雷英杰, 丁 玫, 姚慶佳
(1. 天津理工大學 化學化工學院,天津 300384; 2. 天津市斯芬克司藥物研發有限公司,天津 300457)
聚乙二醇- 400中磺化稻殼灰催化2- 取代苯并噁唑的合成
雷英杰1*, 丁 玫1, 姚慶佳2
(1. 天津理工大學 化學化工學院,天津 300384; 2. 天津市斯芬克司藥物研發有限公司,天津 300457)
以鄰氨基苯酚(1)和芳醛(2a~2i)[或脂肪醛(2j, 2k)]為原料,聚乙二醇(PEG- 400)為溶劑,稻殼灰負載氯磺酸(AC)為固體酸催化劑,采用超聲輔助的“一鍋法”合成了11個2- 取代苯并噁唑(3a~3k),其結構經1H NMR, IR和元素分析確證。以3a和3j的合成為例,優化了反應條件。結果表明:在最優合成條件[1 1 mmol, 2 1.2 mmol, AC 10 mol%, PEG- 400 5 mL,于200 W超聲30 min(3a)或60 min(3j)]下,3a和3j收率分別為92.4%和82.4%。 AC重復使用5次,3a收率84.7%。 PEG- 400回收率約79%。
聚乙二醇; 稻殼灰; 氯磺酸; 2- 取代苯并噁唑; 合成; 條件優化
作為一類重要的含氮雜環化合物,苯并噁唑衍生物具有多種生物活性,如抗菌、抗炎、抗病毒、抗阿爾茨海默病及抗腫瘤等[1-4]。2- 取代苯并噁唑的合成方法較多,其中的典型路線為:(1)鄰鹵代酰胺的分子內環合反應;(2)鄰氨基苯酚與醛形成希夫堿的關環、氧化脫氫反應[5-6]。路線(1)需用金屬催化劑活化C—X鍵進行偶聯反應,常用催化劑為CuI/Cs2CO3, FeCl3/TMHD, Cu(OTf)2和納米CuO等[7-10]。路線(2)的反應過程雖然較為簡單,但該類反應通常需要使用催化氧化劑(如CAN, DDQ, Mn(OAc)3, PhI(OAc)2, I2和NaCN等[11-16]),導致副產物較多,后處理難度較大。

Scheme 1
聚乙二醇(PEG)為一種環境友好型水溶性聚合物,其安全毒理學性質和生物可降解性倍受人們關注。PEG作為有機溶劑或均相催化劑,廣泛應用于合成領域[17]。生物質炭基的固體酸催化劑具有催化效率高、易回收利用和環境友好等優點,在綠色化工領域頗受重視[18]。例如,稻殼灰(RHA)富含無定形態二氧化硅,可負載鐵離子,比表面積較大[19]。RHA負載碳酸鉀可用于酯化反應[20];RHA負載氯磺酸(AC)可促進1,1- 二乙酸酯的選擇性合成和脫保護反應[21]。AC對雙雜環化合物的合成也有較好的催化性能[22]。
鑒于PEG作為反應介質的環保性和RHA負載強酸可催化雜環合成的特點,結合超聲波輻射反應時間短和產率高等優勢,本文以鄰氨基苯酚(1)和芳醛(2a~2i)或脂肪醛(2j, 2k)為原料,聚乙二醇(PEG- 400)為溶劑, AC為固體酸催化劑,采用超聲輔助的“一鍋法”合成了11個2- 取代苯并噁唑(3a~3k, Scheme 1),其結構經1H NMR, IR和元素分析確證。以3a和3j的合成為例,優化了反應條件。
1.1 儀器與試劑
X- 5型顯微熔點儀(溫度未校正);Varian INOVA 400 MHz型核磁共振儀(CDCl3為溶劑,TMS為內標);Nicolet 60SXR- FTIR型紅外光譜儀(KBr壓片);PE- 2400型元素分析儀;XRD- 6000型X- 射線衍射儀[輻射源:Cu/Ka(λ=0.154 18 nm),管電壓40 kV,管電流30 mA,掃描模式θ~2θ,掃描范圍10~80°,掃描步長0.02°·s-1,掃描速度5°·min-1]; Coulter NISORP 100CX型全自動吸附儀;KQ- 200KDB型超聲波清洗器(工作頻率40 kHz)。
所用試劑均為分析純。
1.2 合成
(1) AC的制備
稻殼用去離子水洗滌,于70 ℃烘干后用3%硫酸浸泡0.5 h。用水洗滌至pH≈7,真空干燥,置于通空氣的馬弗爐中于600 ℃煅燒0.5 h,篩分后得灰分M。將M 2.0 g用二氯甲烷(20 mL)溶解,冰浴冷卻,攪拌下滴加氯磺酸0.65 mL,滴畢,于室溫反應2 h。靜置,抽濾,濾餅真空干燥得土黃色粉末AC 2.5 g(2.3 mmol H+·g-1)。
(2) 3a~3k的合成通法
