999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Explicit Formula for the Smarandache Functionand Solutions of Related Equations

2017-05-15 11:06:44LIAOQunyingLUOWenli
關(guān)鍵詞:數(shù)學

LIAO Qunying, LUO Wenli

(Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)

The Explicit Formula for the Smarandache Functionand Solutions of Related Equations

LIAO Qunying, LUO Wenli

(InstituteofMathematicsandSoftwareScience,SichuanNormalUniversity,Chengdu610066,Sichuan)

Letφ(n) andS(n) be the Euler function and Smarandache function for a positive integern, respectively. By using elementary methods and techniques, the explicit formula forS(pα) is obtained, wherepis a prime andαis a positive integer. As a corollary, some properties for positive integer solutions of the equationsφ(n)=S(nk) orσ(2αq)/S(2αq) are given, whereqis an odd prime andσ(n) is the sum of different positive factors forn.

Smarandache function; Euler function; Gauss function; perfect number

1 Introduction and Main Results

In 1918, Kempner[1]studied the formula of the value min{m:m∈N,n|m!}forafixedpositiveintegern.In1993,Smarandacheraisedsomeinterestingnumbertheoryproblems,andputforwordthedefinitionoftheSmarandachefunctionS(n)=min{m:m∈N,n|m!} for a positive integern. From the definition,S(1)=1,S(2)=2,S(3)=3, and so on. So far, there are some good related results[1-9]. For example, in [2], the distribution ofS(n) was discussed, and the asymptotic formula ofS(n) was given as follows

whereP(n) is the maximum prime factor ofn, andζ(s) is the Riemann-zeta function. In [3], Farris studied the bound ofS(n) and got the following upper and lower bounds

On the other hand, a lot of number theory equations related toS(n) have been studied in recent years. Especially, for a given positive integerk, many properties for positive integer solutions of the equationφ(n)=S(nk) were studied, whereφis the Euler function. Easy to see that this is equivalent to solve the equation

(*)

wherepis a prime, gcd(p,m)=1 andS(pαk)≥S(mk).

Theorem1.1Letpbeaprimeandαbeapositiveinteger.

1)Foranypositiveintegerrandα=pr,wehave

2)Foranypositiveintegerr, t∈[1,r]andα=pr-t,wehave

3)Foranypositiveintegerr, t∈[r+1,pr-pr-1]andα=pr-t.

(I)If

with

then we have

(1)

(II) If

witht∈[1,kn] and

then

(2)

Corollary 1.2 Letαbe a positive integer. If

then we haveS(2α)=α+n.

Fork=2,3,4, the solutions of the equation (*) have been discussed in [7]. In the present paper, we complement their results and obtain some necessary conditions for solutions of the equation (*).

Theorem 1.3 1) For any positive integerk, there are no any primepand positive integermcoprime withp, such thatφ(pm)=S(pk) andS(pk)≥S(mk).

2) For any positive integerk, if there are some primepand positive integermcoprime withp, such thatφ(p2m)=S(p2k) andS(p2k)≥S(mk). Thenp=2k+1 or 2≤p≤k. Furthermore,

(I) if 2k+1=p, then

(II) otherwise, i.e., 2≤p≤k, thenk≥3 and

3) For any positive integerk, if there are some primepand positive integermcoprime withp, such thatφ(pαm)=S(pαk) andS(pαk)≥S(mk). Thenαk+1>pα-3(p2-1) and 1≤φ(m)≤q, where

4) For any positive integerk, there exist some primepand positive integermcoprime withp, such thatφ(p3m)=S(p3k) andS(p3k)≥S(mk), namely,m=1,2.

2)Letpbeanoddprime, α≥1andn=2αp.

3)If2r-1isaprimeandn=22r-1(2r-1),then

Remark For convenience, throughout the paper we denote [·] to be the Gauss function.

2 The Proofs for Our Main Results

Before proving our main results, the following Lemmas are necessary.

2) For any primepand positive integerkwithk≤p, we have

Lemma 2.2 For any positive integerαand primep, we haveS(pα)≤(α-kα)p, wherekα(p+1)≤α<(kα+1)(p+1).

Proof For 0<α

Now forα=m≥p+1, ifS(pm)=(m-km)pwith

then

Thus forα=m+1, we know that

Hence we have two cases as following.

(I) If

thenkm+1=km. By the definition ofS(n), we haveS(pm+1)≤S(pm)+p, and so

therefore in this case Lemma 2.2 is true.

(II) Otherwise, we havem+1=(km+1)(p+1), and thenkm+1=km+1 andm-km=(km+1)p, where

Note that

therefore

This means that Lemma 2.2 is true.

By the definition ofS(n), we immediately have the following.

