999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Diagraph from power mapping on matrix rings over finite fields

2017-04-27 03:51:47ZhaoJinxingNanJizhu
關(guān)鍵詞:數(shù)學(xué)

Zhao Jinxing, Nan Jizhu

(1.School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China)

(2.School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China)

Diagraph from power mapping on matrix rings over finite fields

Zhao Jinxing1,2, Nan Jizhu1

(1.School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China)

(2.School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China)

For a finite ring or a finite group H written multiplicative,let G(H,k) be the digraph whose vertex set is H and there is directed edge from a∈H to b∈H if b=ak.In this paper,we study the k-th power mapping iteration graph from the matrix rings over finite fields.We obtain the distribution of indegrees and number of cycles of this digraph.

iteration digraph,finite field,tree,cycle length

1 Introduction

Let X be a non-empty set and f be a mapping from X into itself.Then we call G(X,f) the iteration digraph fromf of X,where the set of vertices of G(X,f)is X and there is a directed edge from a vertex a∈G(X,f)to a vertex b∈G(X,f)if f(a)=b.If R is a ring or a group written multiplicative and fmaps x to xk,then denote the digraph by G(R,k).

Many interesting examples of iteration graphs comes from the k-th power mapping of finite abelian groups or the ring of integers modulo n[1?5].The distribution of the indegrees and cycles of these digraphs are obtained.These results were soon generalized to the case for finite commutative rings[6?10].

This paper is motivated by[11],who investigate the structure of digraph form the generalized quaternion 2-group.This is the first paper concerned about the power digraph on a non-abelian group.In this paper,we study the k-th power mapping iteration digraphs of matrix rings over finite fields.Our main tool is linear algebra and group theory.

This paper is organized as follows.In Section 2,we present some basic properties of G(R,k)including indegees,cycles and structure of components.We point out that G(R,k) is a disjoint union of two induced sudigraph.In Section 3 and Section 4,we study the two induced subdigraphs independently.

2 Preliminaries and notations

Let Fqbe a finite field with q elements and R=M2(Fq)be the 2 by 2 matrix ring over Fqin the remaining part of this paper.Let U(R),Z(R),N(R)denote the set of units,zero-divisors and nilpotent matrices of R,respectively.We use fA(x)and mA(x)to denote the characteristic polynomial and minimal polynomial of A,respectively.The trace of A and determinant of A is tr(A)and detA.

A component of a digraph is a directed subgraph induced by a maximal connected subgraph of the associated undirected graph.A t-cycle of G(X,f)is a directed cycle of length t.A fixed point is a cycle of length 1.That is,f(x)=x.It is clear that if X is a finite set,then each component contains a unique cycle.The indegree of a vertex x∈X,denoted by(or indeg(x)),is the number of directed edges pointing to x.Thus,indeg(x)=|f?1(x)|.The height function on a vertex x is h(x)=mini≥0{fi(x)is a cycle vertex}.If C is a component of G(X,f),then we define h(C)=supx∈Ch(x).

There are two particular subdigraphs of G(R,k).Let G1(R,k)be the digraph induced subdigraph of G(R,k)on the set of units and G2(R,k)be the digraph induced subdigraph of G(R,k)on the set of zero-divisors.It is clear that G1(R,k)and G2(R,k)are disjoint and there are no edges between them.

Lemma 2.1[12]We have

(1)|U(R)|=(q2?q)(q2?1)=q4?q3?q2+q,

(2)|Z(R)|=q3+q2?q,

(3)|N(R)|=q2.

In the case that H is a finite abelian group,the structure of G(H,k)is highly symmetric. Let Cndenote the cyclic group of order n.Recall that if gcd(a,n)=1,the order of a modulo n is the minimal positive integer such that ak≡1(mod n).We need the following result.

Theorem 2.1Suppose that HCn1×Cn2×···×Cnr,where ni|ni+1for i= 1,2,...,r?1.Let k,k′be two positive integers and ni=uivi,where uiis the largest divisorof nirelatively prime to k.

