999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Constructive Exposition on Simple Forcings and Countable Forcings

2017-05-15 10:56:01ZHUHuilingZHENGFudan

ZHU Huiling, ZHENG Fudan

(Guangzhou College, South China University of Technology, Guangzhou 510800, Guangdong)

A Constructive Exposition on Simple Forcings and Countable Forcings

ZHU Huiling, ZHENG Fudan

(GuangzhouCollege,SouthChinaUniversityofTechnology,Guangzhou510800,Guangdong)

In this paper, we explain two classes of forcings: simple forcings and countable forcings. A couple of examples that mathematician are interested in are studied as special cases of forcing. General theorems about these two classes are proved.

simple forcing; countable forcing; partial order; dense embedding; models

1 Introduction

In modern set theory, forcing is an effective technique in obtaining independent results. Since its discovery by Cohen[1], the application of forcing has been extended to many branches of mathematics. In particular, those branches with infinite objects. However, the highly technical feature of forcing also kept it away from being understood for many mathematicians. There are a couple of standard textbooks about forcing, for instance, [2-3]. These textbooks provide a detailed treatment of forcing and are suitable for those with basic knowledge about set theory. However, people believe that although the general theory of forcing is not an open research problem, it remains an open exposition problem, as illustrated in [4]. Therefore, logicians attempted to make the system of forcing more accessible to mathematicians who are interested in independent proof. For example, [4] put much effort in making forcing “transparent”. We wish to follow the line and make explanations of some more facts of forcing. The beginners of forcing are referred to [5-7] for basic notions and notations. Readers with interests in applications are referred to [8-9].

2 Simple Forcings

A trivial forcing consists of a singleton. Such a forcing will not affect the ground model at all. Mathematicians are familiar with many kinds of partial orders, for instance, finite partial orders, linear orders and lattices. In a sense that we will explain below, these partial orders are all simple, as they are reduced to a trivial forcing.

Forcing extends models of set theory, preserving certain features of the initial model and violating some others. In the study of forcing, it is crucial to analyze the properties of given partial orders. The general theory of forcing thus involves comparing two partial orders, finding similarities as well as differences between them.

The following theorem can be found in [2]:

Theorem 2.1 If there is a functionf:→satisfying:

1)Orderpreserving:Ifp≤p′,thenf(p)≤f(p′);

2)Density:Foranyq∈,thereissomep∈withf(p)≤q;

3)Non-triviality:Ifpandqareincompatible,thenf(p)andf(q)areincompatible.

Thenandgeneratesthesamegenericextension.

Ifanytwoanyelementsofarecompatible,thencanbedenselymappedintoatrivialforcing.

Corollary2.2Suchafunctionfiscalledadensemapping.Aninjectivedensemappingisusuallycalledadenseembedding.Wealsosaythatandareforcingequivalent,witnessedbyf.

ProofConsider{{?},=},whichisanexampleofatrivialforcing.Letf(p)=?foranyp.ThenthefirsttworequirementsofTheorem2.1hold.Thethirdrequirementholdssincetheassumptionfails.

Asaresult,anylinearorderorsemi-lowerlatticeisdenselymappedintoatrivialforcing.

Afiniteforcingisactuallyatomic,namely,everyconditionextendstoanatom.Sinceeverygenericfilterhastoincludealltheatoms,ithastoincludethewholepartialorder.Thentheforcingistrivialbydefinability.

3 Cohen Forcing

The first and most notable forcing was Cohen forcing[1], which uses finite segments to approximate a real. Namely, the partial order is (2<ω,?). A maximal collection of conditions which are mutually consistent will define a function fromωto 2. In set theory, reals are identified with such functions. More precisely, any such function corresponds to an irrational number in the inteval (0,1). Associated with the product topology, such a space is called the Cantor space. There are other variations of the space of reals. For instance,ωωwith the product topology is called the Baire space.

Cohen forcing is countable. In fact, any nontrivial countable partial orders yields the same generic extension. Though this is a known result, there is no text which present a direct construction. Therefore we explain it here in an accessible way by defining a dense embedding explicitly.

4 Examples of Countable Forcings

Before we proceed to the general case, let us start with some concrete examples.

Theorem 4.1 There is a dense embeddingf:(4<ω,?)→(2<ω,?).

Proof Letπ:4→22be a bijection. For instance,π(0)=〈00〉,π(1)=〈01〉,π(2)=〈10〉,π(3)=〈11〉. Definefas follows:

It is obvious thatfis a nontrivial embedding.

To show thatfis dense, letσ∈2<ω. Ifσhas an even length, letσ′=σ; otherwise, letσ′=σ⌒0. Letτ∈4<ωbe defined as:

Thenf(τ)=σ′?σ.