Lemma 2.3 Letpbe a prime andmbe a positive integer. Then

The Proof for Theorem 1.1 1) Sincepis a prime, and so

Thus, by the definition ofS(n), we haveS(ppr)=pr+1-pr+p, and then (1) of Theorem 1.1 is proved.

2) Since

andpr‖(pr+1-pr), and so for any positive integerrandα=pr-twitht∈[1,r], we haveS(pα)=pr+1-pr, thus (2) of Theorem 1.1 is true.

3) Forα=pr-twithr+1

(3)

In fact, form=1, i.e.,α=pr-r-1, we have

And then by the definition ofS(n), we can obtain

which means that (3) is true form=1. Now suppose that (3) is true for anym=k(≥1), i.e.,

Then form=k+1, by Lemma 2.3, we have

(A)

or

(B)

For the case (A), by Lemma 2.3, we have

and then

which means that (3) is true.

whichmeansthattheidentity(3)issatisfied.

Fromtheabove,theidentity(3)istrue.

Nowweprove(3)ofTheorem1.1.

1)Supposethatforanypositiveintegerk1andm=pk1such thatα=pr-r-pk1. Fromr+m∈[r+1,pr-pr-1], we haver+pk1∈[r+1,pr-pr-1], thus by the identity (3) and (1) of Theorem 1.1, we can obtain

2) Suppose that for any positive integerk1,s∈[1,k1] andm=pk1-s, such thatα=pr-r-(pk1-s). Fromr+m∈[r+1,pr-pr-1], i.e.,r+pk1-s∈[r+1,pr-pr-1], (3) and (2) of Theorem 1.1, we have

3) Suppose that there is some positive integerk1ande∈[k1+1,pk1-pk1-1], such thatm=pk1-e, namely,α=pr-r-(pk1-e). Fromr+m∈[r+1,pr-pr-1] we haver+pk1-e∈[r+1,pr-pr-1]. Now set

then

Similar to the previous discussions, we have the following three cases.

1′) If there is some positive integerk2such thatm1=pk2, i.e.,

and

Thus by (3) and (1) of Theorem 1.1, we have

which satisfies (1) of Theorem 1.1.

2′) Suppose that there is some positive integerk2andt1∈[1,k2], such thatm1=pk2-t1, i.e.,

and so

Thus by (3) and (2) of Theorem 1.1, we have

which satisfies (2) of Theorem 1.1.

3′) Suppose that there is some positive integerk2andt1∈[k2+1,pk2-pk2-1], such thatm1=pk2-t1, i.e.,

Now set

then

and so

Similar to the previous discussions, we know thatα∈[pr-1,pr] is a positive integer. Thus, one can repeat the above discussions 1)-3).

From the above discussions, Theorem 1.1 is proved.

The Proof for Corollary 1.2 For any positive integerski(1≤i≤n) with 1≤k1

(**)

Note that for anykm(1≤m≤n-1), we have

Thus from (**) we can get

Hence

Thus Corollary 1.2 is proved.

The Proof for Theorem 1.3 1) If there are some primepand positive integermcoprime withp, such thatS(pk)=φ(pm) andS(pk)≥S(mk). Then forp=2, we have

Byφ(2m)≡ 0(mod 2) we havem≥3. While byS(2k)≥S(mk), we havem=1, this is a contradiction. And sop≥3, thus from the definition ofS(n) and the assumption thatpis coprime withm, we have

2) Suppose that there exist some positive integerα, primepand positive integermcoprime withp, such thatφ(p2m)=S(p2k) andS(p2k)≥S(mk).

(I) For the case 2k≤p, by (2) of Lemma 2.1, we have

i.e., 2k=(p-1)φ(m). Note thatpis a prime, ifp=2, then by 2k≤p=2 we havek=1, and soφ(m)=2, thusm=3,4,6. Hence from gcd(p,m)=1 andp=2, we can getm=3. In this case,

which means that (p,m)=(2,3) is a solution.

Now forp≥3, by 2k≤pwe have

and soφ(m)=1, i.e.,m=1 or 2 andp=2k+1, hence

(II) For the case 2k>p, suppose thatt1andt2are both nonnegative integers such that

(4)

and

Then byS(p2k)=φ(p2m) and Lemma 2.2, we have

(5)

and

Now from (5), we know that

which means that

(6)

Note that 2k>p, i.e., 2kp>p2, thus we have three cases as following.

