999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Explicit Formula for the Smarandache Functionand Solutions of Related Equations

2017-05-15 11:06:44LIAOQunyingLUOWenli
關(guān)鍵詞:數(shù)學

LIAO Qunying, LUO Wenli

(Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)

The Explicit Formula for the Smarandache Functionand Solutions of Related Equations

LIAO Qunying, LUO Wenli

(InstituteofMathematicsandSoftwareScience,SichuanNormalUniversity,Chengdu610066,Sichuan)

Letφ(n) andS(n) be the Euler function and Smarandache function for a positive integern, respectively. By using elementary methods and techniques, the explicit formula forS(pα) is obtained, wherepis a prime andαis a positive integer. As a corollary, some properties for positive integer solutions of the equationsφ(n)=S(nk) orσ(2αq)/S(2αq) are given, whereqis an odd prime andσ(n) is the sum of different positive factors forn.

Smarandache function; Euler function; Gauss function; perfect number

1 Introduction and Main Results

In 1918, Kempner[1]studied the formula of the value min{m:m∈N,n|m!}forafixedpositiveintegern.In1993,Smarandacheraisedsomeinterestingnumbertheoryproblems,andputforwordthedefinitionoftheSmarandachefunctionS(n)=min{m:m∈N,n|m!} for a positive integern. From the definition,S(1)=1,S(2)=2,S(3)=3, and so on. So far, there are some good related results[1-9]. For example, in [2], the distribution ofS(n) was discussed, and the asymptotic formula ofS(n) was given as follows

whereP(n) is the maximum prime factor ofn, andζ(s) is the Riemann-zeta function. In [3], Farris studied the bound ofS(n) and got the following upper and lower bounds

On the other hand, a lot of number theory equations related toS(n) have been studied in recent years. Especially, for a given positive integerk, many properties for positive integer solutions of the equationφ(n)=S(nk) were studied, whereφis the Euler function. Easy to see that this is equivalent to solve the equation

(*)

wherepis a prime, gcd(p,m)=1 andS(pαk)≥S(mk).

Theorem1.1Letpbeaprimeandαbeapositiveinteger.

1)Foranypositiveintegerrandα=pr,wehave

2)Foranypositiveintegerr, t∈[1,r]andα=pr-t,wehave

3)Foranypositiveintegerr, t∈[r+1,pr-pr-1]andα=pr-t.

(I)If

with

then we have

(1)

(II) If

witht∈[1,kn] and

then

(2)

Corollary 1.2 Letαbe a positive integer. If

then we haveS(2α)=α+n.

Fork=2,3,4, the solutions of the equation (*) have been discussed in [7]. In the present paper, we complement their results and obtain some necessary conditions for solutions of the equation (*).

Theorem 1.3 1) For any positive integerk, there are no any primepand positive integermcoprime withp, such thatφ(pm)=S(pk) andS(pk)≥S(mk).

2) For any positive integerk, if there are some primepand positive integermcoprime withp, such thatφ(p2m)=S(p2k) andS(p2k)≥S(mk). Thenp=2k+1 or 2≤p≤k. Furthermore,

(I) if 2k+1=p, then

(II) otherwise, i.e., 2≤p≤k, thenk≥3 and

3) For any positive integerk, if there are some primepand positive integermcoprime withp, such thatφ(pαm)=S(pαk) andS(pαk)≥S(mk). Thenαk+1>pα-3(p2-1) and 1≤φ(m)≤q, where

4) For any positive integerk, there exist some primepand positive integermcoprime withp, such thatφ(p3m)=S(p3k) andS(p3k)≥S(mk), namely,m=1,2.

2)Letpbeanoddprime, α≥1andn=2αp.

3)If2r-1isaprimeandn=22r-1(2r-1),then

Remark For convenience, throughout the paper we denote [·] to be the Gauss function.

2 The Proofs for Our Main Results

Before proving our main results, the following Lemmas are necessary.

2) For any primepand positive integerkwithk≤p, we have

Lemma 2.2 For any positive integerαand primep, we haveS(pα)≤(α-kα)p, wherekα(p+1)≤α<(kα+1)(p+1).

Proof For 0<α

Now forα=m≥p+1, ifS(pm)=(m-km)pwith

then

Thus forα=m+1, we know that

Hence we have two cases as following.

(I) If

thenkm+1=km. By the definition ofS(n), we haveS(pm+1)≤S(pm)+p, and so

therefore in this case Lemma 2.2 is true.

(II) Otherwise, we havem+1=(km+1)(p+1), and thenkm+1=km+1 andm-km=(km+1)p, where

Note that

therefore

This means that Lemma 2.2 is true.