在反應瓶中依次加入1 1 mmol, 2a~2k 1.2 mmol, AC 45 mg和PEG- 400 5 mL,攪拌使其混合均勻;于200 W超聲反應30~60 min(TLC跟蹤)。加入乙酸乙酯20 mL(AC析出,用二氯甲烷多次洗滌后于70 ℃干燥回收),抽濾,濾液用水(3×10 mL)洗滌,無水硫酸鎂干燥,濃縮,殘余物經硅膠柱層析[洗脫劑:V(乙酸乙酯)/V(石油醚)=1/10]純化得3a~3k。
2- 苯基苯并噁唑(3a): 白色粉末,產率92.4%, m.p.100~102 ℃(102 ℃[5]);1H NMRδ: 7.33~7.39(m, 2H, ArH), 7.51~7.56(m, 3H, ArH), 7.60~7.63(m, 1H, ArH), 7.78~7.82(m, 1H, ArH), 8.27~8.30(m, 2H, ArH); IRν: 1 620(C=N), 1 548, 1 460(C=C), 1 334, 1 240(C—N), 1 060, 920(C—O—C) cm-1; Anal. calcd for C13H9NO: C 79.98, H 4.65, N 7.17; found C 79.92, H 4.60, N 7.11。
2- (4′- 甲基苯基)苯并噁唑(3b): 白色粉末,產率91.5%, m.p.112~114 ℃(114~115 ℃[5]);1H NMRδ: 2.45(s, 3H, CH3), 7.30~7.35(m, 4H, ArH), 7.56~7.58(m, 1H, ArH), 7.75~7.77(m, 1H, ArH), 8.15(d,J=8.5 Hz, 2H, ArH); IRν: 2 920(CH3), 1 621(C=N), 1 550, 1 461(C=C), 1 243 (C—N), 1 060, 921(C—O—C) cm-1; Anal. calcd for C14H11NO: C 80.36, H 5.30, N 6.69; found C 80.31, H 5.23, N 6.63。
2- (4′- 甲氧基苯基)苯并噁唑(3c): 白色粉末,產率90.1%, m.p.98~100 ℃(97~98 ℃[6]);1H NMRδ: 3.90(s, 3H, OCH3), 7.03(d,J=8.8 Hz, 2H, ArH), 7.30~7.40(m, 2H, ArH), 7.55~7.58(m, 1H, ArH), 7.74~7.76(m, 1H, ArH), 8.22(d,J=8.8 Hz, 2H, ArH); IRν: 3 020(OCH3), 1 609(C=N), 1 520, 1 460(C=C), 1 260(C—N), 1 032, 964(C—O—C) cm-1; Anal. calcd for C14H11NO2: C 74.65, H 4.92, N 6.22; found C 74.57, H 4.84, N 6.15。
2- (2′- 羥基苯基)苯并噁唑(3d): 白色粉末,產率85.5%, m.p.123~125 ℃(125~126 ℃[6]);1H NMRδ: 6.98~7.03(m, 1H, ArH), 7.12(d,J=8.4 Hz, 1H, ArH), 7.35~7.48(m, 3H, ArH), 7.57~7.61(m, 1H, ArH), 7.70~7.78(m, 1H, ArH), 7.98~8.08(m, 1H, ArH), 11.50(s, 1H, OH); IRν: 3 325(OH), 1 625(C=N), 1 550, 1 462(C=C), 1 250(C—N), 1 061, 926(C—O—C) cm-1; Anal. calcd for C13H9NO2: C 73.92, H 4.29, N 6.63; found C 73.83, H 4.21, N 6.55。
2- (2′- 氯苯基)苯并噁唑(3e): 白色粉末,產率90.7%, m.p.64~66 ℃(66~67 ℃[10]);1H NMRδ: 7.35~7.50(m, 4H, ArH), 7.55~7.70(m, 2H, ArH), 7.81~8.00(m, 1H, ArH), 8.14~8.17(m, 1H, ArH); IRν: 1 611(C=N), 1 568, 1 451(C=C), 1 242(C—N), 1 066, 924(C—O—C) cm-1; Anal. calcd for C13H8NOCl: C 67.99, H 3.51, N 6.10; found C 67.92, H 3.43, N 6.02。