1) For the case

which means that

and sop2-1|p+2, i.e.,p+2≥p2-1. While

2) For the case

i.e.,

3) Therefore we must have (p2-1)φ(m)-(p+1)>p2, namely,

By (6), we have

i.e.,

(7)

thus 2p2-(2k+1)p-3≤0, and so

(8)

Note thatpis a prime, and so 2p-(2k+1)≤1. If 2p-(2k+1)=1, then by (8), we know that (p,k)=(2,1),(3,2). From (p,k)=(2,1), we have 2k=p=2, this is a contradiction to 2k>p. Sok=2,p=3 or 2p<2k+1. Byk=2,p=3 and (7), we haveφ(m)=2, and thenm=3,4,6. Note that gcd(p,m)=1 and then forp=3, we havem=4, thus

namely,

(9)

Note that

whichisacontradiction.Hencek≥3,thusweprove(2)ofTheorem1.3.

3)Forα≥3.Ifαk≤p,thenby(2)ofLemma2.1,wehave

thus

henceαk=p=2,whichisacontradictiontotheassumptionα≥3.Andsoαk>p.Nowsupposethatt1andt2arebothnonnegativeintegerssuchthat

(10)

and

(11)

namely,

thus

and so

i.e.,

(12)

Note that for any positive integerm, we haveφ(m)≥1, therefore we must haveαk+1≥pα-3(p2-1).

If

i.e.,φ(m)=1. In this case, forα=3 we have 3k+1=p2-1, i.e.,p2=3k+2, which is impossible. Soα>3, and then

We can conclude that

(13)

Otherwise, fromα-3≥pα-4(p-1)-1, we have

(14)

It is easy to see that forα≥4 there is no any primep>5 satisfying (14). Hencep=2 or 3. Byp=3 and (14) we haveα≥2(3α-4+1). While 2(3α-4+1)>αforα≥5. Therefore from (14) we haveα=4, and then 4k+1=3α-1-3α-3=24, which is a contradiction. Thus we must havep=2.

Now fromp=2 and (14), we haveα>2α-4+2, and soα=4,5,6. Thus byαk+1=pα-1-pα-3andα=4, we haveαk+1=4k+1=23-2=6, which is a contradiction. Forα=5, we have 5k+1=12, which is also a contradiction. Forα=6,6k+1=24, it is also a contradiction. Hence (14) is not true, and soα-3

Now byφ(m)=1, gcd(p,m)=1 andφ(pαm)=S(pαk), we have

this meanspα-3+p=pα-2. Note thatpis a prime, thus we havep=2 andα=4. And so 4k+1=23-2=6, which is a contradiction.

From the above we must haveαk+1>pα-3(p2-1)≥p+1. Without loss of the generality, set

Now by (12), we have

(15)

and so 1≤φ(m)≤q. Thus we prove (3) of Theorem 1.3.

Thusweprove(4)ofTheorem1.3.

FromtheaboveTheorem1.3isproved.

we have

i.e.,

(16)

Thus from

we have

(17)

wecanobtain1≤m≤d.

ThusweproveTheorem1.4.

TheProofforCorollary1.5 1)Ifp=2r+1isaprimeandα=2r,n=22r(2r+1).Then

Ontheotherhand,bythedefinitionofσ(n)and(1)ofTheorem1.1,wealsohave

2)Sincen=2p-1(2p-1)isaperfectnumber,soσ(n)=2p(2p-1).Thusfrom(1)ofLemma2.1and2p-1isaprimenumber,wehave

Notethat

andso

Bythesimilarway,wecanprovepart(3).

ThusweproveCorollary1.5.

3 Some Examples

Inthissection,someexamplesforbothTheorem1.1andCorollary1.2aregiven.

Example3.1Letp=3,α=35=243,thenby(1)ofTheorem1.1wehave

Ontheotherhand,from

163+54+18+6+2+0=243,

and the definition ofS(n), we also haveS(3243)=489.

Example 3.2 Letp=3,α=36-4=725. Namely, be takingr=6,t=4 in (2) of Theorem 1.1, we know that

On the other hand, from

486+162+54+18+6+2+0=728,

485+161+53+17+5+1+0=722,

and the definition ofS(n), we also haveS(3725)=1 458.

Example 3.3 Letp=3,α=5 017, i.e.,

thus from (2) of Theorem 1.1, we have

4×2 187+16×81=10 044.

On the other hand, from

3 348+1 116+372+124+

41+13+4+1=5 019,

and

3 347+1 115+371+123+

41+13+4+1=5 015,

we also haveS(35 017)=10 044.

4 Conclusion

[1] KEMPNER A J. Miscellanea[J]. American Mathematical Monthly,1918,25(5):201-210.

[2] XU Z F. The value distribution of Smarandache function[J]. Acta Mathematica Sinica,2006,49(5):1009-1012.

[3] FARRIS M, MITSHELL P. Bounding the Smarandache function[J]. Smarandache Notions J,2002,13:37-42.