By the definition ofS(n), we immediately have the following.

Lemma 2.3 Letpbe a prime andmbe a positive integer. Then

The Proof for Theorem 1.1 1) Sincepis a prime, and so

Thus, by the definition ofS(n), we haveS(ppr)=pr+1-pr+p, and then (1) of Theorem 1.1 is proved.

2) Since

andpr‖(pr+1-pr), and so for any positive integerrandα=pr-twitht∈[1,r], we haveS(pα)=pr+1-pr, thus (2) of Theorem 1.1 is true.

3) Forα=pr-twithr+1

(3)

In fact, form=1, i.e.,α=pr-r-1, we have

And then by the definition ofS(n), we can obtain

which means that (3) is true form=1. Now suppose that (3) is true for anym=k(≥1), i.e.,

Then form=k+1, by Lemma 2.3, we have

(A)

or

(B)

For the case (A), by Lemma 2.3, we have

and then

which means that (3) is true.

whichmeansthattheidentity(3)issatisfied.

Fromtheabove,theidentity(3)istrue.

Nowweprove(3)ofTheorem1.1.

1)Supposethatforanypositiveintegerk1andm=pk1such thatα=pr-r-pk1. Fromr+m∈[r+1,pr-pr-1], we haver+pk1∈[r+1,pr-pr-1], thus by the identity (3) and (1) of Theorem 1.1, we can obtain

2) Suppose that for any positive integerk1,s∈[1,k1] andm=pk1-s, such thatα=pr-r-(pk1-s). Fromr+m∈[r+1,pr-pr-1], i.e.,r+pk1-s∈[r+1,pr-pr-1], (3) and (2) of Theorem 1.1, we have

3) Suppose that there is some positive integerk1ande∈[k1+1,pk1-pk1-1], such thatm=pk1-e, namely,α=pr-r-(pk1-e). Fromr+m∈[r+1,pr-pr-1] we haver+pk1-e∈[r+1,pr-pr-1]. Now set

then

Similar to the previous discussions, we have the following three cases.

1′) If there is some positive integerk2such thatm1=pk2, i.e.,

and

Thus by (3) and (1) of Theorem 1.1, we have

which satisfies (1) of Theorem 1.1.

2′) Suppose that there is some positive integerk2andt1∈[1,k2], such thatm1=pk2-t1, i.e.,

and so

Thus by (3) and (2) of Theorem 1.1, we have

which satisfies (2) of Theorem 1.1.

3′) Suppose that there is some positive integerk2andt1∈[k2+1,pk2-pk2-1], such thatm1=pk2-t1, i.e.,

Now set

then

and so

Similar to the previous discussions, we know thatα∈[pr-1,pr] is a positive integer. Thus, one can repeat the above discussions 1)-3).

From the above discussions, Theorem 1.1 is proved.

The Proof for Corollary 1.2 For any positive integerski(1≤i≤n) with 1≤k1

(**)

Note that for anykm(1≤m≤n-1), we have

Thus from (**) we can get

Hence

Thus Corollary 1.2 is proved.

The Proof for Theorem 1.3 1) If there are some primepand positive integermcoprime withp, such thatS(pk)=φ(pm) andS(pk)≥S(mk). Then forp=2, we have

Byφ(2m)≡ 0(mod 2) we havem≥3. While byS(2k)≥S(mk), we havem=1, this is a contradiction. And sop≥3, thus from the definition ofS(n) and the assumption thatpis coprime withm, we have

2) Suppose that there exist some positive integerα, primepand positive integermcoprime withp, such thatφ(p2m)=S(p2k) andS(p2k)≥S(mk).

(I) For the case 2k≤p, by (2) of Lemma 2.1, we have

i.e., 2k=(p-1)φ(m). Note thatpis a prime, ifp=2, then by 2k≤p=2 we havek=1, and soφ(m)=2, thusm=3,4,6. Hence from gcd(p,m)=1 andp=2, we can getm=3. In this case,

which means that (p,m)=(2,3) is a solution.

Now forp≥3, by 2k≤pwe have

and soφ(m)=1, i.e.,m=1 or 2 andp=2k+1, hence

(II) For the case 2k>p, suppose thatt1andt2are both nonnegative integers such that

(4)

and

Then byS(p2k)=φ(p2m) and Lemma 2.2, we have

(5)

and

Now from (5), we know that

which means that

(6)

Note that 2k>p, i.e., 2kp>p2, thus we have three cases as following.

