999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Constructive Exposition on Simple Forcings and Countable Forcings

2017-05-15 10:56:01ZHUHuilingZHENGFudan

ZHU Huiling, ZHENG Fudan

(Guangzhou College, South China University of Technology, Guangzhou 510800, Guangdong)

A Constructive Exposition on Simple Forcings and Countable Forcings

ZHU Huiling, ZHENG Fudan

(GuangzhouCollege,SouthChinaUniversityofTechnology,Guangzhou510800,Guangdong)

In this paper, we explain two classes of forcings: simple forcings and countable forcings. A couple of examples that mathematician are interested in are studied as special cases of forcing. General theorems about these two classes are proved.

simple forcing; countable forcing; partial order; dense embedding; models

1 Introduction

In modern set theory, forcing is an effective technique in obtaining independent results. Since its discovery by Cohen[1], the application of forcing has been extended to many branches of mathematics. In particular, those branches with infinite objects. However, the highly technical feature of forcing also kept it away from being understood for many mathematicians. There are a couple of standard textbooks about forcing, for instance, [2-3]. These textbooks provide a detailed treatment of forcing and are suitable for those with basic knowledge about set theory. However, people believe that although the general theory of forcing is not an open research problem, it remains an open exposition problem, as illustrated in [4]. Therefore, logicians attempted to make the system of forcing more accessible to mathematicians who are interested in independent proof. For example, [4] put much effort in making forcing “transparent”. We wish to follow the line and make explanations of some more facts of forcing. The beginners of forcing are referred to [5-7] for basic notions and notations. Readers with interests in applications are referred to [8-9].

2 Simple Forcings

A trivial forcing consists of a singleton. Such a forcing will not affect the ground model at all. Mathematicians are familiar with many kinds of partial orders, for instance, finite partial orders, linear orders and lattices. In a sense that we will explain below, these partial orders are all simple, as they are reduced to a trivial forcing.

Forcing extends models of set theory, preserving certain features of the initial model and violating some others. In the study of forcing, it is crucial to analyze the properties of given partial orders. The general theory of forcing thus involves comparing two partial orders, finding similarities as well as differences between them.

The following theorem can be found in [2]:

Theorem 2.1 If there is a functionf:→satisfying:

1)Orderpreserving:Ifp≤p′,thenf(p)≤f(p′);

2)Density:Foranyq∈,thereissomep∈withf(p)≤q;

3)Non-triviality:Ifpandqareincompatible,thenf(p)andf(q)areincompatible.

Thenandgeneratesthesamegenericextension.

Ifanytwoanyelementsofarecompatible,thencanbedenselymappedintoatrivialforcing.

Corollary2.2Suchafunctionfiscalledadensemapping.Aninjectivedensemappingisusuallycalledadenseembedding.Wealsosaythatandareforcingequivalent,witnessedbyf.

ProofConsider{{?},=},whichisanexampleofatrivialforcing.Letf(p)=?foranyp.ThenthefirsttworequirementsofTheorem2.1hold.Thethirdrequirementholdssincetheassumptionfails.

Asaresult,anylinearorderorsemi-lowerlatticeisdenselymappedintoatrivialforcing.

Afiniteforcingisactuallyatomic,namely,everyconditionextendstoanatom.Sinceeverygenericfilterhastoincludealltheatoms,ithastoincludethewholepartialorder.Thentheforcingistrivialbydefinability.

3 Cohen Forcing

The first and most notable forcing was Cohen forcing[1], which uses finite segments to approximate a real. Namely, the partial order is (2<ω,?). A maximal collection of conditions which are mutually consistent will define a function fromωto 2. In set theory, reals are identified with such functions. More precisely, any such function corresponds to an irrational number in the inteval (0,1). Associated with the product topology, such a space is called the Cantor space. There are other variations of the space of reals. For instance,ωωwith the product topology is called the Baire space.

Cohen forcing is countable. In fact, any nontrivial countable partial orders yields the same generic extension. Though this is a known result, there is no text which present a direct construction. Therefore we explain it here in an accessible way by defining a dense embedding explicitly.

4 Examples of Countable Forcings

Before we proceed to the general case, let us start with some concrete examples.

Theorem 4.1 There is a dense embeddingf:(4<ω,?)→(2<ω,?).

Proof Letπ:4→22be a bijection. For instance,π(0)=〈00〉,π(1)=〈01〉,π(2)=〈10〉,π(3)=〈11〉. Definefas follows:

It is obvious thatfis a nontrivial embedding.

To show thatfis dense, letσ∈2<ω. Ifσhas an even length, letσ′=σ; otherwise, letσ′=σ⌒0. Letτ∈4<ωbe defined as:

Thenf(τ)=σ′?σ.

