸蛙(42.1—42.9℃)和飾紋姬蛙(39.8—40.9℃)[11],大蟾蜍(Bufogargarizans)(36.5—38.8℃)[39],與一些有尾類動物的相應值接近(34.1—38.4℃)[40-41]。東方蠑螈比一些蛙類蝌蚪具相對較低的CTMin和CTMax可能與其生境溫度相對較低有關。
熱馴化顯著影響蠑螈幼體的熱耐受能力,CTMin和CTMax隨馴化溫度的升高而上升,表明:低溫馴化個體比高溫馴化個體具較強抗低溫能力,而高溫馴化個體比低溫馴化個體具較強抗高溫能力。這與已報道的絕大多數兩棲類動物種類的研究結果一致[1-11,39, 42]。僅在少數種類中,高溫馴化個體的抗高溫能力并不顯著大于低溫馴化個體。例如,即將發生變態的美洲林蛙(Ranasylvatica)[43]和牛蛙(Ranacatesbeiana)[44]蝌蚪在較高溫度馴化的CTMax略低于較低溫度馴化的相應值。本研究顯示熱馴化并不影響蠑螈幼體的可耐受溫度范圍(TRR)。該特征的熱馴化效應在不同動物種類中存在較大差異。例如,澤陸蛙和飾紋姬蛙蝌蚪TRR隨馴化溫度的升高而降低[11],但在爬行類動物中并不存在一致的變化趨勢[12-16,45-46]。稍涼或溫和的環境溫度可能最適于東方蠑螈幼體生長[29],本研究中中等溫度馴化蠑螈顯示稍寬的TRR可能反映出接近最適溫度的馴化條件有利于表達其耐受能力。
馴化反應速率(ARR)代表外溫動物對環境溫度變化產生生理反應的能力。兩棲類動物CTMin和CTMax的ARR值存在顯著的種間差異(表2)。這種差異反映了在不同熱環境中動物擴展其耐受能力的差別,并可能與它們棲息環境的溫度條件有關。生活在短期內溫度波動大的環境中的種類比生活在溫度長期緩慢變化的環境中的種類通常具有較強抵抗快速溫度變化的能力[47-48]。15—20℃馴化溫度蠑螈幼體CTMax的ARR值(0.26)大于CTMin對應值(0.09),但20—25℃馴化溫度CTMax的ARR值(0.16)小于CTMin對應值(0.21)。這一結果與澤陸蛙和飾紋姬蛙蝌蚪[11]和爬行類動物[12-14,45-46]的報道相似。Chatterjee等[49]預測CTMin或CTMax的變化幅度隨著馴化溫度接近對應熱耐受臨界值時逐漸減小至零,本文的研究結果與之相符合。然而,在一些種類中CTMin和CTMax(特別是CTMin)隨馴化溫度的變化趨勢并不總是與上述預測相符。例如,10—20℃馴化溫度美洲林蛙蝌蚪CTMin的ARR值大于CTMax的對應值[42]。
表2 幾種兩棲類動物臨界高低溫的馴化反應速率
Table 2 Acclimation response ratios (ARRs) of critical thermal minimum (CTMin) and maximum (CTMax) in some species of amphibians

物種Species發育階段Developmentstage馴化溫度/(℃)Acclimationtemperature臨界低溫馴化反應速率Acclimationresponseratioofcriticalthermalminimum臨界高溫馴化反應速率Acclimationresponseratioofcriticalthermalmaximum無尾類Anura Fejervaryalimnocharis[11]蝌蚪26—30期20—300.140.06 Microhylaornata[11]蝌蚪26—30期20—300.30.11 Ranachensinensis[10]蝌蚪?期10—25—0.27 R.sylvatica[43]蝌蚪27—29期10—30—0.11 R.catesbeiana[44]蝌蚪28—40期15—25—0.08 Bufoamericanus[43]蝌蚪32期10—30—0.06 B.woodhousei[43]蝌蚪27—32期10—30—0.02 B.marinus[42]蝌蚪26—30期25—350.10.25 B.gargarizans[39]蝌蚪?期10—25—0.39 Pseudacristriseriata[43]蝌蚪27期10—30—0.16 Gastrophrynecarolinensis[43]蝌蚪32期20—30—0.08有尾類Caudata Euryceamultiplicata[40]成體5—15—0.13 E.lucifuga[40]成體5—15—0.02 E.longicauda[40]成體5—15—0.08 Ambystomamaculatum[40]成體5—15—0.08 Cynopsorientalis(本研究)幼體15—250.150.21
綜上所述,東方蠑螈幼體經不同溫度馴化后其運動表現和熱耐受能力會發生改變。經特定溫度馴化后的蠑螈在對應測試體溫下具有較好的運動表現,結果支持馴化有益假說;低溫馴化有助于提升蠑螈的抗低溫能力,而高溫馴化能提升抗高溫能力。兩棲類動物的熱馴化反應存在顯著的種間差異。這些差異可能反映了不同種類個體發育過程中所經歷熱環境的變化。棲息生境溫度變異幅度大,可能會削弱動物生理及功能表現的熱馴化效應,但有助于提高其應對溫度變化的能力。
[1] Huey R B. Temperature, physiology, and the ecology of reptiles // Gans C, Pough F H, eds. Biology of the Reptilia, Vol. 12. Physiology C. Physiological ecology. New York: Academic Press, 1982: 25- 91.