(1)Any vertex of G(H,k)has indegree 0

(2)The number of cycle vertex of G(H,k)

(3)The set of cycle length appeared in G(H,k)is{orddk:d|ur}.

3 Structure of G2(R,k)

In this section we determine the structure of the induced subgraph of G(R,k)by the matrices of rank less than 2.

Lemma 3.1Let Zα={A∈Z(R):tr(A)=α}for α∈Fq.Then

ProofClearly,Z0is the set of nilpotent matrices.By Lemma 2.1,we have

is bijective.It follows that|Zα|=|Zβ|for anyHence,

Lemma 3.2We define

Then

(1)? is a digraph homomorphism;

(2)?|{cA:c∈Fq}is an isomorphism of digraph for any

ProofSince A2=tr(A)A for A∈Z(R),one has B=Ak=tr(A)k?1A.

Thus,B2=A2k=tr(A)2k?1A=tr(A)kAk=tr(A)kB and B∈Ztr(A)k.

So,?|{cA:c∈Fq}is bijective and hence an isomorphism.

The proof is complete.

Theorem 3.1We have

ProofLet YA=for any A∈Z(R).

Let Ai∈Zαisuch thatIf Ak=αkA=B for A∈Zα,then B∈YA.

It follows that there are no directed edge from the setto the set{cA2:c∈Thus,the digraph induced byis a union of components of G2(R,k).

The following is an immediate consequence of Theorem 3.1 and Theorem 2.1.

Corollary 3.1Let k1,k2be two positive integers and q?1=uv such that u is the largest divisor of q?1 relatively prime to k1.Then

if and only if gcd(q?1,k1)=gcd(q?1,k2)and orddk1=orddk2for any divisor d or u.

4 Structure of G1(R,k)

We recall some basic properties of polynomial over finite fields.

Lemma 4.1[13]Let g(x)∈Fq[x]and g(x)=be the irreducible factorization over Fqand degpi(x)=di.Then

From now on,let V0denote the subspace of R consisting of scalar matrices.For any A∈U(R),let Fq[A]=

It is clear that dimFq[A]=2 if A is not a scalar matrix and dim(Fq[A]∩Fq[B])≥1.So Fq[A]=Fq[B]or Fq[A]∩Fq[B]=V0for any A and B.

The following lemma is simple but useful in our proof.

Lemma 4.2Suppose that Fq[A]Fq[B]for A,B∈R.If C∈Fq[A]V0and Ck∈Fq[B], then Ck∈V0.

ProofWe may assume that C=A since Fq[C]=Fq[A].Suppose to the contrary that AkV0.Then Ak=α1B+α2E=β1A+β2E for some α1β10.Hence B∈Fq[A],A∈Fq[B]and Fq[B]=Fq[A].It is a contradiction.

Lemma 4.3Let U be the unit group of Fq[A].Then

(2)If m(x)=(x?α)2,then

(3)If m(x)=(x?α1)(x?α2)and α1α2,then

(4)If m(x)is irreducible with degree 2 over Fq,then

ProofIf mA(x)is irreducible of degree d,thenThis proves statement(1)and(4).

If mA(x)=(x?α)2,then(x?α+1)q=(x?α)q+1,so x?α+1∈U with order q. Since gcd(q,q?1)=1,it follows thatThis proves(2).

If m(x)=(x?α1)(x?α2)and α1α2,then by Lemma 4.3 Fq[A]This proves(3).

Remark 4.1By Lemma 4.2 and 4.3,we have the following union

where dimFq[Ai]=2 and Fq[Ai]∩Fq[Aj]=V0for distinct i,j.Let Uibe the unit group of Fq[Ai].After ordering we may assume that

Now we count the number in the decomposition(2).

Lemma 4.4Let Uibe the unit group of Aiin equation(2),m1=and m3=Then m1=q+1,m2=and

ProofLet Zibe the set of zero-divisor of Fq[Ai].Then Ziis nilpotent if and only if

By Lemma 2.1 the number of nilpotent elements in R is m1(q?1)+1=q2.So m1=q+1.

