999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Measure Functional Differential Equations with Infinite Delay: Differentiability of Solutions with Respect to Initial Conditions

2017-05-15 11:09:30LIBaolinWANGBaodi

LI Baolin, WANG Baodi

(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu)

Measure Functional Differential Equations with Infinite Delay: Differentiability of Solutions with Respect to Initial Conditions

LI Baolin, WANG Baodi

(CollegeofMathematicsandStatistics,NorthwestNormalUniversity,Lanzhou730070,Gansu)

In this paper, we consider a measure functional differential equation with infinite delay,which can be changed into a generalized ordinary differential equation. By differentiability of solutions with respect to initial condition for the generalized ODE, we obtain the differentiability for the measure functional differential equation.

measure functional differential equation; differentiability of solutions; Kurzweil integral; generalized ordinary differential equation

1 Introduction

There are many sources that describe the differentiability of solutions with respect to initial conditions for ordinary differential equations, such as [1-2]. From [3], we can see the description of a similar type for ordinary differential equations, and for dynamic equations on time scales. Similar work as [3] was also carried out in [4]. In this paper, we consider the measure differential equations.

When a system described by ordinary differential equation

(1)

is acted upon by perturbation, the resultant perturbed system is generally given by ordinary differential equation of the form dx/dt=f(t,x)+G(t,x), where we assume the perturbation termG(t,x) is well-behaved, i.e.,G(t,x) is continuous or integrable and as such the state of the system changes continuously with respect to time. However, in some system, the perturbations are impulsive, so we cannot expect the perturbation is always well-behaved. Therefore, the following equation

(2)

was defined in [5], whereDudenotes the distributional derivative of functionu. Ifuis a function of bounded variation,Ducan be identified with a Stieltjes measure, it will suddenly change the state of the system at a discontinuity ofu. In [5], equations of the form (2) are called measure differential equations, also a special case of the equation (2). Inspired by [5], the authors of [6] have generalized a very useful functional differential equation as following

(3)

wherextrepresents the restriction of the functionx(·) (x(·) denotes a solution of equation (2)) means a function of bounded variation whose distributional derivativeDxsatisfies the equation (2) on the interval [m(t),n(t)],mandnbeing functions with the propertym(t)≤n(t)≤t.

Moreover, in [7], an important theorem was proved. The main contents are as following:

x(·) is a solution of (2) through (t0,x0) on an intervalI, with left end pointt0, if and only ifx(·) satisfies the following equations

Authors of [8] especially proved the following measure functional differential equation with infinite delay

(4)

is equivalent to the generalized ordinary differential equation under some conditions. Also, equations (4) is the integral form of the following measure equation

Dx=G(s,xs)dg(s),

whereg(s) is a nondecreasing function, and the integral on the right-hand side of (4) is the Kurzweil-Stieltjes integral.

In this paper, we shall consider differentiability of initial value problem for measure differential equations

(5)

wherexis an unknown function with values inRnandthesymbolxsdenotesthefunctionxs(τ)=x(s+τ)definedon(-∞,0],whichcorrespondingtothelengthofthedelay, f:P×[t0,t0+σ]→Rnis a function satisfies the following conditions (A)-(C):

(B)ThereexistsafunctionM:[t0,t0+σ] →R+,whichisKurzweil-Stieltjiesintegrablewithrespecttog,suchthat

wheneverx∈Oand[a,b]?[t0,to+σ].

(C)ThereexistsafunctionL :[t0,to+σ] →R+,which is Kurzweil-Stieltjies integrable with respect tog, such that

wheneverx,y∈Oand [a,b]?[t0,to+σ].(we assume that the integral on the right-hand side exists).

Andg:[t0,t0+σ]→Risanondecreasingfunction, P={xt:x∈O,t∈[t0, t0+σ]}? H0,H0? G((-∞,0],Rn) is a Banach space equipped with a norm denoted by ‖·‖. We assumeH0satisfies the following conditions (H1)-(H6):

(H1)H0is complete.

(H2) Ifx∈H0andt<0, thenxt∈H0.

(H3) There exists a locally bounded functionk1:(-∞,0]→R+suchthatifx∈H0andt≤0,then‖x(t)‖≤k1(t)‖x‖.

(H4)Thereexistsafunctionk2: (0,∞) →[1,∞)suchthatifσ > 0andx∈H0isafunctionwhosesupportiscontainedin[-σ,0],then

(H5) There exists a locally bounded functionk3:(-∞,0]→R+suchthatifx∈H0andt≤0,then

(H6)Ifx∈H0,thenthefunctiont |→‖xt‖isregulatedon(-∞,0].

t0∈R,σ>0,O?Ht0+σis a space satisfying conditions 1)-6) of Lemma 2.7.G((-∞,0],Rn)denotesthesetofallregulatedfunctionsf:(-∞,0]→Rn.