Theorem 4.2 The forcing (3<ω,?) can be densely embedded into (2<ω,?).

Proof Fixπwithπ(0)=〈0〉,π(1)=〈10〉,π(2)=〈11〉. Let

Notice that for everyσ∈2<ω, one can trace the digits from the root, find pieces of type 〈0〉, 〈10〉 or 〈11〉, and if the last remaining digit is 1, extendσwith a 0 to the tail. For instance, givenσ=〈0010110〉∈2<ω, considerτ=〈00120〉, thenh(τ)=σ. Givenσ=〈00101101〉, we first extend it toσ′=〈001011010〉, and letτ=〈001201〉, thenh(τ)=σ′<σ.

It is clear thathis a dense embedding.

Theorem 4.3 There is a dense embedding from (ω<ω,?) into (2<ω,?).

Proof First fix a codingπ:ω→2<ω. A canonical coding is the following:π(0)=?,π(1)=〈0〉,π(2)=〈1〉,π(3)=〈00〉,π(4)=〈01〉,π(5)=〈10〉,π(6)=〈11〉 etc.

Defineg:(ω<ω,?)→(3<ω,?) as follows:

gis clearly injective and order preserving.gis actually surjective and hence dense. One can trace the digits in 3<ωand find the suitable preimage. For instance, the sequence 〈0020210221211〉 has preimage 〈315026〉.

Combininggwith the dense embeddinghin Theorem 4.2, one gets a dense embedding from (ω<ω,?) into (2<ω,?).

5 The General Theorem

In this section, we prove the general theorem that two nontrivial countable forcings are actually equivalent.

A forcing partial order is usually assumed to be both separative and atomless. These requirements are used to keep the forcing away from being trivial. Namely, an atom in a forcing adds no generic object as it contributes no diversity to the forcing. Also, if a forcing is non-separative, then it contains some segments of linear ordering, which can be deleted without affecting the property of forcing.

Theorem 5.1 For every separative atomless countable partial order,thereisacountablepartialorder,whichcanbedenselyembeddingintobothand(2<ω,?).

WeprovefirstalemmaontheCohenforcing.

Lemma5.2Foranyσ∈(2<ω,?), 2≤n≤ω,thereisamaximalantichainbelowσwithcardinalityn.

ProofForeachn<ω,considertheset

InFigure1,theunderlinednodesformamaximalantichainofsize4.

Ifn=ω,considertheset

InFigure2,theunderlinednodesformamaximalantichainofsizeω.

ProofofTheorem5.1List={sm:m∈ω}.Firstly,wefindamaximalantichainA0={pn:n∈I0},whereI0isanindexset.Makesurethatthereissomepn≤s0andA0hasatleast2elements.

ItisclearthatA1isanantichain.Itisactuallymaximal.Foranyr,thereissomepncompatiblewithr.Letq≤pn, q≤r.Letpnkbecompatiblewithq,sayq′≤q, q′≤pnk.Thenq′≤rwitnessthatrandsomepnkarecompatible.

Inductively,atstepn,oneconstructamaximalantichainbelowanyconditionfoundatthepreviousstep.AndletAncollectalltheseconditionsfoundatstepn.Byinduction, Anisamaximalantichain.

Thisprocesscanbecarriedonasisseparativeandatomless:atstepm,thereissomea∈Am-1suchthatsnandaarecompatible.letr≤sm, r≤a.Sinceisatomless,wemayassumethatr

Nowdefine=∪{Am:m<ω}.Themappingfromtoissimplyinclusion.Toseethatisadensesubforcing,letsm∈,thenthereissomea∈Am?suchthata≤sm.

Themappingfrominto(2<ω,?)isdefinedasfollows:firstidentifyA0withamaximalantichainin(2<ω,?).ThiscanbeguaranteedbyLemma5.2,as2≤|A0|≤ω.Inductively,identifyAnwithamaximalantichainin(2<ω,?)whilepreservingthepartialorder.

Toseethedensity,onecanalsodealwithconditionsin(2<ω,?)diagonally,aswedidwith.

Remark5.3Theaboveproofisactuallythetypical“backandforth”argument,whichiseffectiveindealingwithcountableobjects.

6 Futher Problems

Inthissection,weconsidersomeproblemsforfuturestudy.

1)Aretheresemi-upperlatticeswhichareusefulinthesenseofforcing?

2)Foragivenalgebraicstructure,forinstance,aringorafield,isthereacanonicalwaytoassociateaforcingtoit?

3)Fortopologicalspaceswithdifferentseparability,isthereaclassificationtheoryinthewayofforcing?

[1] COHEN P J. The independence of the continuum hypothesis. I.[J]. Proc Natl Acad Sci,1963,50:1143-1148.