By Lemma 2.1 again,the number of zero-divisor of R is q2+m2(2q?2)=q3+q2?q.So

Finally,|R|=(m1+m2+m3)(q2?q)+q=q4.So m3=

Now we can determine the distribution of indegrees and length of cycles in G1(R,k).

Theorem 4.1Suppose that A∈U(R)and

(4)If A∈V0,then

ProofIf AV0and Bk=A,then B∈Fq[A]by Lemma 4.2.Since both B and A are invertible,one has d=gcd(q(q?1),k),by Lemma 2.1.

This proves statement(1)and the proof of(2)and(3)are similar.

Now suppose that A∈V0and R=be the union in(2)and Uibe the unit group of Fq[Ai].By Lemma 4.1,we have the following disjoint union

By Theorem 2.1,

Combining with m1=q+1,,we obtain(4).

A digraph G is called semiregular if there exists a positive integer d such that the indegree of any vertex of G is d or 0.

Corollary 4.1G1(R,k)is semiregular if and only if gcd(q3?q,k)=1.

ProofIf gcd(q3?q,k)=1,then by Theorem 4.1 and a simple computation we see that any vertex in G1(R,k)has indegree 0 or 1.

Conversely,suppose that G1(R,k)is semiregular.By(1)and(2)of Theorem 4.1,we have

Since gcd(q?1,q)=1,one has

Thus,gcd(q3?q,k)=1.

Theorem 4.2Let q2?1=u1v1,q=u2v2where uiis the largest divisor of q2?1,q (resp,)relative prime to k.Then the set of cycle length appeared in G1(R,k)is

and the number of fixed point in G1(R,k)is

ProofLet A1,A2,...,Atbe a t-cycle contained in G1(R,k).Clearly,all Aiare scalar matrices if and only if one Aiis a scalar matrix.

Let cibe the number of fixed points in UiV0.So ciis equal to the number of fixed points of G(U,k)minus the number of fixed points in G(Cq?1,k).By Theorem 2.1,we have

Thus,the number of fixed points in G1(R,k)is equal to c.

Corollary 4.2Let

be the number of fixed points in G1(R,kj).

Then the number of t-cycle in G1(R,k)is ct?

ProofIt follows immediately from that x is contained in a t-cycle of G1(R,k)if and only if x is a fixed point in G1(R,kt).

Reference

[1]Deng G X,Yuan P Z.Isomorphic digraphs from powers modulo p[J].Czechoslovak Math.J.,2011,61:771-779.

[2]Lucheta C,Miller E,Reiter C.Digraphs from powers modulo p[J].Fibonacci Quart.,1996,34:226-239.

[3]Rogers T D.The graph of the square mapping on the prime field[J].Discrete Math.,1996,148:317-324.

[6]Deng G X.On the structure of G(H,k)[J].Algebra Colloq.,2014,21(2):317-330.

[7]Meemark Y,Wiroonsri N.The quadratic digraph on polynomial rings over finite fields[J].Finite Fields Appl.,2010,16:334-346.

[8]Meemark Y,Wiroonsri N.The digraph of the kth power mapping of the quotient ring of polynomials over finite fields[J].Finite Fields Appl.,2012,18:179-191.

[9]Wei Y J,Nan J Z,Tang G H.Structure of cubic mapping graph for the ring of Gaussian integers modulo n[J].Czechoslovak Math.J.,2012,62:527-539.

[10]Wei Y J,Nan J Z,Tang G H.The square mapping graphs of finite commutative rings[J].Algebra Colloq., 2012,19:569-580.

[11]Ahmad U.The classification of finite groups by using iteration digraphs[J].Czechoslovak Math J., 2016,66(4):1103-1117.

[12]Morrison K E.Integer sequences and matrices over finite fields[J].J.Integer Seq.,2006,9:06.2.1.

[13]Lidl R,Niederreiter H.Introduction to finite Fields and Their Applications[M].England:Cambridge University Press.1994.