Our main result is to derive the differentiability of solutions with respect to initial conditions for measure function differential equations with infinite delay.

2 Preliminaries

We start this section with a short summary of Kurzweil integral.

Letδ:[a,b]→R+beafunction,andτbeapartitionofinterval[a,b]withdivisionpointsa=α0≤α1≤…≤αk=b.Thetagsτi∈[αi-1,αi]iscalledδ-fineif[αi-1,αi]?[τi-δ(τi),τi+δ(τi)],i=1,2,…,k.

Definition2.1[2]Amatrix-valuedfunctionF:[a,b]×[a,b]→Rn×mis called Kurzweil integrable on [a,b], if there is a matrixI∈Rn×msuchthatforeveryε>0,thereisagaugeδon[a,b]suchthat

AnimportantspecialcaseistheKurzweil-Stieltjesintegralofafunctionf:[a,b]→Rnwith respect to a functiong:[a,b]→R, which corresponds to the choice

Definition 2.2[1]G?Rn× R,(x,t)∈G, a functionx:[a,b]→Bis called a solution of the generalized ordinary differential equation

(7)

whenever

Definition 2.3[8]LetXbe a Banach space. Consider a setO?X. A functionF:O×[t0,t0+σ] →Xbelongs to the classF(O × [t0,t0+σ] ,h,k),ifthefollowingconditionsaresatisfied:

(F1)Thereexistsanondecreasingfunctionh:[t0,t0+σ]→R such thatF:O×[t0,t0+σ] →Xsatisfies

for everyx∈Oands1,s2∈[t0,t0+σ],

(F2) There exists a nondecreasing functionk:[t0,t0+σ]→RsuchthatF:O×[t0,t0+σ] →Xsatisfies

(9)

foreveryx,y∈Oands1,s2∈[t0,t0+σ],

Lemma 2.2[2]LetU:[a,b]×[a,b]→Rn×nbeaKurzweilintegrablefunction,assumethereexistsapairoffunctionsf:[a,b]→Rnandg:[a,b]→Rsuchthatfisregulated, gisnondecreasing,and

(10)

Then

Lemma2.3[9]AssumethatU:[a,b]×[a,b]→Rn×mis Kurzweil integrable andu:[a,b]→Rn×misitsprimitive,i.e.,

IfUisregulatedinthesecondvariable,thenuisregulatedandsatisfies

Moreover,ifthereexistsanondecreasingfunctionh:[a,b]→R such that

then

Lemma 2.4[9]Leth:[a,b]→[0,+∞) be a nondecreasing left-continuous function,k>0,l≥0. If thatψ:[a,b]→[0,+∞) is bounded and satisfies

thenψ(ξ)≤kel(h(ξ)-h(a))for everyξ∈[a,b].

Lemma 2.5[2]Assume thatF:[a,b]×[a,b]→Rn×nsatisfies(8).Lety,z :[a,b]→Rnbe a pair of functions such that

Then,zis regulated on [a,b].

Lemma 2.6[2]Assume thatF:[a,b]×[a,b]→Rn×nisKurzweilintegrableandsatisfies(8)withaleft-continuousfunctionh.Thenforeveryz0∈Rn, the initial value problem

(12)

has a unique solutionz:[a,b]→Rn.

Toestablishthecorrespondencebetweenmeasurefunctionaldifferentialequationsandgeneralizedordinarydifferentialequations,wealsoneedasuitablespaceHaofregulatedfunctionsdefinedon(-∞,a],wherea∈R, the next lemma shows that the spacesHainherit all important properties ofH0.

Lemma 2.7[8]IfH0?G((-∞,0],Rn)isaspacesatisfyingconditions1)-6),thenthefollowingstatementsaretrueforeverya∈R:

1)Hais complete; 2) Ifx∈Haandt≤a, thenxt∈H0; 3) Ift≤aandx∈Ha, then ‖x(t)‖≤k1(t-a)‖x‖; 4) Ifσ> 0 andx∈Ha+σis a function whose support is contained in [a,a+σ], then

5) Ifx∈Ha+σandt≤a+σ, then ‖xt‖≤k3(t-a-σ)‖x‖; 6) Ifx∈Ha+σ, then the functiont|→‖xt‖is regulated on (-∞,a+σ].

Theorem 2.8[8]Assume thatOis a subset ofHt0+σhaving the prolongation property fort≥t0,P={xt:x∈O,t∈[t0,t0+σ]},?∈P,g:[t0,t0+σ]→Risanondecreasingfunction, f:P×[t0,t0+σ]→Rnsatisfies conditions (A), (B), (C), andF:O×[t0,t0+σ]→G((-∞,t0+σ],Rn)givenby(13)hasvaluesinHa+σ.Ify∈Oisasolutionofthemeasurefunctionaldifferentialequation

then the functionx:[t0,t0+σ]→Ogiven by

is a solution of the generalized ordinary differential equation

Wherextakes values inO, andF:O×[t0,t0+σ]→G((-∞,t0+σ],Rn)isgivenby

(13)

for everyx∈Oandt∈[t0,t0+σ].

