999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Explicit Formula for the Smarandache Functionand Solutions of Related Equations

2017-05-15 11:06:44LIAOQunyingLUOWenli
關(guān)鍵詞:數(shù)學

LIAO Qunying, LUO Wenli

(Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)

The Explicit Formula for the Smarandache Functionand Solutions of Related Equations

LIAO Qunying, LUO Wenli

(InstituteofMathematicsandSoftwareScience,SichuanNormalUniversity,Chengdu610066,Sichuan)

Letφ(n) andS(n) be the Euler function and Smarandache function for a positive integern, respectively. By using elementary methods and techniques, the explicit formula forS(pα) is obtained, wherepis a prime andαis a positive integer. As a corollary, some properties for positive integer solutions of the equationsφ(n)=S(nk) orσ(2αq)/S(2αq) are given, whereqis an odd prime andσ(n) is the sum of different positive factors forn.

Smarandache function; Euler function; Gauss function; perfect number

1 Introduction and Main Results

In 1918, Kempner[1]studied the formula of the value min{m:m∈N,n|m!}forafixedpositiveintegern.In1993,Smarandacheraisedsomeinterestingnumbertheoryproblems,andputforwordthedefinitionoftheSmarandachefunctionS(n)=min{m:m∈N,n|m!} for a positive integern. From the definition,S(1)=1,S(2)=2,S(3)=3, and so on. So far, there are some good related results[1-9]. For example, in [2], the distribution ofS(n) was discussed, and the asymptotic formula ofS(n) was given as follows

whereP(n) is the maximum prime factor ofn, andζ(s) is the Riemann-zeta function. In [3], Farris studied the bound ofS(n) and got the following upper and lower bounds

On the other hand, a lot of number theory equations related toS(n) have been studied in recent years. Especially, for a given positive integerk, many properties for positive integer solutions of the equationφ(n)=S(nk) were studied, whereφis the Euler function. Easy to see that this is equivalent to solve the equation

(*)

wherepis a prime, gcd(p,m)=1 andS(pαk)≥S(mk).

Theorem1.1Letpbeaprimeandαbeapositiveinteger.

1)Foranypositiveintegerrandα=pr,wehave

2)Foranypositiveintegerr, t∈[1,r]andα=pr-t,wehave

3)Foranypositiveintegerr, t∈[r+1,pr-pr-1]andα=pr-t.

(I)If

with

then we have

(1)

(II) If

witht∈[1,kn] and

then

(2)

Corollary 1.2 Letαbe a positive integer. If

then we haveS(2α)=α+n.

Fork=2,3,4, the solutions of the equation (*) have been discussed in [7]. In the present paper, we complement their results and obtain some necessary conditions for solutions of the equation (*).

Theorem 1.3 1) For any positive integerk, there are no any primepand positive integermcoprime withp, such thatφ(pm)=S(pk) andS(pk)≥S(mk).

2) For any positive integerk, if there are some primepand positive integermcoprime withp, such thatφ(p2m)=S(p2k) andS(p2k)≥S(mk). Thenp=2k+1 or 2≤p≤k. Furthermore,

(I) if 2k+1=p, then

(II) otherwise, i.e., 2≤p≤k, thenk≥3 and

3) For any positive integerk, if there are some primepand positive integermcoprime withp, such thatφ(pαm)=S(pαk) andS(pαk)≥S(mk). Thenαk+1>pα-3(p2-1) and 1≤φ(m)≤q, where

4) For any positive integerk, there exist some primepand positive integermcoprime withp, such thatφ(p3m)=S(p3k) andS(p3k)≥S(mk), namely,m=1,2.

2)Letpbeanoddprime, α≥1andn=2αp.

3)If2r-1isaprimeandn=22r-1(2r-1),then

Remark For convenience, throughout the paper we denote [·] to be the Gauss function.

2 The Proofs for Our Main Results

Before proving our main results, the following Lemmas are necessary.

2) For any primepand positive integerkwithk≤p, we have

Lemma 2.2 For any positive integerαand primep, we haveS(pα)≤(α-kα)p, wherekα(p+1)≤α<(kα+1)(p+1).

Proof For 0<α

Now forα=m≥p+1, ifS(pm)=(m-km)pwith

then

Thus forα=m+1, we know that

Hence we have two cases as following.

(I) If

thenkm+1=km. By the definition ofS(n), we haveS(pm+1)≤S(pm)+p, and so

therefore in this case Lemma 2.2 is true.

(II) Otherwise, we havem+1=(km+1)(p+1), and thenkm+1=km+1 andm-km=(km+1)p, where

Note that

therefore

This means that Lemma 2.2 is true.

