999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Measure Functional Differential Equations with Infinite Delay: Differentiability of Solutions with Respect to Initial Conditions

2017-05-15 11:09:30LIBaolinWANGBaodi

LI Baolin, WANG Baodi

(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu)

Measure Functional Differential Equations with Infinite Delay: Differentiability of Solutions with Respect to Initial Conditions

LI Baolin, WANG Baodi

(CollegeofMathematicsandStatistics,NorthwestNormalUniversity,Lanzhou730070,Gansu)

In this paper, we consider a measure functional differential equation with infinite delay,which can be changed into a generalized ordinary differential equation. By differentiability of solutions with respect to initial condition for the generalized ODE, we obtain the differentiability for the measure functional differential equation.

measure functional differential equation; differentiability of solutions; Kurzweil integral; generalized ordinary differential equation

1 Introduction

There are many sources that describe the differentiability of solutions with respect to initial conditions for ordinary differential equations, such as [1-2]. From [3], we can see the description of a similar type for ordinary differential equations, and for dynamic equations on time scales. Similar work as [3] was also carried out in [4]. In this paper, we consider the measure differential equations.

When a system described by ordinary differential equation

(1)

is acted upon by perturbation, the resultant perturbed system is generally given by ordinary differential equation of the form dx/dt=f(t,x)+G(t,x), where we assume the perturbation termG(t,x) is well-behaved, i.e.,G(t,x) is continuous or integrable and as such the state of the system changes continuously with respect to time. However, in some system, the perturbations are impulsive, so we cannot expect the perturbation is always well-behaved. Therefore, the following equation

(2)

was defined in [5], whereDudenotes the distributional derivative of functionu. Ifuis a function of bounded variation,Ducan be identified with a Stieltjes measure, it will suddenly change the state of the system at a discontinuity ofu. In [5], equations of the form (2) are called measure differential equations, also a special case of the equation (2). Inspired by [5], the authors of [6] have generalized a very useful functional differential equation as following

(3)

wherextrepresents the restriction of the functionx(·) (x(·) denotes a solution of equation (2)) means a function of bounded variation whose distributional derivativeDxsatisfies the equation (2) on the interval [m(t),n(t)],mandnbeing functions with the propertym(t)≤n(t)≤t.

Moreover, in [7], an important theorem was proved. The main contents are as following:

x(·) is a solution of (2) through (t0,x0) on an intervalI, with left end pointt0, if and only ifx(·) satisfies the following equations

Authors of [8] especially proved the following measure functional differential equation with infinite delay

(4)

is equivalent to the generalized ordinary differential equation under some conditions. Also, equations (4) is the integral form of the following measure equation

Dx=G(s,xs)dg(s),

whereg(s) is a nondecreasing function, and the integral on the right-hand side of (4) is the Kurzweil-Stieltjes integral.

In this paper, we shall consider differentiability of initial value problem for measure differential equations

(5)

wherexis an unknown function with values inRnandthesymbolxsdenotesthefunctionxs(τ)=x(s+τ)definedon(-∞,0],whichcorrespondingtothelengthofthedelay, f:P×[t0,t0+σ]→Rnis a function satisfies the following conditions (A)-(C):

(B)ThereexistsafunctionM:[t0,t0+σ] →R+,whichisKurzweil-Stieltjiesintegrablewithrespecttog,suchthat

wheneverx∈Oand[a,b]?[t0,to+σ].

(C)ThereexistsafunctionL :[t0,to+σ] →R+,which is Kurzweil-Stieltjies integrable with respect tog, such that

wheneverx,y∈Oand [a,b]?[t0,to+σ].(we assume that the integral on the right-hand side exists).

Andg:[t0,t0+σ]→Risanondecreasingfunction, P={xt:x∈O,t∈[t0, t0+σ]}? H0,H0? G((-∞,0],Rn) is a Banach space equipped with a norm denoted by ‖·‖. We assumeH0satisfies the following conditions (H1)-(H6):

(H1)H0is complete.

(H2) Ifx∈H0andt<0, thenxt∈H0.

(H3) There exists a locally bounded functionk1:(-∞,0]→R+suchthatifx∈H0andt≤0,then‖x(t)‖≤k1(t)‖x‖.

(H4)Thereexistsafunctionk2: (0,∞) →[1,∞)suchthatifσ > 0andx∈H0isafunctionwhosesupportiscontainedin[-σ,0],then

(H5) There exists a locally bounded functionk3:(-∞,0]→R+suchthatifx∈H0andt≤0,then

(H6)Ifx∈H0,thenthefunctiont |→‖xt‖isregulatedon(-∞,0].

t0∈R,σ>0,O?Ht0+σis a space satisfying conditions 1)-6) of Lemma 2.7.G((-∞,0],Rn)denotesthesetofallregulatedfunctionsf:(-∞,0]→Rn.