Proof The statement follows easily from Theorem 3.6 in [8]

3 Main result

Now, we discuss the differentiability theorem of solutions with respect to initial conditions for equation (5).

Theorem 3.1 Letf:P×[t0,t0+σ]→RnbeacontinuousfunctionwhosederivativefxexistsandiscontinuousonP×[t0,t0+σ],andsatisfiestheaforementionedconditions(A)-(C),whereP={xt:x∈O, t∈[t0, t0+σ]}? H0,andH0? G((-∞,0],Rn) be a Banach space satisfying the aforementioned conditions (H1)-(H6),t0∈{R},σ>0, O? Ht0+σ.Ifg : [t0,t0+σ]→R is a nondecreasing function andλ0∈Rl,σ>0,Λ={λ∈Rl; ‖λ-λ0‖<σ},x0:Λ→O× [t0,t0+σ] for everyλ∈Λ, the initial value problem of the measure functional differential equations with infinite delay (5) is equivalent to the initial value problem

(14)

then (14) has a solution defined on [t0,t0+σ]. Letx(t,λ) be the value of that solution att∈[t0,t0+σ].

Moreover, let the following conditions be satisfied:

1) For every fixedt∈[t0,t0+σ], the functionx|→F(x,t) is continuously differentiable onO× [t0,t0+σ].

2) The functionx0is differentiable atλ0.

Then the functionλ|→x(t,λ) is differentiable atλ0, uniformly for allt∈[t0,t0+σ]. Moreover, its derivativeZ(t)=xλ(t,λ0),t∈[t0,t0+σ] is the unique solution of the generalized differential equation

(15)

Proof Our proof is based on the idea from [2].

According to the assumptions, there exist positive constantsA1,A2such that

for everyx,y∈O,t∈[t0,t0+σ], andt0≤t1

for everyx∈O, the fourth statement of Lemma 2.7 implies

where

by the fifth statement of Lemma 2.7. The last expression is smaller than or equal to

where

i.e.,Fx∈F(O × [t0,t0+σ],h,k).

BecauseofO × [t0,t0+σ]isclosed,accordingtothemean-valuetheoremforvectorvaluedfunctionandFx∈F(O× [t0,t0+σ],h,k)

(16)

By the assumptions, we have

According to the Lemma 2.3, every solutionxis a regulated and left-continuous function on [t0,t0+σ]. If Δλ∈Rlissuchthat‖Δλ‖<σ,then

where

By(16),weobtain

andbyusingLemma2.2,foreverys∈[t0,t0+σ],weobtain

Consequently,byusingLemma2.4,wehave

SowecanseethatwhenΔλ→0, x(s,λ0+Δλ)→x(s,λ0)uniformlyforalls∈[t0,t0+σ].

LetW(τ,t)=Fx(x(τ,λ0),t).BecauseFx∈F(O× [t0,t0+σ] ,h,k),W(τ,t) satisfies (16), by Lemma 2.6, (15) has a unique solutionZ:[t0,t0+σ]→Rn× n.ByusingLemma2.5,thesolutionisregulated.SothereexistsaconstantN>0suchthat‖Z(t)‖≤N,t∈[t0,t0+σ].ForeveryΔλ∈Rlsuch that ‖Δλ‖<σ, let

Next, we will prove that if Δλ→0, thenφ(r,Δλ)→0 uniformly forr∈[t0,t0+σ].

Letε>0 be given, there exists aδ>0 such that if Δλ∈Rland‖Δλ‖<σ,then

and

It is obvious that

where

Thus,

Because of the functionx|→F(x,t) is continuously differentiable onO×[t0,t0+σ] and the definition of theφ(r,Δλ), so for any givenε>0,t,s∈[t0,t0+σ], we have

and thus (usingFx∈F(O × [t0,t0+σ] ,h,k) )

Consequently

Finally,Gronwall’sinequalityleadstotheestimate

Sinceε→0+,wehavethatifΔλ→0,thenφ(r,Δλ)→0uniformlyforanyr∈[t0,t0+σ].

[1] KEllEY W G, PETERSON A C. The Theory of Differential Equations[M]. 2nd ed. New York:Springer-Verlag,2010.

[3] LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.

[4] HILSHCER R, ZEIDAN V, KRATZ W. Differentiation of solutions of dynamic equations on time scales with respect to parameters[J]. Adv Dyn Syst Appl,2009,4(1):35-54.