2- (4′- 氯苯基)苯并噁唑(3f): 白色粉末,產率94.5%, m.p.142~144 ℃(144~145 ℃[6]);1H NMRδ: 7.35~7.40(m, 2H, ArH), 7.50(d,J=8.4 Hz, 2H, ArH), 7.58~7.60(m, 1H, ArH), 7.75~7.80(m, 1H, ArH), 8.21(d,J=8.4 Hz, 2H, ArH); IRν: 1 612(C=N), 1 568, 1 450(C=C), 1 240(C—N), 1 059, 926(C—O—C) cm-1; Anal. calcd for C13H8NOCl: C 67.99, H 3.51, N 6.10; found C 67.94, H 3.41, N 6.04。
2- (4′- 硝基苯基)苯并噁唑(3g): 黃色粉末,產率91.6%, m.p.163~165 ℃(164~165 ℃[7]);1H NMRδ: 7.40~7.46(m, 2H, ArH), 7.64(d,J=7.0 Hz, 1H, ArH), 7.84(d,J=7.0 Hz, 1H, ArH), 8.38(d,J=7.0 Hz, 2H, ArH), 8.45(d,J=8.4 Hz, 2H, ArH); IRν: 1 599(C=N), 1 514, 1 434(C=C), 1 230(C—N), 1 101, 965(C—O—C) cm-1; Anal. calcd for C13H8N2O3: C 65.00, H 3.36, N 11.66; found C 64.91, H 3.30, N 11.59。
2- (4′- 吡啶基)苯并噁唑(3h): 白色粉末,產率86.2%, m.p.113~115 ℃(116~119 ℃[7]);1H NMRδ: 7.44~7.46(m, 2H, ArH), 7.66~7.69(m, 1H, ArH), 7.80~7.89(m, 1H, ArH), 8.12(d,J=6.0 Hz, 2H, ArH), 8.83(d,J=6.0 Hz, 2H, ArH); IRν: 3 024, 1 601, 1 538(pyridin), 1 589(C=N), 1 434(C=C), 1 240(C—N), 1 063, 925(C—O—C) cm-1; Anal. calcd for C12H8N2O: C 73.46, H 4.11, N 14.28; found C 73.40, H 4.02, N 14.21。
2- 呋喃基苯并噁唑(3i): 白色粉末,產率88.4%, m.p.87~89 ℃(89~90 ℃[8]);1H NMRδ: 6.58~6.61(m, 1H, ArH), 7.26~7.29(m, 1H, ArH), 7.32~7.38(m, 2H, ArH), 7.55~7.58(m, 1H, ArH), 7.65~7.69(m, 1H, ArH), 7.72~7.76(m, 1H, ArH); IRν: 1 627(C=N), 1 584, 1 418(C=C), 1 242(C—N), 1 073(C—O—C), 1 005, 880(furanyl) cm-1; Anal. calcd for C11H7NO2: C 71.35, H 3.81, N 7.56; found C 71.29, H 3.73, N 7.50。
2- 甲基苯并噁唑(3j): 無色油狀液體,產率82.2%;1H NMRδ: 2.56(s, 3H, CH3), 7.44~7.48(m, 2H, ArH), 7.53~7.56(m, 2H, ArH), 7.66(d,J=8.0 Hz, 1H, ArH), 7.98(d,J=8.4 Hz, 1H, ArH); Anal. calcd for C8H7NO: C 72.16, H 5.30, N 10.52; found C 72.07, H 5.23, N 10.44。
2- 乙基苯并噁唑(3k): 無色油狀液體,產率84.1%,1H NMRδ: 1.45(t,J=7.6 Hz, 3H, CH3), 2.96(q,J=7.6 Hz, 2H, CH2), 7.22~7.30(m, 2H, ArH), 7.46~7.48(m, 1H, ArH), 7.65~7.68(m, 1H, ArH); Anal. calcd for C9H9NO: C 73.45, H 6.16, N 9.52; found C 73.39, H 6.08, N 9.44。