By the definition ofS(n), we immediately have the following.

Lemma 2.3 Letpbe a prime andmbe a positive integer. Then

The Proof for Theorem 1.1 1) Sincepis a prime, and so

Thus, by the definition ofS(n), we haveS(ppr)=pr+1-pr+p, and then (1) of Theorem 1.1 is proved.

2) Since

andpr‖(pr+1-pr), and so for any positive integerrandα=pr-twitht∈[1,r], we haveS(pα)=pr+1-pr, thus (2) of Theorem 1.1 is true.

3) Forα=pr-twithr+1

(3)

In fact, form=1, i.e.,α=pr-r-1, we have

And then by the definition ofS(n), we can obtain

which means that (3) is true form=1. Now suppose that (3) is true for anym=k(≥1), i.e.,

Then form=k+1, by Lemma 2.3, we have

(A)

or

(B)

For the case (A), by Lemma 2.3, we have

and then

which means that (3) is true.

whichmeansthattheidentity(3)issatisfied.

Fromtheabove,theidentity(3)istrue.

Nowweprove(3)ofTheorem1.1.

1)Supposethatforanypositiveintegerk1andm=pk1such thatα=pr-r-pk1. Fromr+m∈[r+1,pr-pr-1], we haver+pk1∈[r+1,pr-pr-1], thus by the identity (3) and (1) of Theorem 1.1, we can obtain

2) Suppose that for any positive integerk1,s∈[1,k1] andm=pk1-s, such thatα=pr-r-(pk1-s). Fromr+m∈[r+1,pr-pr-1], i.e.,r+pk1-s∈[r+1,pr-pr-1], (3) and (2) of Theorem 1.1, we have

3) Suppose that there is some positive integerk1ande∈[k1+1,pk1-pk1-1], such thatm=pk1-e, namely,α=pr-r-(pk1-e). Fromr+m∈[r+1,pr-pr-1] we haver+pk1-e∈[r+1,pr-pr-1]. Now set

then

Similar to the previous discussions, we have the following three cases.

1′) If there is some positive integerk2such thatm1=pk2, i.e.,

and

Thus by (3) and (1) of Theorem 1.1, we have

which satisfies (1) of Theorem 1.1.

2′) Suppose that there is some positive integerk2andt1∈[1,k2], such thatm1=pk2-t1, i.e.,

and so

Thus by (3) and (2) of Theorem 1.1, we have

which satisfies (2) of Theorem 1.1.

3′) Suppose that there is some positive integerk2andt1∈[k2+1,pk2-pk2-1], such thatm1=pk2-t1, i.e.,

Now set

then

and so

Similar to the previous discussions, we know thatα∈[pr-1,pr] is a positive integer. Thus, one can repeat the above discussions 1)-3).

From the above discussions, Theorem 1.1 is proved.

The Proof for Corollary 1.2 For any positive integerski(1≤i≤n) with 1≤k1

(**)

Note that for anykm(1≤m≤n-1), we have

Thus from (**) we can get

Hence

Thus Corollary 1.2 is proved.

The Proof for Theorem 1.3 1) If there are some primepand positive integermcoprime withp, such thatS(pk)=φ(pm) andS(pk)≥S(mk). Then forp=2, we have

Byφ(2m)≡ 0(mod 2) we havem≥3. While byS(2k)≥S(mk), we havem=1, this is a contradiction. And sop≥3, thus from the definition ofS(n) and the assumption thatpis coprime withm, we have

2) Suppose that there exist some positive integerα, primepand positive integermcoprime withp, such thatφ(p2m)=S(p2k) andS(p2k)≥S(mk).

(I) For the case 2k≤p, by (2) of Lemma 2.1, we have

i.e., 2k=(p-1)φ(m). Note thatpis a prime, ifp=2, then by 2k≤p=2 we havek=1, and soφ(m)=2, thusm=3,4,6. Hence from gcd(p,m)=1 andp=2, we can getm=3. In this case,

which means that (p,m)=(2,3) is a solution.

Now forp≥3, by 2k≤pwe have

and soφ(m)=1, i.e.,m=1 or 2 andp=2k+1, hence

(II) For the case 2k>p, suppose thatt1andt2are both nonnegative integers such that

(4)

and

Then byS(p2k)=φ(p2m) and Lemma 2.2, we have

(5)

and

Now from (5), we know that

which means that

(6)

Note that 2k>p, i.e., 2kp>p2, thus we have three cases as following.