[4] SMARANDACHE F. Only Problems, Not Solution[M]. Chicago:Xiquan Publishing House,1993.

[5] GORSKI D. The pseudo-Smarandache function[J]. Smarandache Notions J,2002,13(1/2/3):140-149.

[6] LE M H. A lower bound forS(2p-1(2p-1))[J]. Smarandache Notions J,2001,12(1):217-218.

[7] LIU Y M. On the solutions of an equation invloving the Smarandache function[J]. Scientia Magna,2006,2(1):76-79.

[8] 溫田丁. Smarandache函數(shù)的一個下界估計[J]. 純粹數(shù)學與應用數(shù)學,2010,26(3):413-416.

[9] YI Y. An equation in volving the Euler function and Smarandache function[J]. Scientia Magna,2005,1(2):172-175.

Smarandache函數(shù)的準確計算公式以及相關(guān)數(shù)論方程的求解

廖群英, 羅文力

(四川師范大學 數(shù)學與軟件科學學院, 四川 成都 610066)

Smarandache函數(shù); 歐拉函數(shù); 高斯函數(shù); 完全數(shù)

O

A

1001-8395(2017)01-0001-10

2016-01-03

國家自然科學基金(11401408)和四川省科技廳研究項目(2016JY0134)

廖群英(1974—),女,教授,主要從事編碼和密碼學理論的研究,E-mail:qunyingliao@sicnu.edu.cn

Foundation Items: This work is supported by National Natural Science Foundation of China (No.11401408) and Project of Science and Technology

10.3969/j.issn.1001-8395.2017.01.001

(編輯 周 俊)

Received date:2016-01-03

Department of Sichuan Province (No.2016JY0134)

2010 MSC:12E20; 12E30; 11T99

猜你喜歡
數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
我們愛數(shù)學
我為什么怕數(shù)學
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數(shù)學就難過
數(shù)學也瘋狂
主站蜘蛛池模板: 狠狠色成人综合首页| 亚洲综合香蕉| 欧美69视频在线| 亚洲第一成年网| 成人欧美在线观看| 四虎成人在线视频| 91国内在线观看| 免费在线不卡视频| 国产成人精品亚洲日本对白优播| 欧美h在线观看| 伊伊人成亚洲综合人网7777| 伊人成色综合网| 中文字幕有乳无码| 精品久久久久久久久久久| 在线亚洲精品自拍| 国产欧美精品一区二区| 久久久亚洲国产美女国产盗摄| 草逼视频国产| av性天堂网| 无码精油按摩潮喷在线播放| 韩国v欧美v亚洲v日本v| 黄色三级网站免费| 午夜国产精品视频黄| 美女亚洲一区| 高清国产va日韩亚洲免费午夜电影| 亚洲国产精品一区二区高清无码久久 | 国内精品视频| 国产精品短篇二区| 国产素人在线| 爽爽影院十八禁在线观看| 久久免费精品琪琪| 91 九色视频丝袜| 亚洲欧美日韩精品专区| 欧美亚洲一区二区三区导航| 秋霞午夜国产精品成人片| 91网站国产| 一区二区影院| 国产91小视频在线观看| 少妇极品熟妇人妻专区视频| 久久久国产精品无码专区| 波多野结衣无码AV在线| 亚洲中文字幕无码爆乳| 亚洲天堂成人在线观看| 欧美色视频网站| 亚洲天堂色色人体| 国产亚洲视频免费播放| 日韩无码黄色网站| 国产精品亚洲一区二区三区z| 午夜一级做a爰片久久毛片| 欧美激情第一区| 色首页AV在线| 欧美第一页在线| 欧类av怡春院| 97人妻精品专区久久久久| 91av成人日本不卡三区| 国产网友愉拍精品| 精品伊人久久大香线蕉网站| 欧美不卡在线视频| 韩日午夜在线资源一区二区| 在线观看91精品国产剧情免费| P尤物久久99国产综合精品| 日韩精品少妇无码受不了| 国产乱子伦无码精品小说| 日韩欧美成人高清在线观看| 国产不卡一级毛片视频| 国产日韩欧美在线视频免费观看| 欧美成人亚洲综合精品欧美激情| 婷婷色中文| 亚洲中文无码av永久伊人| www亚洲精品| 国产91精品调教在线播放| 久久综合伊人77777| 伊人久久久大香线蕉综合直播| 无码福利视频| 日韩国产亚洲一区二区在线观看| 园内精品自拍视频在线播放| 亚洲成人精品久久| 看你懂的巨臀中文字幕一区二区| 日本日韩欧美| 91伊人国产| 色亚洲成人| 欧美日韩国产精品综合|