2.1 合成
根據初步實驗發現,用稀硫酸處理RHA,殘炭量少,顏色較純,表面較疏松。因此我們選擇3%硫酸預處理RHA。
2.2 表征
由RHA的IR分析可知,3 460 cm-1, 1 650 cm-1, 1 090 cm-1, 790 cm-1和470 cm-1處的強吸收峰與SiO2的標準吸收峰吻合。AC在2 720~3 580 cm-1有強而寬的吸收峰,在845 cm-1和580 cm-1處出現強吸收峰,這類吸收峰均為磺酸基的特征吸收峰。因此,可初步確定磺酸基團已分布在RHA無定形的炭化結構中。
由RHA和AC的XRD分析可知,RHA在2θ24.5°處有一個寬吸收峰,與無定形二氧化硅的特征吸收峰吻合;AC在2θ25°處有明顯的衍射峰,峰值強度與前者幾乎沒有變化,說明磺酸基團未對RHA的無定形炭化結構造成顯著影響。
由RHA和AC的N2- BET分析可知,RHA的比表面積、孔容量和孔徑分別為55 m2·g-1, 0.18 cm3·g-1和10.2 nm,與文獻[22]一致。AC的比表面積為38 m2·g-1,與前者相比有明顯下降,但其孔容量(0.15 cm3·g-1)和孔徑(11.2 nm)分布變化不大。由此可見,氯磺酸已成功進入RHA的孔隙中,形成質子酸中心。
2.3 合成條件優化
為提高3產率,以3a和3j的合成為例,優化了反應條件。
(1) AC用量
表1為AC用量對3a收率的影響。由表1可見,當AC用量為8 mol%時,產率>73%;繼續增大AC用量,產率略有提高;但當AC用量超過10 mol%時,產率趨于穩定。因此,選擇AC用量為10 mol%。
(2)溶劑
表2為溶劑對3a產率的影響,由表2可見,與極性非質子性溶劑(乙腈、丙酮和THF)相比,極性質子性溶劑(甲醇)作為反應溶劑時,產率較高,但在水中反應效果很差。以PEG- 400為反應溶劑,反應速率和產率均有明顯改善,這可能與PEG- 400的兩個極性末端羥基的分子結構有關,能夠通過分子間氫鍵與AC有效鍵合,更好的參與催化反應。

表1 AC用量對3a產率的影響

表2 溶劑對3a產率的影響*
*A~H依次為:MeCN, DMF, THF, AcMe, 1,4- dioxane, H2O, MeOH, PEG- 400。
(3) 超聲時間
表3為超聲時間對3a和3j產率的影響。由表3可見,超聲輻射約30 min, 3a產率最高(92.4%);底物為其他芳醛時,結果與3a類似。同樣條件下,脂肪醛產率卻較低,延長超聲時間至60 min,產率達到最大值(82.2%)。

表3 超聲時間對3a和3j產率的影響

表4 AC的循環性能
2.4 循環性能
(1) AC的循環性能
以3a的合成為例,考察了AC的回收性能,結果見表4。由表4可見,隨著AC使用次數的增加,收率略有下降。重復使用4次,收率依然大于85%,說明AC循環性能較好。
(2) PEG- 400的循環性能
以3a的合成為例,考察了AC的回收性能。反應完成后加入乙酸乙酯,濾除固體,濾液用水(3×30 mL)洗滌,合并水相,于140 ℃烘干得無水PEG- 400,回收率約79%。
以鄰氨基苯酚(1)和芳醛(2a~2i)或脂肪醛(2j, 2k)為原料,聚乙二醇(PEG- 400)為溶劑,稻殼灰負載氯磺酸(AC)為固體酸催化劑,采用超聲輔助的“一鍋法”合成了11個2- 取代苯并噁唑(3a~3k)。在最優合成條件[1 1 mmol, 2 1.2 mmol, AC 10 mol%, PEG- 400 5 mL,于40 kHz超聲30 min(3a)或60 min(3j)]下,3a和3j收率分別為92.4%和82.4%。 AC重復使用5次,3a收率84.7%。 PEG- 400回收率約79%。該方法具有操作簡單,收率和回收利用率較高等優點。
[1] Aiello S, Wells G, Stone E L,etal. Synthesis and biological properties of benzothiazole,benzoxazole,and chromen- 4- one analogues of the potent antitumor agent 2- (3,4- dimethoxyphenyl)- 5- uorobenzothiazole(PMX610,NSC 721648)[J].J Med Chem,2008,51(16):5135-5139.