1) For the case

which means that

and sop2-1|p+2, i.e.,p+2≥p2-1. While

2) For the case

i.e.,

3) Therefore we must have (p2-1)φ(m)-(p+1)>p2, namely,

By (6), we have

i.e.,

(7)

thus 2p2-(2k+1)p-3≤0, and so

(8)

Note thatpis a prime, and so 2p-(2k+1)≤1. If 2p-(2k+1)=1, then by (8), we know that (p,k)=(2,1),(3,2). From (p,k)=(2,1), we have 2k=p=2, this is a contradiction to 2k>p. Sok=2,p=3 or 2p<2k+1. Byk=2,p=3 and (7), we haveφ(m)=2, and thenm=3,4,6. Note that gcd(p,m)=1 and then forp=3, we havem=4, thus

namely,

(9)

Note that

whichisacontradiction.Hencek≥3,thusweprove(2)ofTheorem1.3.

3)Forα≥3.Ifαk≤p,thenby(2)ofLemma2.1,wehave

thus

henceαk=p=2,whichisacontradictiontotheassumptionα≥3.Andsoαk>p.Nowsupposethatt1andt2arebothnonnegativeintegerssuchthat

(10)

and

(11)

namely,

thus

and so

i.e.,

(12)

Note that for any positive integerm, we haveφ(m)≥1, therefore we must haveαk+1≥pα-3(p2-1).

If

i.e.,φ(m)=1. In this case, forα=3 we have 3k+1=p2-1, i.e.,p2=3k+2, which is impossible. Soα>3, and then

We can conclude that

(13)

Otherwise, fromα-3≥pα-4(p-1)-1, we have

(14)

It is easy to see that forα≥4 there is no any primep>5 satisfying (14). Hencep=2 or 3. Byp=3 and (14) we haveα≥2(3α-4+1). While 2(3α-4+1)>αforα≥5. Therefore from (14) we haveα=4, and then 4k+1=3α-1-3α-3=24, which is a contradiction. Thus we must havep=2.

Now fromp=2 and (14), we haveα>2α-4+2, and soα=4,5,6. Thus byαk+1=pα-1-pα-3andα=4, we haveαk+1=4k+1=23-2=6, which is a contradiction. Forα=5, we have 5k+1=12, which is also a contradiction. Forα=6,6k+1=24, it is also a contradiction. Hence (14) is not true, and soα-3

Now byφ(m)=1, gcd(p,m)=1 andφ(pαm)=S(pαk), we have

this meanspα-3+p=pα-2. Note thatpis a prime, thus we havep=2 andα=4. And so 4k+1=23-2=6, which is a contradiction.

From the above we must haveαk+1>pα-3(p2-1)≥p+1. Without loss of the generality, set

Now by (12), we have

(15)

and so 1≤φ(m)≤q. Thus we prove (3) of Theorem 1.3.

Thusweprove(4)ofTheorem1.3.

FromtheaboveTheorem1.3isproved.

we have

i.e.,

(16)

Thus from

we have

(17)

wecanobtain1≤m≤d.

ThusweproveTheorem1.4.

TheProofforCorollary1.5 1)Ifp=2r+1isaprimeandα=2r,n=22r(2r+1).Then

Ontheotherhand,bythedefinitionofσ(n)and(1)ofTheorem1.1,wealsohave

2)Sincen=2p-1(2p-1)isaperfectnumber,soσ(n)=2p(2p-1).Thusfrom(1)ofLemma2.1and2p-1isaprimenumber,wehave

Notethat

andso

Bythesimilarway,wecanprovepart(3).

ThusweproveCorollary1.5.

3 Some Examples

Inthissection,someexamplesforbothTheorem1.1andCorollary1.2aregiven.

Example3.1Letp=3,α=35=243,thenby(1)ofTheorem1.1wehave

Ontheotherhand,from

163+54+18+6+2+0=243,

and the definition ofS(n), we also haveS(3243)=489.

Example 3.2 Letp=3,α=36-4=725. Namely, be takingr=6,t=4 in (2) of Theorem 1.1, we know that

On the other hand, from

486+162+54+18+6+2+0=728,

485+161+53+17+5+1+0=722,

and the definition ofS(n), we also haveS(3725)=1 458.

Example 3.3 Letp=3,α=5 017, i.e.,

thus from (2) of Theorem 1.1, we have

4×2 187+16×81=10 044.

On the other hand, from

3 348+1 116+372+124+

41+13+4+1=5 019,

and

3 347+1 115+371+123+

41+13+4+1=5 015,

we also haveS(35 017)=10 044.

4 Conclusion

[1] KEMPNER A J. Miscellanea[J]. American Mathematical Monthly,1918,25(5):201-210.

[2] XU Z F. The value distribution of Smarandache function[J]. Acta Mathematica Sinica,2006,49(5):1009-1012.