1) For the case

which means that

and sop2-1|p+2, i.e.,p+2≥p2-1. While

2) For the case

i.e.,

3) Therefore we must have (p2-1)φ(m)-(p+1)>p2, namely,

By (6), we have

i.e.,

(7)

thus 2p2-(2k+1)p-3≤0, and so

(8)

Note thatpis a prime, and so 2p-(2k+1)≤1. If 2p-(2k+1)=1, then by (8), we know that (p,k)=(2,1),(3,2). From (p,k)=(2,1), we have 2k=p=2, this is a contradiction to 2k>p. Sok=2,p=3 or 2p<2k+1. Byk=2,p=3 and (7), we haveφ(m)=2, and thenm=3,4,6. Note that gcd(p,m)=1 and then forp=3, we havem=4, thus

namely,

(9)

Note that

whichisacontradiction.Hencek≥3,thusweprove(2)ofTheorem1.3.

3)Forα≥3.Ifαk≤p,thenby(2)ofLemma2.1,wehave

thus

henceαk=p=2,whichisacontradictiontotheassumptionα≥3.Andsoαk>p.Nowsupposethatt1andt2arebothnonnegativeintegerssuchthat

(10)

and

(11)

namely,

thus

and so

i.e.,

(12)

Note that for any positive integerm, we haveφ(m)≥1, therefore we must haveαk+1≥pα-3(p2-1).

If

i.e.,φ(m)=1. In this case, forα=3 we have 3k+1=p2-1, i.e.,p2=3k+2, which is impossible. Soα>3, and then

We can conclude that

(13)

Otherwise, fromα-3≥pα-4(p-1)-1, we have

(14)

It is easy to see that forα≥4 there is no any primep>5 satisfying (14). Hencep=2 or 3. Byp=3 and (14) we haveα≥2(3α-4+1). While 2(3α-4+1)>αforα≥5. Therefore from (14) we haveα=4, and then 4k+1=3α-1-3α-3=24, which is a contradiction. Thus we must havep=2.

Now fromp=2 and (14), we haveα>2α-4+2, and soα=4,5,6. Thus byαk+1=pα-1-pα-3andα=4, we haveαk+1=4k+1=23-2=6, which is a contradiction. Forα=5, we have 5k+1=12, which is also a contradiction. Forα=6,6k+1=24, it is also a contradiction. Hence (14) is not true, and soα-3

Now byφ(m)=1, gcd(p,m)=1 andφ(pαm)=S(pαk), we have

this meanspα-3+p=pα-2. Note thatpis a prime, thus we havep=2 andα=4. And so 4k+1=23-2=6, which is a contradiction.

From the above we must haveαk+1>pα-3(p2-1)≥p+1. Without loss of the generality, set

Now by (12), we have

(15)

and so 1≤φ(m)≤q. Thus we prove (3) of Theorem 1.3.

Thusweprove(4)ofTheorem1.3.

FromtheaboveTheorem1.3isproved.

we have

i.e.,

(16)

Thus from

we have

(17)

wecanobtain1≤m≤d.

ThusweproveTheorem1.4.

TheProofforCorollary1.5 1)Ifp=2r+1isaprimeandα=2r,n=22r(2r+1).Then

Ontheotherhand,bythedefinitionofσ(n)and(1)ofTheorem1.1,wealsohave

2)Sincen=2p-1(2p-1)isaperfectnumber,soσ(n)=2p(2p-1).Thusfrom(1)ofLemma2.1and2p-1isaprimenumber,wehave

Notethat

andso

Bythesimilarway,wecanprovepart(3).

ThusweproveCorollary1.5.

3 Some Examples

Inthissection,someexamplesforbothTheorem1.1andCorollary1.2aregiven.

Example3.1Letp=3,α=35=243,thenby(1)ofTheorem1.1wehave

Ontheotherhand,from

163+54+18+6+2+0=243,

and the definition ofS(n), we also haveS(3243)=489.

Example 3.2 Letp=3,α=36-4=725. Namely, be takingr=6,t=4 in (2) of Theorem 1.1, we know that

On the other hand, from

486+162+54+18+6+2+0=728,

485+161+53+17+5+1+0=722,

and the definition ofS(n), we also haveS(3725)=1 458.

Example 3.3 Letp=3,α=5 017, i.e.,

thus from (2) of Theorem 1.1, we have

4×2 187+16×81=10 044.

On the other hand, from

3 348+1 116+372+124+

41+13+4+1=5 019,

and

3 347+1 115+371+123+

41+13+4+1=5 015,

we also haveS(35 017)=10 044.

4 Conclusion

[1] KEMPNER A J. Miscellanea[J]. American Mathematical Monthly,1918,25(5):201-210.

[2] XU Z F. The value distribution of Smarandache function[J]. Acta Mathematica Sinica,2006,49(5):1009-1012.