[2] Abdelgawad M A, Belal A, Omar H A,etal. Synthesis,anti- breast cancer activity,and molecular modeling of some benzothiazole and benzoxazole derivatives[J].Archiv der Pharmazie, 2013,346(7):534-541.
[3] Costales A, Mathur M, Ramurthy S,etal. 2- Amino- 7- substituted benzoxazole analogs as potent RSK2 inhibitors[J].Bioorg Med Chem Lett,2014,24(6):1592-1596.
[4] Sato Y, Yamada M, Yoshida S,etal. Benzoxazole derivatives as novel 5- HT3 receptor partial agonists in the gut[J].J Med Chem,1998,41(16):3015-3021.
[5] Evindar G, Batey R A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand- accelerated Copper- catalyzed cyclizations of ortho- halobenzanilides[J].J Org Chem,2006,71(5):1802-1808.
[6] Peng J S, Zong C J, Ye M,etal. Direct transition- metal- free intramolecular C—O bond formation:Synthesis of benzoxazole derivatives[J].Org Biomol Chem,2011,9(4):1225-1230.
[7] Ueda S, Nagasawa H. Synthesis of 2- arylbenzoxazoles by copper- catalyzed intramolecular oxidative C—O coupling of benzanilides[J].Angew Chem Int Ed,2008,120(34):6511-6513.
[8] Bonnamour J, Bolm C. Iron- catalyzed intramolecularo- arylation:Synthesis of 2- aryl benzoxazoles[J].Org Lett,2008,13(10):2665-2667.
[9] Saha P, Ramana T, Purkait N,etal. Ligand- free copper- catalyzed synthesis of substituted benzimidazoles,2- aminobenzimidazoles,2- aminobenzothiazoles,and benzoxazoles[J].J Org Chem,2009,74(22):8719-8725.
[10] Khatun N, Guin S, Rout S K,etal. Divergent reactivities ofo- haloanilides with CuO nanoparticles in water:A green synthesis of benzoxazoles ando- hydroxyanilides[J].RSC Adv,2014,21(4):10770-10778.
[11] Blacker A J, Farah M M, Hall M I,etal. Synthesis of benzazoles by hydrogen- transfer catalysis[J].Org Lett,2009,11(9):2039-2042.
[12] Chang J B, Zhao K, Pan S F. Synthesis of 2- arylbenzoxazolesviaDDQ promoted oxidative cyclization of phenolic Schiff bases a solution phase strategy for library synthesis[J].Tetrahedron Letters,2002,43(6):951-954.