Our main result is to derive the differentiability of solutions with respect to initial conditions for measure function differential equations with infinite delay.

2 Preliminaries

We start this section with a short summary of Kurzweil integral.

Letδ:[a,b]→R+beafunction,andτbeapartitionofinterval[a,b]withdivisionpointsa=α0≤α1≤…≤αk=b.Thetagsτi∈[αi-1,αi]iscalledδ-fineif[αi-1,αi]?[τi-δ(τi),τi+δ(τi)],i=1,2,…,k.

Definition2.1[2]Amatrix-valuedfunctionF:[a,b]×[a,b]→Rn×mis called Kurzweil integrable on [a,b], if there is a matrixI∈Rn×msuchthatforeveryε>0,thereisagaugeδon[a,b]suchthat

AnimportantspecialcaseistheKurzweil-Stieltjesintegralofafunctionf:[a,b]→Rnwith respect to a functiong:[a,b]→R, which corresponds to the choice

Definition 2.2[1]G?Rn× R,(x,t)∈G, a functionx:[a,b]→Bis called a solution of the generalized ordinary differential equation

(7)

whenever

Definition 2.3[8]LetXbe a Banach space. Consider a setO?X. A functionF:O×[t0,t0+σ] →Xbelongs to the classF(O × [t0,t0+σ] ,h,k),ifthefollowingconditionsaresatisfied:

(F1)Thereexistsanondecreasingfunctionh:[t0,t0+σ]→R such thatF:O×[t0,t0+σ] →Xsatisfies

for everyx∈Oands1,s2∈[t0,t0+σ],

(F2) There exists a nondecreasing functionk:[t0,t0+σ]→RsuchthatF:O×[t0,t0+σ] →Xsatisfies

(9)

foreveryx,y∈Oands1,s2∈[t0,t0+σ],

Lemma 2.2[2]LetU:[a,b]×[a,b]→Rn×nbeaKurzweilintegrablefunction,assumethereexistsapairoffunctionsf:[a,b]→Rnandg:[a,b]→Rsuchthatfisregulated, gisnondecreasing,and

(10)

Then

Lemma2.3[9]AssumethatU:[a,b]×[a,b]→Rn×mis Kurzweil integrable andu:[a,b]→Rn×misitsprimitive,i.e.,

IfUisregulatedinthesecondvariable,thenuisregulatedandsatisfies

Moreover,ifthereexistsanondecreasingfunctionh:[a,b]→R such that

then

Lemma 2.4[9]Leth:[a,b]→[0,+∞) be a nondecreasing left-continuous function,k>0,l≥0. If thatψ:[a,b]→[0,+∞) is bounded and satisfies

thenψ(ξ)≤kel(h(ξ)-h(a))for everyξ∈[a,b].

Lemma 2.5[2]Assume thatF:[a,b]×[a,b]→Rn×nsatisfies(8).Lety,z :[a,b]→Rnbe a pair of functions such that

Then,zis regulated on [a,b].

Lemma 2.6[2]Assume thatF:[a,b]×[a,b]→Rn×nisKurzweilintegrableandsatisfies(8)withaleft-continuousfunctionh.Thenforeveryz0∈Rn, the initial value problem

(12)

has a unique solutionz:[a,b]→Rn.

Toestablishthecorrespondencebetweenmeasurefunctionaldifferentialequationsandgeneralizedordinarydifferentialequations,wealsoneedasuitablespaceHaofregulatedfunctionsdefinedon(-∞,a],wherea∈R, the next lemma shows that the spacesHainherit all important properties ofH0.

Lemma 2.7[8]IfH0?G((-∞,0],Rn)isaspacesatisfyingconditions1)-6),thenthefollowingstatementsaretrueforeverya∈R:

1)Hais complete; 2) Ifx∈Haandt≤a, thenxt∈H0; 3) Ift≤aandx∈Ha, then ‖x(t)‖≤k1(t-a)‖x‖; 4) Ifσ> 0 andx∈Ha+σis a function whose support is contained in [a,a+σ], then

5) Ifx∈Ha+σandt≤a+σ, then ‖xt‖≤k3(t-a-σ)‖x‖; 6) Ifx∈Ha+σ, then the functiont|→‖xt‖is regulated on (-∞,a+σ].

Theorem 2.8[8]Assume thatOis a subset ofHt0+σhaving the prolongation property fort≥t0,P={xt:x∈O,t∈[t0,t0+σ]},?∈P,g:[t0,t0+σ]→Risanondecreasingfunction, f:P×[t0,t0+σ]→Rnsatisfies conditions (A), (B), (C), andF:O×[t0,t0+σ]→G((-∞,t0+σ],Rn)givenby(13)hasvaluesinHa+σ.Ify∈Oisasolutionofthemeasurefunctionaldifferentialequation

then the functionx:[t0,t0+σ]→Ogiven by

is a solution of the generalized ordinary differential equation

Wherextakes values inO, andF:O×[t0,t0+σ]→G((-∞,t0+σ],Rn)isgivenby

(13)

for everyx∈Oandt∈[t0,t0+σ].