[2] Angilletta M J Jr, Niewiarowski P H, Navas C A. The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 2002, 27(4): 249- 268.
[3] Lutterschmidt W I, Hutchison V H. The critical thermal maximum: history and critique. Canadian Journal of Zoology, 1997, 75(10): 1561- 1574.
[4] Cowles R B, Bogert C M. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 1944, 83: 265- 296.
[5] Lagerspetz K Y H. What is thermal acclimation? Journal of Thermal Biology, 2006, 31(4): 332- 336.
[6] Franklin C E, Seebacher F. Adapting to climate change. Science, 2009, 323(5916): 876- 877.
[7] Sandblom E, Gr?ns A, Axelsson M, Seth H. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. Proceedings of the Royal Society B, 2014, 281(1794): 20141490.
[8] Seebacher F, White C R, Franklin C E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 2015, 5(1): 61- 66.
[9] Kaufmann J S, Bennett A F. The effect of temperature and thermal acclimation on locomotor performance inXantusiavigilis, the desert night lizard. Physiological Zoology, 1989, 62(5): 1047- 1058.
[10] 王立志, 李曉晨. 恒溫馴化對中國林蛙熱耐受性的影響. 水生生物學報, 2007, 31(5): 748- 750.
[11] 施林強, 趙麗華, 馬小浩, 馬小梅. 澤陸蛙和飾紋姬蛙蝌蚪不同熱馴化下選擇體溫和熱耐受性. 生態學報, 2012, 32(2): 465- 471.
[12] Wu M X, Hu L J, Dang W, Lu H L, Du W G. Effect of thermal acclimation on thermal preference, resistance and locomotor performance of hatchling soft-shelled turtle. Current Zoology, 2013, 59(6): 718- 724.
[13] Li H, Wang Z, Mei W B, Ji X. Temperature acclimation affects thermal preference and tolerance in threeEremiaslizards (Lacertidae). Current Zoology, 2009, 55(4): 258- 265.
[14] Wang Z, Lu H L, Ma L, Ji X. Differences in thermal preference and tolerance among threePhrynocephaluslizards (Agamidae) with different body sizes and habitat use. Asian Herpetological Research, 2013, 4(3): 214- 220.
[15] Huang S P, Hsu Y, Tu M C. Thermal tolerance and altitudinal distribution of twoSphenomorphuslizards in Taiwan. Journal of Thermal Biology, 2006, 31(5): 378- 385.
[16] Yang J, Sun YY, An H, Ji X. Northern grass lizards (Takydromusseptentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions. Journal of Comparative Physiology B, 2008, 178(3): 343- 349.
[17] Arnold S J. Morphology, performance and fitness. American Zoologist, 1983, 23(2): 347- 361.
[18] Leroi A M, Bennett A F, Lenski R E. Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proceedings of the National Academy of Sciences, 1994, 91(5): 1917- 1921.
[19] Wilson R S, James R S, Johnston I A. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frogXenopuslaevis. Journal of Comparative Physiology B, 2000, 170(2): 117- 124.
[20] Grigaltchik V S, Ward A J W, Seebacher F. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship. Proceedings of the Royal Society B, 2012, 279(1744): 4058- 4064.
[21] Johnson T, Bennett A. The thermal acclimation of burst escape performance in fish: an integrated study of molecular and cellular physiology and organismal performance. The Journal of Experimental Biology, 1995, 198(Pt 10): 2165- 2175.
[22] Wilson R S, Condon C H L, Johnston I A. Consequences of thermal acclimation for the mating behaviour and swimming performance of female mosquito fish. Philosophical Transactions of the Royal Society B, 2007, 362(1487): 2131- 2139.
[23] Wilson R S, Franklin C E. Inability of adultLimnodynastesperonii(Amphibia: Anura) to thermally acclimate locomotor performance. Comparative Biochemistry and Physiology A, 2000, 127(1): 21- 28.
[24] Wilson R S, Franklin C E. Testing the beneficial acclimation hypothesis. Trends in Ecology & Evolution, 2002, 17(1): 66- 70.