[3] FARRIS M, MITSHELL P. Bounding the Smarandache function[J]. Smarandache Notions J,2002,13:37-42.

[4] SMARANDACHE F. Only Problems, Not Solution[M]. Chicago:Xiquan Publishing House,1993.

[5] GORSKI D. The pseudo-Smarandache function[J]. Smarandache Notions J,2002,13(1/2/3):140-149.

[6] LE M H. A lower bound forS(2p-1(2p-1))[J]. Smarandache Notions J,2001,12(1):217-218.

[7] LIU Y M. On the solutions of an equation invloving the Smarandache function[J]. Scientia Magna,2006,2(1):76-79.

[8] 溫田丁. Smarandache函數(shù)的一個下界估計[J]. 純粹數(shù)學與應用數(shù)學,2010,26(3):413-416.

[9] YI Y. An equation in volving the Euler function and Smarandache function[J]. Scientia Magna,2005,1(2):172-175.

Smarandache函數(shù)的準確計算公式以及相關(guān)數(shù)論方程的求解

廖群英, 羅文力

(四川師范大學 數(shù)學與軟件科學學院, 四川 成都 610066)

Smarandache函數(shù); 歐拉函數(shù); 高斯函數(shù); 完全數(shù)

O

A

1001-8395(2017)01-0001-10

2016-01-03

國家自然科學基金(11401408)和四川省科技廳研究項目(2016JY0134)

廖群英(1974—),女,教授,主要從事編碼和密碼學理論的研究,E-mail:qunyingliao@sicnu.edu.cn

Foundation Items: This work is supported by National Natural Science Foundation of China (No.11401408) and Project of Science and Technology

10.3969/j.issn.1001-8395.2017.01.001

(編輯 周 俊)

Received date:2016-01-03

Department of Sichuan Province (No.2016JY0134)

2010 MSC:12E20; 12E30; 11T99

猜你喜歡
數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
我們愛數(shù)學
我為什么怕數(shù)學
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數(shù)學就難過
數(shù)學也瘋狂
主站蜘蛛池模板: 欧美在线伊人| 欧美成人在线免费| www.99精品视频在线播放| 午夜无码一区二区三区| a网站在线观看| 九九香蕉视频| 蜜芽一区二区国产精品| 久久精品无码一区二区国产区| 免费又爽又刺激高潮网址| 毛片基地视频| m男亚洲一区中文字幕| 亚洲永久精品ww47国产| 在线va视频| 亚洲三级a| 国产精鲁鲁网在线视频| 久久99国产精品成人欧美| 性激烈欧美三级在线播放| 福利视频99| 国产精品成人免费视频99| 99久久国产精品无码| 免费一极毛片| 一个色综合久久| 国产女人18毛片水真多1| 91精品专区国产盗摄| 亚洲一区无码在线| 欧美一级黄片一区2区| 99久久精品无码专区免费| 欧美在线中文字幕| 制服丝袜无码每日更新| 国产视频一区二区在线观看| 亚洲第一黄色网址| 国产一区二区三区夜色| 免费午夜无码18禁无码影院| 欧美中文字幕无线码视频| 欧美综合一区二区三区| 欧美精品高清| 国产精品黑色丝袜的老师| 国产精品美女在线| 国内a级毛片| 欧美日韩va| 精品夜恋影院亚洲欧洲| 青青草国产免费国产| yjizz视频最新网站在线| 国产99在线| 国产自产视频一区二区三区| 国产精品女人呻吟在线观看| 中文成人在线视频| 99精品欧美一区| 强乱中文字幕在线播放不卡| 国产精品自在线拍国产电影| AV老司机AV天堂| 成年女人a毛片免费视频| 国产激情无码一区二区APP| 青青草国产精品久久久久| 2021精品国产自在现线看| 丰满人妻一区二区三区视频| 精品无码一区二区在线观看| 女人18毛片水真多国产| 国产一级裸网站| 老司国产精品视频91| 国产极品美女在线播放| 亚洲熟妇AV日韩熟妇在线| 综合五月天网| 国产精品 欧美激情 在线播放| 亚洲色无码专线精品观看| 日韩精品少妇无码受不了| 国产精品免费电影| 国产无码网站在线观看| 日本免费精品| 狠狠亚洲婷婷综合色香| 在线观看无码av免费不卡网站 | 亚洲区一区| 在线中文字幕网| 精品国产免费观看| 福利姬国产精品一区在线| av大片在线无码免费| 女人天堂av免费| 少妇高潮惨叫久久久久久| 日本手机在线视频| 成人在线观看一区| 亚洲另类色| 亚洲女同欧美在线|