[13] Varma R S, Kumar D. Manganese triacetate oxidationof phenolic schiff bases:Synthesis of 2- aryl benzoxazoles[J].J Heterocycl Chem,1998,35(6):1539-1540.
[14] Alla S K, Sadhu P, Punniyamurthy T. Organocatalytic syntheses of benzoxazoles and benzothiazoles using aryl iodide and oxoneviaC—H functionalization and C—O/S bond formation[J].J Org Chem,2014,79(16):7502-7511.
[15] Moghaddam F M, Bardajee G R, Ismaili H,etal. Facile and efficient one- pot protocol forthe synthesis of benzoxazole and benzothiazole derivatives using molecular iodine as catalyst[J].Synth Commun,2006,36(17):2543-2548.
[16] Cho Y H, Lee C Y, Ha D C,etal. Cyanide as a powerful catalyst for facile preparation of 2- substituted benzoxazolesviaaerobic oxidation[J].Advanced Synthesis & Catalysis,2012,354(16):2992-2996.
[17] 趙匡民,楊濤. 聚乙二醇在有機合成中的應用研究進展[J].化工技術與開發,2012,41(2):14-17.
[18] 曾丹林,蘇敏,馬亞麗,等. 生物質炭基固體酸催化劑的研究[J].石油煉制與化工,2012,43(11):63-68.
[19] Balakrishnan M, Batra V S. Hargreaves J S J,etal. Waste materials- catalytic opportunities:An overview ofthe application of large scale waste materials as resources for catalytic applications[J].Green Chemistry,2011,13(1):16-24.
[20] 單銳,陳冠益,陳鴻,等. 稻殼灰負載K2CO3催化制備生物柴油[J].天津大學學報,2015,48(1):7-11.
[21] Zeng D L, Liu S G, Gong W J,etal. A nano- sized solid acid synthesized from rice hull ash for biodiesel production[J].RSC Advances,2014,39(4):20535-20539.
[22] Shirini F, Mamaghani M, Seddighi M. Sulfonated rice husk ash(RHA- SO3H):A highly powerful and efficient solid acid catalyst for the chemoselective preparation and deprotection of 1,1- diacetates[J].Catal Commun,2013,36(2):31-37.
[23] Seddighi M, Shirini F, Mamaghani M. Sulfonated rice husk ash(RHA- SO3H) as a highly efficient and reusable catalyst for the synthesis of some bis- heterocyclic compounds[J].RSC Advances,2013,46(3):24046-24053.
Synthesis of 2- Substituted Arylbenzoxazoles Catalyzed by Sulfonated Rice Husk Ash in PEG- 400
LEI Ying- jie1*, DING Mei1, YAO Qing- jia2
(1. School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China;2. Sphinx Scientific Laboratory Corporation, Tianjin 300457, China)
Eleven 2- substituted arylbenzoxazoles(3a~3k) were synthesized by microwave- assisted “one pot” reaction ofo- aminophenol(1) with aromatic aldehydes(2a~2i)[or aliphatic aldehydes(2j, 2k)], using PEG- 400 as the solvent and sulfonated rice husk ash(AC) as the catalyst. The structures were confirmed by1H NMR, IR and elemental analysis. The synthetic conditions were optimized, using synthesis of 3a and 3j as the examples. The results indicated that under the optimized conditions[1 1 mmol, 2 1.2 mmol, AC 10 mol%, PEG- 400 5 mL, irradiation at 200 W for 30 min(3a) or 60 min(3j)], the yields of 3a and 3j were 92.4% and 82.4%, respectively. The yield of 3a up to 84.7% after AC recycle for five times. The recycle rate of PEG- 400 was 79%.
PEG- 400; rice husk ash; chlorosulfonic acid; 2- substituted arylbenzoxazole ; synthesis; condition optimization
2016- 12- 08;
2017- 04- 20
天津市科技特派員項目(16JCTPJC49800)
雷英杰(1971-),男,漢族,陜西澄城人,副教授,主要從事醫藥中間體的研究。 E- mail: lyj@tjut.edu.cn
O626.2
A
10.15952/j.cnki.cjsc.1005- 1511.2017.05.16305