Theorem 4.2 The forcing (3<ω,?) can be densely embedded into (2<ω,?).

Proof Fixπwithπ(0)=〈0〉,π(1)=〈10〉,π(2)=〈11〉. Let

Notice that for everyσ∈2<ω, one can trace the digits from the root, find pieces of type 〈0〉, 〈10〉 or 〈11〉, and if the last remaining digit is 1, extendσwith a 0 to the tail. For instance, givenσ=〈0010110〉∈2<ω, considerτ=〈00120〉, thenh(τ)=σ. Givenσ=〈00101101〉, we first extend it toσ′=〈001011010〉, and letτ=〈001201〉, thenh(τ)=σ′<σ.

It is clear thathis a dense embedding.

Theorem 4.3 There is a dense embedding from (ω<ω,?) into (2<ω,?).

Proof First fix a codingπ:ω→2<ω. A canonical coding is the following:π(0)=?,π(1)=〈0〉,π(2)=〈1〉,π(3)=〈00〉,π(4)=〈01〉,π(5)=〈10〉,π(6)=〈11〉 etc.

Defineg:(ω<ω,?)→(3<ω,?) as follows:

gis clearly injective and order preserving.gis actually surjective and hence dense. One can trace the digits in 3<ωand find the suitable preimage. For instance, the sequence 〈0020210221211〉 has preimage 〈315026〉.

Combininggwith the dense embeddinghin Theorem 4.2, one gets a dense embedding from (ω<ω,?) into (2<ω,?).

5 The General Theorem

In this section, we prove the general theorem that two nontrivial countable forcings are actually equivalent.

A forcing partial order is usually assumed to be both separative and atomless. These requirements are used to keep the forcing away from being trivial. Namely, an atom in a forcing adds no generic object as it contributes no diversity to the forcing. Also, if a forcing is non-separative, then it contains some segments of linear ordering, which can be deleted without affecting the property of forcing.

Theorem 5.1 For every separative atomless countable partial order,thereisacountablepartialorder,whichcanbedenselyembeddingintobothand(2<ω,?).

WeprovefirstalemmaontheCohenforcing.

Lemma5.2Foranyσ∈(2<ω,?), 2≤n≤ω,thereisamaximalantichainbelowσwithcardinalityn.

ProofForeachn<ω,considertheset

InFigure1,theunderlinednodesformamaximalantichainofsize4.

Ifn=ω,considertheset

InFigure2,theunderlinednodesformamaximalantichainofsizeω.

ProofofTheorem5.1List={sm:m∈ω}.Firstly,wefindamaximalantichainA0={pn:n∈I0},whereI0isanindexset.Makesurethatthereissomepn≤s0andA0hasatleast2elements.

ItisclearthatA1isanantichain.Itisactuallymaximal.Foranyr,thereissomepncompatiblewithr.Letq≤pn, q≤r.Letpnkbecompatiblewithq,sayq′≤q, q′≤pnk.Thenq′≤rwitnessthatrandsomepnkarecompatible.

Inductively,atstepn,oneconstructamaximalantichainbelowanyconditionfoundatthepreviousstep.AndletAncollectalltheseconditionsfoundatstepn.Byinduction, Anisamaximalantichain.

Thisprocesscanbecarriedonasisseparativeandatomless:atstepm,thereissomea∈Am-1suchthatsnandaarecompatible.letr≤sm, r≤a.Sinceisatomless,wemayassumethatr

Nowdefine=∪{Am:m<ω}.Themappingfromtoissimplyinclusion.Toseethatisadensesubforcing,letsm∈,thenthereissomea∈Am?suchthata≤sm.

Themappingfrominto(2<ω,?)isdefinedasfollows:firstidentifyA0withamaximalantichainin(2<ω,?).ThiscanbeguaranteedbyLemma5.2,as2≤|A0|≤ω.Inductively,identifyAnwithamaximalantichainin(2<ω,?)whilepreservingthepartialorder.

Toseethedensity,onecanalsodealwithconditionsin(2<ω,?)diagonally,aswedidwith.

Remark5.3Theaboveproofisactuallythetypical“backandforth”argument,whichiseffectiveindealingwithcountableobjects.

6 Futher Problems

Inthissection,weconsidersomeproblemsforfuturestudy.

1)Aretheresemi-upperlatticeswhichareusefulinthesenseofforcing?

2)Foragivenalgebraicstructure,forinstance,aringorafield,isthereacanonicalwaytoassociateaforcingtoit?

3)Fortopologicalspaceswithdifferentseparability,isthereaclassificationtheoryinthewayofforcing?

[1] COHEN P J. The independence of the continuum hypothesis. I.[J]. Proc Natl Acad Sci,1963,50:1143-1148.