[5] SCHMAEDEKE W W. Optimal control theory for nonlinear vector differential equations containing measures[J]. SIAM Control,1965,3(2):231-280.

[6] DAS P C, SHARMA R R. On optimal comtrols for measure delay-differential equations[J]. SIAM Control,1971,9(1):43-61.

[7] PURNA C D, RISHI R S. Existence and stability of measure differential equations[J]. Czechoslovak Math J,1972,22(97):145-158.

[12] VERHUST F. Nonlinear Differential Equations and Dynamical Systems[M]. 2nd ed. New York:Springer-Verlag,2000.

[13] KURZWEIL J. Generalized ordinary differential equations and continuous dependence on a parameter[J]. Czechoslovak Math,1957,82(7):418-449.

[14] 朱雯雯,徐有基. 帶非線性邊界條件的一階微分方程多個正解的存在性[J]. 四川師范大學(xué)學(xué)報(自然科學(xué)版),2016,39(2):226-230.

[15] KURZWEIL J. Generalized ordinary differential equations[J]. Czechoslovak Math J,1958,83(8):360-389.

無限滯后測度泛函微分方程的解關(guān)于初值條件的可微性

李寶麟, 王保弟

(西北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 甘肅 蘭州 730070)

利用廣義常微分方程的解關(guān)于初值條件的可微性,考慮可以轉(zhuǎn)化為廣義常微分方程的無限時滯測度泛函微分方程,得到這類方程的解關(guān)于初值條件的可微性.

測度泛函微分方程; 解的可微性; Kurzweil 積分; 廣義常微分方程

O175.12

A

1001-8395(2017)01-0061-07

2016-07-01

國家自然科學(xué)基金(11061031)

李寶麟(1963—)男,教授,主要從事常微分方程和拓?fù)鋭恿ο到y(tǒng)的研究,E-mail:libl@nwnu.edu.cn

Foundation Items:This work is supported by National Natural Science Foundation of China (No.11061031)

10.3969/j.issn.1001-8395.2017.01.010

(編輯 陶志寧)

Received date:2016-07-01

2010 MSC:26A39; 30G30; 34A20; 34G10

主站蜘蛛池模板: 亚洲香蕉伊综合在人在线| 国产午夜不卡| 好吊妞欧美视频免费| 国产亚洲精品资源在线26u| 午夜免费小视频| 亚洲成a人片| 免费99精品国产自在现线| AV网站中文| 亚洲永久精品ww47国产| 97av视频在线观看| 99在线观看精品视频| 欧美性精品| 亚洲人成影院午夜网站| 欧美成a人片在线观看| 亚洲欧美另类中文字幕| 狠狠操夜夜爽| 中文字幕在线视频免费| 亚洲精品777| 日韩精品久久久久久久电影蜜臀| 中国一级毛片免费观看| 99人体免费视频| 国产亚洲精品yxsp| 99成人在线观看| 在线欧美日韩| 国产AV毛片| 手机在线免费毛片| 国产亚洲日韩av在线| 91福利免费视频| 男女精品视频| 中文字幕亚洲电影| 精品视频一区二区三区在线播| 国产成人乱无码视频| 欧美国产成人在线| 日韩小视频网站hq| 久久久久夜色精品波多野结衣| 91精品亚洲| 午夜天堂视频| 国产精品观看视频免费完整版| 亚洲欧美日韩动漫| 久久精品人人做人人综合试看| 久久情精品国产品免费| 欧美日韩一区二区在线播放| 国产99视频免费精品是看6| 国模在线视频一区二区三区| 亚洲国产欧美自拍| 免费一级毛片在线观看| 精品国产成人三级在线观看| 国产欧美日韩综合一区在线播放| 精品国产香蕉在线播出| 国产欧美视频在线| 亚洲精品777| 特级精品毛片免费观看| 国产日本视频91| 亚洲欧洲一区二区三区| 国产一区二区视频在线| 2022国产无码在线| 国产精品白浆无码流出在线看| 永久免费无码日韩视频| 影音先锋丝袜制服| 99热这里只有精品5| 国产91蝌蚪窝| 综合色天天| 久久久久国产精品嫩草影院| 黄色福利在线| 国产91小视频| 免费人成在线观看成人片| 国产美女91呻吟求| 欧日韩在线不卡视频| 欧美成一级| 午夜福利在线观看成人| 狠狠色狠狠色综合久久第一次| 找国产毛片看| 日本欧美一二三区色视频| 中文字幕丝袜一区二区| 国产资源免费观看| 亚洲精品国产首次亮相| 欧美成人午夜影院| 久久婷婷五月综合97色| 亚洲成aⅴ人片在线影院八| 欧美日韩在线成人| 国产成人久久综合一区| 欧美在线国产|