Proof The statement follows easily from Theorem 3.6 in [8]

3 Main result

Now, we discuss the differentiability theorem of solutions with respect to initial conditions for equation (5).

Theorem 3.1 Letf:P×[t0,t0+σ]→RnbeacontinuousfunctionwhosederivativefxexistsandiscontinuousonP×[t0,t0+σ],andsatisfiestheaforementionedconditions(A)-(C),whereP={xt:x∈O, t∈[t0, t0+σ]}? H0,andH0? G((-∞,0],Rn) be a Banach space satisfying the aforementioned conditions (H1)-(H6),t0∈{R},σ>0, O? Ht0+σ.Ifg : [t0,t0+σ]→R is a nondecreasing function andλ0∈Rl,σ>0,Λ={λ∈Rl; ‖λ-λ0‖<σ},x0:Λ→O× [t0,t0+σ] for everyλ∈Λ, the initial value problem of the measure functional differential equations with infinite delay (5) is equivalent to the initial value problem

(14)

then (14) has a solution defined on [t0,t0+σ]. Letx(t,λ) be the value of that solution att∈[t0,t0+σ].

Moreover, let the following conditions be satisfied:

1) For every fixedt∈[t0,t0+σ], the functionx|→F(x,t) is continuously differentiable onO× [t0,t0+σ].

2) The functionx0is differentiable atλ0.

Then the functionλ|→x(t,λ) is differentiable atλ0, uniformly for allt∈[t0,t0+σ]. Moreover, its derivativeZ(t)=xλ(t,λ0),t∈[t0,t0+σ] is the unique solution of the generalized differential equation

(15)

Proof Our proof is based on the idea from [2].

According to the assumptions, there exist positive constantsA1,A2such that

for everyx,y∈O,t∈[t0,t0+σ], andt0≤t1

for everyx∈O, the fourth statement of Lemma 2.7 implies

where

by the fifth statement of Lemma 2.7. The last expression is smaller than or equal to

where

i.e.,Fx∈F(O × [t0,t0+σ],h,k).

BecauseofO × [t0,t0+σ]isclosed,accordingtothemean-valuetheoremforvectorvaluedfunctionandFx∈F(O× [t0,t0+σ],h,k)

(16)

By the assumptions, we have

According to the Lemma 2.3, every solutionxis a regulated and left-continuous function on [t0,t0+σ]. If Δλ∈Rlissuchthat‖Δλ‖<σ,then

where

By(16),weobtain

andbyusingLemma2.2,foreverys∈[t0,t0+σ],weobtain

Consequently,byusingLemma2.4,wehave

SowecanseethatwhenΔλ→0, x(s,λ0+Δλ)→x(s,λ0)uniformlyforalls∈[t0,t0+σ].

LetW(τ,t)=Fx(x(τ,λ0),t).BecauseFx∈F(O× [t0,t0+σ] ,h,k),W(τ,t) satisfies (16), by Lemma 2.6, (15) has a unique solutionZ:[t0,t0+σ]→Rn× n.ByusingLemma2.5,thesolutionisregulated.SothereexistsaconstantN>0suchthat‖Z(t)‖≤N,t∈[t0,t0+σ].ForeveryΔλ∈Rlsuch that ‖Δλ‖<σ, let

Next, we will prove that if Δλ→0, thenφ(r,Δλ)→0 uniformly forr∈[t0,t0+σ].

Letε>0 be given, there exists aδ>0 such that if Δλ∈Rland‖Δλ‖<σ,then

and

It is obvious that

where

Thus,

Because of the functionx|→F(x,t) is continuously differentiable onO×[t0,t0+σ] and the definition of theφ(r,Δλ), so for any givenε>0,t,s∈[t0,t0+σ], we have

and thus (usingFx∈F(O × [t0,t0+σ] ,h,k) )

Consequently

Finally,Gronwall’sinequalityleadstotheestimate

Sinceε→0+,wehavethatifΔλ→0,thenφ(r,Δλ)→0uniformlyforanyr∈[t0,t0+σ].

[1] KEllEY W G, PETERSON A C. The Theory of Differential Equations[M]. 2nd ed. New York:Springer-Verlag,2010.

[3] LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.

[4] HILSHCER R, ZEIDAN V, KRATZ W. Differentiation of solutions of dynamic equations on time scales with respect to parameters[J]. Adv Dyn Syst Appl,2009,4(1):35-54.

[5] SCHMAEDEKE W W. Optimal control theory for nonlinear vector differential equations containing measures[J]. SIAM Control,1965,3(2):231-280.