[2] JECH T. Set theory[C]//Springer Monographs in Mathematics. New York:Springer-Verlag,2003.

[3] KUNEN K. Set theory[C]//Studies in Logic and the Foundations of Mathematics,102. Amsterdam:North-Holland Publishing,1980.

[4] CHOW T Y. A beginner’s guide to forcing[C]//Communicating Mathematics,479. Providence:Am Math Soc,2009:25-40.

[5] JECH T. Multiple forcing[C]//Cambridge Tracts in Mathematics,88. Cambridge:Cambridge University Press,1986.

[6] JECH T. What is … forcing?[J]. Notices Am Math Soc,2008,55(6):692-693.

[7] JECH T. Set theory, with particular emphasis on the method of forcing[C]//Lecture Notes in Mathematics,217. New York:Springer-Verlag,1971.

[8] TODORCHEVICH S, FARAH I. Some applications of the method of forcing[C]//Yenisei Series in Pure and Applied Mathematics. Moscow:Lycee,1995.

[9] JECH T. Abstract theory of abelian operator algebras:an application of forcing[J]. Trans Am Math Soc,1985,289(1):133-162.

關于單純力迫和可數力迫的構造性闡述

朱慧靈, 鄭馥丹

(華南理工大學 廣州學院, 廣東 廣州 510800)

解釋了2類力迫,即單純力迫和可數力迫.將數學家經常遇到的幾類偏序作為力迫的特殊情況加以研究.證明了關于這2類力迫的一般性結論.

單純力迫; 可數力迫; 偏序; 稠密嵌入; 模型

O144.3

A

1001-8395(2017)01-0018-04

2015-10-03

國家自然科學基金(11401567)

朱慧靈(1985—),男,副教授,主要從事數理邏輯及其應用的研究,E-mail:zhuhl02@gmail.com

Foundation Items:This work is supported by National Natural Science Foundation of China (No.11401567)

10.3969/j.issn.1001-8395.2017.01.003

(編輯 周 俊)

Received date:2015-10-03

2010 MSC:03E17; 03E35; 03E50

主站蜘蛛池模板: 国产在线98福利播放视频免费| 黄色免费在线网址| 黄片在线永久| 日韩午夜福利在线观看| 欧美视频在线第一页| 亚洲av日韩av制服丝袜| 成人在线天堂| 国产在线无码一区二区三区| 亚洲人成成无码网WWW| 亚洲一区二区日韩欧美gif| 精品人妻无码中字系列| 亚洲欧洲日韩综合色天使| 影音先锋丝袜制服| 无码AV动漫| 激情综合婷婷丁香五月尤物| 一区二区无码在线视频| aⅴ免费在线观看| 亚洲精品国产成人7777| 国产人妖视频一区在线观看| 日本一区二区三区精品视频| 国产系列在线| 亚洲男人的天堂网| 精品夜恋影院亚洲欧洲| 欧美成一级| 国产精品福利导航| 成人福利在线免费观看| 欧美日韩高清| 97超级碰碰碰碰精品| 欧洲免费精品视频在线| 国产精品不卡片视频免费观看| 精品自窥自偷在线看| 人妻熟妇日韩AV在线播放| 午夜毛片免费观看视频 | 亚洲二区视频| 日韩精品一区二区三区视频免费看| 亚洲天堂视频网站| 亚洲系列无码专区偷窥无码| 国产麻豆福利av在线播放| 在线观看视频99| 亚洲国产欧洲精品路线久久| 四虎AV麻豆| 日本成人精品视频| 国产美女在线观看| 午夜欧美理论2019理论| 香蕉视频在线观看www| 在线日韩日本国产亚洲| 久久精品最新免费国产成人| 亚洲欧美人成电影在线观看| 色欲不卡无码一区二区| 五月天综合婷婷| 91热爆在线| 无码精品国产dvd在线观看9久| 小13箩利洗澡无码视频免费网站| 婷婷六月综合网| 精品视频福利| 精品自窥自偷在线看| 国产手机在线观看| 国产成人无码AV在线播放动漫| 国产成人免费手机在线观看视频| 欧美性色综合网| 91网在线| 在线色综合| 亚洲第一成年人网站| 国产国语一级毛片| 日韩精品高清自在线| 五月天在线网站| 9cao视频精品| 久久久久久高潮白浆| 欧美午夜理伦三级在线观看| 中文字幕亚洲综久久2021| 国产精品极品美女自在线看免费一区二区| 天天色综网| 国产精品伦视频观看免费| 日韩精品亚洲精品第一页| 国产91精品久久| 亚洲自偷自拍另类小说| 免费日韩在线视频| 中文字幕资源站| 99精品视频播放| 99热最新在线| 免费国产无遮挡又黄又爽| 亚洲成人网在线播放|