[25] Huey R B, Berrigan D. Testing evolutionary hypotheses of acclimation // Johnston I A, Bennett A F, eds. Animals and Temperature: Phenotypic and Evolutionary Adaptation. Cambridge: Cambridge University Press, 1996: 205- 237.
[26] Deere J A, Chown S L. Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. The American Naturalist, 2006, 168(5): 630- 644.
[27] Marvin G A. Aquatic and terrestrial locomotor performance in a semiaquatic plethodontid salamander (Pseudotritonruber): influence of acute temperature, thermal acclimation, and body size. Copeia, 2003, 2003(4): 704- 713.
[28] Marvin G A. Effects of acute temperature and thermal acclimation on aquatic and terrestrial locomotor performance of the three-lined salamander,Euryceaguttolineata. Journal of Thermal Biology, 2003, 28(3): 251- 259.
[29] Gvo?dík L, Puky M,ugerková M. Acclimation is beneficial at extreme test temperatures in the Danube crested newt,Triturusdobrogicus(Caudata, Salamandridae). Biological Journal of The Linnean Society, 2007, 90(4): 627- 636.
[30] 楊道德, 沈猷慧. 東方蠑螈繁殖生態的研究. 動物學研究, 1993, 14(3): 215- 220.
[31] Kour E L, Hutchison V H. Critical thermal tolerances and heating and cooling rates of lizards from diverse habitats. Copeia, 1970, 1970(2): 219- 229.
[32] Else P L, Bennett A F. The thermal dependence of locomotor performance and muscle contractile function in the salamanderAmbystomatigrinumnebulosum. Journal of Experimental Biology, 1987, 128(1): 219- 233.
[34] Putnam R W, Bennett A F. Thermal dependence of behavioural performance of anuran amphibians. Animal Behavior, 1981, 29(2): 502- 509.
[35] Knowles T W, Weigl P D. Thermal dependence of anuran burst locomotor performance. Copeia, 1990, 1990(3): 796- 802.
[36] Wilson R S, Franklin C E. Thermal acclimation of locomotor performance in tadpoles of the frogLimnodynastesperonii. Journal of Comparative Physiology B, 1999, 169(6): 445- 451.
[37] Whitehead P J, Puckridge J T, Leigh C M, Seymour R S. Effect of temperature on jump performance of the frogLimnodynastestasmaniensis. Physiological Zoology, 1989, 62(4): 937- 949.
[38] Renaud J M, Stevens E D. The extent of long-term temperature compensation for jumping distance in the frog,Ranapipiens, and the toad,Bufoamericanus. Canadian Journal of Zoology, 1983, 61(6): 1284- 1287.
[39] 王立志. 恒溫和變溫馴化對大蟾蜍蝌蚪熱耐受性的影響. 生態學報, 2014, 34(4): 1030- 1034.
[40] Sealander J A, West B W. Critical thermal maxima of some Arkansas salamanders in relation to thermal acclimation. Herpetologica, 1969, 25(2): 122- 124.
[41] Layne J R Jr, Claussen D L. Seasonal variation in the thermal acclimation of critical thermal maxima (CTMax) and minima (CTMin) in the salamanderEuryceabislineata. Journal of Thermal Biology, 1982, 7(1): 29- 33.
[42] Floyd R B. Ontogenetic change in the temperature tolerance of larvalBufomarinus(Anura: bufonidae). Comparative Biochemistry and Physiology A, 1983, 75(2): 267- 271.
[43] Cupp P V Jr. Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica, 1980, 36(3): 234- 244.
[44] Menke M E, Claussen D L. Thermal acclimation and hardening in tadpoles of the bullfrog,Ranacatesbeiana. Journal of Thermal Biology, 1982, 7(4): 215- 219.
[45] 顧重建, 金建鈺, 上官福根, 毛李寧, 周化斌, 張永普. 溫度馴化對紅耳滑龜幼龜選擇體溫、熱耐受性和抗氧化酶活性的影響. 生態學報, 2016, 36(6): 1737- 1745.
[46] Xu W, Dang W, Geng J, Lu H L. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtlesMauremysreevesiiacclimated to different temperatures. Journal of Thermal Biology, 2015, 53: 119- 124.
[47] Díaz-Herrera F, Uribe E S, Ramirez L F B, Mora A G. Critical thermal maxima and minima ofMacrobrachiumrosenbergii(Decapoda: Palaemonidae). Journal of Thermal Biology, 1998, 23(6): 381- 385.
[48] Kumlu M, Türkmen S, Kumlu M. Thermal tolerance ofLitopenaeusvannamei(Crustacea: Penaeidae) acclimated to four temperatures. Journal of Thermal Biology, 2010, 35(6): 305- 308.