[6] DAS P C, SHARMA R R. On optimal comtrols for measure delay-differential equations[J]. SIAM Control,1971,9(1):43-61.

[7] PURNA C D, RISHI R S. Existence and stability of measure differential equations[J]. Czechoslovak Math J,1972,22(97):145-158.

[12] VERHUST F. Nonlinear Differential Equations and Dynamical Systems[M]. 2nd ed. New York:Springer-Verlag,2000.

[13] KURZWEIL J. Generalized ordinary differential equations and continuous dependence on a parameter[J]. Czechoslovak Math,1957,82(7):418-449.

[14] 朱雯雯,徐有基. 帶非線性邊界條件的一階微分方程多個正解的存在性[J]. 四川師范大學(xué)學(xué)報(自然科學(xué)版),2016,39(2):226-230.

[15] KURZWEIL J. Generalized ordinary differential equations[J]. Czechoslovak Math J,1958,83(8):360-389.

無限滯后測度泛函微分方程的解關(guān)于初值條件的可微性

李寶麟, 王保弟

(西北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 甘肅 蘭州 730070)

利用廣義常微分方程的解關(guān)于初值條件的可微性,考慮可以轉(zhuǎn)化為廣義常微分方程的無限時滯測度泛函微分方程,得到這類方程的解關(guān)于初值條件的可微性.

測度泛函微分方程; 解的可微性; Kurzweil 積分; 廣義常微分方程

O175.12

A

1001-8395(2017)01-0061-07

2016-07-01

國家自然科學(xué)基金(11061031)

李寶麟(1963—)男,教授,主要從事常微分方程和拓?fù)鋭恿ο到y(tǒng)的研究,E-mail:libl@nwnu.edu.cn

Foundation Items:This work is supported by National Natural Science Foundation of China (No.11061031)

10.3969/j.issn.1001-8395.2017.01.010

(編輯 陶志寧)

Received date:2016-07-01

2010 MSC:26A39; 30G30; 34A20; 34G10

主站蜘蛛池模板: 亚洲三级视频在线观看| 欧美一级黄片一区2区| 黄网站欧美内射| 免费a级毛片18以上观看精品| 亚洲第一成年网| 色综合五月| 素人激情视频福利| 无码丝袜人妻| 色吊丝av中文字幕| 国产成人毛片| 伊人久久久大香线蕉综合直播| 人妻免费无码不卡视频| 91蜜芽尤物福利在线观看| 特级aaaaaaaaa毛片免费视频 | 综合亚洲网| 日本高清视频在线www色| 无码精油按摩潮喷在线播放 | 全色黄大色大片免费久久老太| 波多野结衣中文字幕一区二区| 日本道综合一本久久久88| 亚洲精品欧美重口| 欧美一区二区精品久久久| 午夜在线不卡| 影音先锋丝袜制服| 午夜免费视频网站| 99热6这里只有精品| 亚洲av色吊丝无码| 国产精品三级专区| 亚洲福利视频一区二区| 91福利国产成人精品导航| 91小视频版在线观看www| 一区二区三区成人| 香蕉国产精品视频| 国产亚洲精品91| 日韩av手机在线| 中文字幕在线不卡视频| 狠狠色噜噜狠狠狠狠色综合久| 午夜影院a级片| 欧美色图久久| 国产打屁股免费区网站| 欧美日韩精品一区二区视频| m男亚洲一区中文字幕| 中国特黄美女一级视频| 亚洲丝袜中文字幕| 在线观看国产精品第一区免费 | av午夜福利一片免费看| 亚洲最黄视频| 国内精品久久人妻无码大片高| 波多野结衣中文字幕一区二区| 国产精品原创不卡在线| 亚洲中文字幕97久久精品少妇| 国产欧美亚洲精品第3页在线| 麻豆精品视频在线原创| 一级成人欧美一区在线观看| 99爱视频精品免视看| 五月天福利视频| 国产成人a在线观看视频| 亚洲av无码成人专区| 色婷婷在线播放| 婷婷综合亚洲| 欧美成人亚洲综合精品欧美激情| 熟妇人妻无乱码中文字幕真矢织江| 久久熟女AV| 国产在线视频福利资源站| 欧美激情福利| 在线精品视频成人网| 97人人模人人爽人人喊小说| 欧美成人看片一区二区三区| 久久动漫精品| 色综合天天综合| AⅤ色综合久久天堂AV色综合| yjizz国产在线视频网| 国产无人区一区二区三区| 九色免费视频| 精品国产成人三级在线观看| 欧美日韩中文字幕在线| a色毛片免费视频| 欧美另类视频一区二区三区| 狠狠做深爱婷婷综合一区| 国禁国产you女视频网站| 国产乱子伦视频三区| 在线免费看片a|