[3] FARRIS M, MITSHELL P. Bounding the Smarandache function[J]. Smarandache Notions J,2002,13:37-42.

[4] SMARANDACHE F. Only Problems, Not Solution[M]. Chicago:Xiquan Publishing House,1993.

[5] GORSKI D. The pseudo-Smarandache function[J]. Smarandache Notions J,2002,13(1/2/3):140-149.

[6] LE M H. A lower bound forS(2p-1(2p-1))[J]. Smarandache Notions J,2001,12(1):217-218.

[7] LIU Y M. On the solutions of an equation invloving the Smarandache function[J]. Scientia Magna,2006,2(1):76-79.

[8] 溫田丁. Smarandache函數(shù)的一個下界估計[J]. 純粹數(shù)學與應用數(shù)學,2010,26(3):413-416.

[9] YI Y. An equation in volving the Euler function and Smarandache function[J]. Scientia Magna,2005,1(2):172-175.

Smarandache函數(shù)的準確計算公式以及相關(guān)數(shù)論方程的求解

廖群英, 羅文力

(四川師范大學 數(shù)學與軟件科學學院, 四川 成都 610066)

Smarandache函數(shù); 歐拉函數(shù); 高斯函數(shù); 完全數(shù)

O

A

1001-8395(2017)01-0001-10

2016-01-03

國家自然科學基金(11401408)和四川省科技廳研究項目(2016JY0134)

廖群英(1974—),女,教授,主要從事編碼和密碼學理論的研究,E-mail:qunyingliao@sicnu.edu.cn

Foundation Items: This work is supported by National Natural Science Foundation of China (No.11401408) and Project of Science and Technology

10.3969/j.issn.1001-8395.2017.01.001

(編輯 周 俊)

Received date:2016-01-03

Department of Sichuan Province (No.2016JY0134)

2010 MSC:12E20; 12E30; 11T99

猜你喜歡
數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
我們愛數(shù)學
我為什么怕數(shù)學
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數(shù)學就難過
數(shù)學也瘋狂
主站蜘蛛池模板: 欧洲精品视频在线观看| 一本色道久久88综合日韩精品| 亚洲成人一区二区三区| 亚洲天堂免费在线视频| 亚洲一区网站| 欧美国产综合视频| 亚洲日本中文字幕乱码中文| 国产97视频在线| 久草青青在线视频| 亚洲成人黄色在线| 国产精品国产三级国产专业不| 一本大道香蕉中文日本不卡高清二区| 欧美激情第一欧美在线| 91免费国产在线观看尤物| 999精品免费视频| 久久综合伊人77777| 精品福利视频导航| 日韩精品毛片| 亚洲精品无码抽插日韩| 在线视频一区二区三区不卡| 97国产在线观看| a天堂视频| 欧美日韩免费| 亚洲欧洲美色一区二区三区| 国产午夜无码片在线观看网站| 538国产视频| 国产精品亚洲а∨天堂免下载| 91网在线| 99热这里只有成人精品国产| 精品一区二区三区视频免费观看| 国产精品夜夜嗨视频免费视频| 天堂亚洲网| 九九热免费在线视频| 国产精品自拍合集| 就去色综合| 日韩免费成人| 亚洲精品高清视频| 99久久精品久久久久久婷婷| 国产成人AV男人的天堂| 亚洲日产2021三区在线| 国产成人1024精品下载| 国产高清在线观看| 免费国产高清精品一区在线| 无码AV日韩一二三区| 欧美在线视频不卡第一页| 国产精品毛片一区视频播| 亚洲综合网在线观看| www成人国产在线观看网站| 一级毛片网| 精品福利视频导航| 欧美中出一区二区| 亚洲欧美另类色图| 国产精品不卡片视频免费观看| yjizz国产在线视频网| 色综合久久无码网| 伊人精品视频免费在线| 在线视频亚洲色图| 永久免费av网站可以直接看的| 91久久天天躁狠狠躁夜夜| 久久人人97超碰人人澡爱香蕉| 91福利免费| 伦伦影院精品一区| 欧美色图第一页| 99久久亚洲综合精品TS| 国产成人综合日韩精品无码首页| 国产精品偷伦视频免费观看国产| 在线中文字幕日韩| 91国内在线视频| 免费在线国产一区二区三区精品| 91丝袜乱伦| 日韩中文精品亚洲第三区| 亚洲日本一本dvd高清| 国产高清在线丝袜精品一区| 亚洲日韩第九十九页| 一本色道久久88| 免费毛片全部不收费的| 国产嫩草在线观看| 亚洲无限乱码| 色综合五月| 亚洲天堂视频在线观看免费| 91口爆吞精国产对白第三集| 五月婷婷伊人网|