[49] Chatterjee N, Pal A K, Manush S M, Das T, Mukherjee S C. Thermal tolerance and oxygen consumption ofLabeorohitaandCyprinuscarpioearly fingerlings acclimated to three different temperatures. Journal of Thermal Biology, 2004, 29(6): 265- 270.
Physiological response and changes in swimming performance after thermal acclimation in juvenile chinese fire-belly newts,Cynopsorientalis
LU Hongliang1, GENG Jun1, XU Wei1, PING Jun2, ZHANG Yongpu2,*
1HangzhouKeyLaboratoryofAnimalAdaptationandEvolution,SchoolofLifeandEnvironmentalSciences,HangzhouNormalUniversity,Hangzhou310036,China2CollegeofLifeandEnvironmentalScience,WenzhouUniversity,Wenzhou325035,China
The thermal acclimatory capacity of a particular species determines its tolerance to environmental changes and affects its survival under future changing climatic conditions. Acclimation effects on physiological traits have been determined in many fish and frog species, but rarely in newts or salamanders. In the present study, we evaluated the physiological acclimatory response of newts. A total of 48 juvenile Chinese fire-belly newts (Cynopsorientalis) were collected and acclimated to 15℃, 20℃, and 25℃, which represented the low, intermediate, and high environmental temperatures experienced byC.orientalisduring their active period, respectively, over the course of 4 weeks. The locomotor (swimming) performances of individuals were measured at the same three test temperatures in a glass tank (150 cm × 10 cm × 15 cm) filled with water to a depth of 5 cm, and the critical thermal minimum (CTMin) and maximum (CTMax) were determined using a dynamic method. The thermal resistance range (TRR) was calculated as the difference between CTMaxand CTMin, and acclimation response ratio (ARR) of CTMinand CTMaxwas obtained by dividing the tolerance change by the change in acclimation temperature. The results from repeated-measures ANOVA analyses revealed that newt swimming speeds were significantly affected by the acclimation and test temperatures. Despite no statistically significant difference, low and intermediate temperature-acclimated newts had relatively high mean swimming speeds at 15℃ and 20℃, respectively, while the high-temperature-acclimated newts had superior swimming speeds at 25℃. Similarly, at 15℃, low temperature-acclimated newts swam faster than those acclimated to a high temperature. However, at 20℃, intermediate temperature-acclimated newts swam faster than low or high temperature-acclimated individuals, while at 25℃, high and intermediate temperature-acclimated newts swam faster than those acclimated to low temperature. Thus, our data supports the beneficial acclimation hypothesis, which predicts that acclimation to a particular temperature enhances the animal′s performance or fitness at that temperature. Our results also indicate that temperature acclimation shifts the thermal sensitivity of swimming performance inC.orientalissince low temperature-acclimated newts appear to have lower thermal sensitivity levels than those acclimated to high temperature. Both CTMinand CTMaxwere significantly enhanced at higher acclimation temperatures, suggesting that juvenile newts acclimated to low temperatures are more resistant to low temperatures and less resistant to high temperatures, whereas those acclimated to high temperatures are more resistant to high but less resistant to low temperatures. These results are consistent with previous studies focused on the various ectothermic vertebrate species analyzed to date. The TRR of newts was not affected by acclimation temperature, while the ARR of CTMax(0.26) was higher than that of CTMin(0.09) at acclimation temperatures between 15℃ and 20℃, but lower at acclimation temperatures between 20℃ and 25℃ (CTMax: 0.16vsCTMin: 0.21). These results are consistent with previous predictions that the magnitude of the change in CTMinor CTMaxslowly decreases and ultimately approaches zero as the acclimation temperature gradually reaches its thermal limits. Inter-species differences in thermal physiological response to acclimation in amphibians may be correlated with differences in thermal environments in their natural habitats.
Cynopsorientalis; thermal acclimation; thermal tolerance; locomotor performance; beneficial acclimation hypothesis
國家自然科學基金項目(31170376);浙江省自然科學基金項目(LY15C030006,LY16C030001)
2015- 10- 06;
日期:2016- 07- 13
10.5846/stxb201510062006
*通訊作者Corresponding author.E-mail: zhangypu@126.com
陸洪良, 耿軍, 徐衛, 平駿, 張永普.東方蠑螈幼體熱耐受性和游泳表現的熱馴化響應.生態學報,2017,37(5):1603- 1610.
Lu H L, Geng J, Xu W, Ping J, Zhang Y P.Physiological response and changes in swimming performance after thermal acclimation in juvenile chinese fire-belly newts,Cynopsorientalis.Acta Ecologica Sinica,2017,37(5):1603- 1610.