有限域上矩陣環(huán)的冪映射圖

趙金星1,2,南基洙1

(1.大連理工大學(xué)數(shù)學(xué)科學(xué)學(xué)院,遼寧,大連 116024)

(2.內(nèi)蒙古大學(xué)數(shù)學(xué)科學(xué)學(xué)院,內(nèi)蒙古,呼和浩特 010021)

對于一個環(huán)或者是乘法群H和一個正整數(shù)k,我們可以定義一個有向圖G(H,k),稱為H上的k次冪映射圖.它的頂點(diǎn)集合就是H,并且從a到b有一條有向邊當(dāng)且僅當(dāng)b=ak.交換環(huán)或者交換群上的k次冪映射圖一般具有較好的對稱性,這方面已經(jīng)有相當(dāng)多的結(jié)果.本文研究有限域上二階矩陣環(huán)的k次冪映射圖,利用線性代數(shù)和群論的方法,克服了非交換性帶來的困難,得到了這類圖的頂點(diǎn)入度的分布和圈長的分布.

迭代圖;有限域;樹;圈的長度

O157.5

2016-12-29.

國家自然科學(xué)基金(11371343).

趙金星(1979-),碩士生,講師,研究方向:代數(shù)學(xué)及其應(yīng)用.

A

1008-5513(2017)02-0152-08

10.3969/j.issn.1008-5513.2017.02.006

2010 MSC:05C05,05C20,05C25,05C38

猜你喜歡
數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
我們愛數(shù)學(xué)
我為什么怕數(shù)學(xué)
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學(xué)到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數(shù)學(xué)就難過
數(shù)學(xué)也瘋狂
主站蜘蛛池模板: av在线手机播放| 亚洲av无码牛牛影视在线二区| 福利在线不卡| 国产综合亚洲欧洲区精品无码| 91精选国产大片| 欧美精品啪啪| 国产三区二区| 91久久性奴调教国产免费| 亚洲成年人片| 97视频免费在线观看| 久久青草视频| 在线人成精品免费视频| 成人夜夜嗨| 国产成人无码AV在线播放动漫| 国产在线精品网址你懂的| 色有码无码视频| 欧美国产精品不卡在线观看| 看你懂的巨臀中文字幕一区二区 | 亚洲无限乱码一二三四区| 免费国产无遮挡又黄又爽| 久久福利网| 色九九视频| 野花国产精品入口| 精品欧美视频| 午夜少妇精品视频小电影| 国产美女在线免费观看| 亚洲欧美日韩成人高清在线一区| 精品福利视频导航| 老熟妇喷水一区二区三区| 亚洲无码在线午夜电影| 99中文字幕亚洲一区二区| 亚洲一区二区无码视频| 2024av在线无码中文最新| 日韩免费无码人妻系列| 中文国产成人久久精品小说| 精品一区国产精品| 99九九成人免费视频精品| 免费在线视频a| 亚洲第一成年人网站| 午夜毛片免费观看视频 | 亚洲二区视频| 国产精品久久久久婷婷五月| 伊在人亚洲香蕉精品播放 | 日韩精品视频久久| 午夜欧美理论2019理论| 88av在线看| 国产精品页| 久久国产精品电影| 国产亚洲高清在线精品99| 亚洲成a人在线观看| 国产精品网址你懂的| 国产乱子伦精品视频| 人妻一区二区三区无码精品一区 | 久久久久久国产精品mv| 国产91视频免费观看| 一级一级特黄女人精品毛片| 久久国产毛片| 国产精品免费入口视频| 国产精品jizz在线观看软件| 精品人妻AV区| 在线免费a视频| 女同久久精品国产99国| 国产欧美在线观看精品一区污| 国产午夜无码片在线观看网站| 国产乱子伦一区二区=| 亚洲第一黄片大全| 午夜福利免费视频| 国产真实乱子伦精品视手机观看| 狠狠色婷婷丁香综合久久韩国| 亚洲女人在线| 欧美a在线| 天堂中文在线资源| 亚洲女人在线| 国产中文一区a级毛片视频| 欧美视频在线第一页| 久久久受www免费人成| 欧美日韩激情| 暴力调教一区二区三区| 丁香亚洲综合五月天婷婷| 亚洲中文字幕久久无码精品A| 手机在线免费毛片| 99久久精品无码专区免费|