[2] JECH T. Set theory[C]//Springer Monographs in Mathematics. New York:Springer-Verlag,2003.

[3] KUNEN K. Set theory[C]//Studies in Logic and the Foundations of Mathematics,102. Amsterdam:North-Holland Publishing,1980.

[4] CHOW T Y. A beginner’s guide to forcing[C]//Communicating Mathematics,479. Providence:Am Math Soc,2009:25-40.

[5] JECH T. Multiple forcing[C]//Cambridge Tracts in Mathematics,88. Cambridge:Cambridge University Press,1986.

[6] JECH T. What is … forcing?[J]. Notices Am Math Soc,2008,55(6):692-693.

[7] JECH T. Set theory, with particular emphasis on the method of forcing[C]//Lecture Notes in Mathematics,217. New York:Springer-Verlag,1971.

[8] TODORCHEVICH S, FARAH I. Some applications of the method of forcing[C]//Yenisei Series in Pure and Applied Mathematics. Moscow:Lycee,1995.

[9] JECH T. Abstract theory of abelian operator algebras:an application of forcing[J]. Trans Am Math Soc,1985,289(1):133-162.

關于單純力迫和可數力迫的構造性闡述

朱慧靈, 鄭馥丹

(華南理工大學 廣州學院, 廣東 廣州 510800)

解釋了2類力迫,即單純力迫和可數力迫.將數學家經常遇到的幾類偏序作為力迫的特殊情況加以研究.證明了關于這2類力迫的一般性結論.

單純力迫; 可數力迫; 偏序; 稠密嵌入; 模型

O144.3

A

1001-8395(2017)01-0018-04

2015-10-03

國家自然科學基金(11401567)

朱慧靈(1985—),男,副教授,主要從事數理邏輯及其應用的研究,E-mail:zhuhl02@gmail.com

Foundation Items:This work is supported by National Natural Science Foundation of China (No.11401567)

10.3969/j.issn.1001-8395.2017.01.003

(編輯 周 俊)

Received date:2015-10-03

2010 MSC:03E17; 03E35; 03E50

主站蜘蛛池模板: 欧美在线导航| 国产91丝袜在线播放动漫 | 99re热精品视频中文字幕不卡| 亚洲成人黄色在线观看| 国产小视频a在线观看| 亚洲欧美日韩视频一区| 日本亚洲国产一区二区三区| 亚洲中文在线视频| 精品无码人妻一区二区| 亚洲Va中文字幕久久一区 | 欧美成人午夜在线全部免费| 亚洲an第二区国产精品| 久久青草免费91观看| 成人在线欧美| 高清码无在线看| 9丨情侣偷在线精品国产| 无码网站免费观看| 久久中文电影| 国产91线观看| 国产精品白浆无码流出在线看| 天天色天天综合网| 国产视频 第一页| 亚洲欧美在线看片AI| 999精品在线视频| 永久在线精品免费视频观看| 日韩高清在线观看不卡一区二区| 黄色网页在线播放| 免费黄色国产视频| 四虎永久免费地址| 99视频有精品视频免费观看| 日韩123欧美字幕| 久久这里只有精品国产99| 国产小视频在线高清播放| 免费福利视频网站| 青青草国产在线视频| 91福利片| 2024av在线无码中文最新| 久久成人免费| 国产专区综合另类日韩一区| 欧美成人日韩| 波多野结衣久久高清免费| 一级片免费网站| 三上悠亚在线精品二区| 中文字幕调教一区二区视频| 亚洲丝袜中文字幕| 亚洲h视频在线| 九九久久精品免费观看| 亚洲色大成网站www国产| 伊人成人在线视频| 亚洲av综合网| 久久黄色视频影| 国产丰满成熟女性性满足视频| 国产在线观看成人91| 国产91视频免费| 波多野结衣爽到高潮漏水大喷| 国产精品色婷婷在线观看| 日本福利视频网站| 亚洲成AV人手机在线观看网站| 青青草a国产免费观看| 婷婷综合亚洲| 欧美日在线观看| 无码有码中文字幕| 国产一区二区三区精品久久呦| 午夜日本永久乱码免费播放片| 日韩欧美视频第一区在线观看| 婷婷午夜天| 国产91视频免费观看| 成人字幕网视频在线观看| 亚洲国产日韩在线成人蜜芽| 欧美激情二区三区| 亚洲区一区| 亚洲精品无码抽插日韩| 亚洲国产清纯| 一边摸一边做爽的视频17国产| 国产网站免费看| 国产精品福利导航| 激情成人综合网| 在线观看免费AV网| 直接黄91麻豆网站| 国产微拍一区| 伊人激情久久综合中文字幕| 看你懂的巨臀中文字幕一区二区|